File size: 14,166 Bytes
c765ebd 74b06bf 371129f c765ebd 371129f 3b82033 371129f 963c9e7 c765ebd 371129f 78d1c13 240e8b2 c765ebd 8a905b7 8fe452e 8a905b7 672d0ad 0280b37 8fe452e 0280b37 5c49df9 0280b37 8fe452e 0280b37 8fe452e 0280b37 8fe452e 0280b37 5c49df9 8fe452e 5c49df9 8fe452e 0280b37 5c49df9 8fe452e 0280b37 8fe452e 0280b37 8fe452e 09be21c 8fe452e 0280b37 a661a7f 0280b37 d2cddaf 0280b37 8a905b7 0280b37 8fe452e 0280b37 8fe452e 0280b37 8a905b7 0280b37 8fe452e 0280b37 8fe452e 0280b37 8a905b7 09be21c 8a905b7 c765ebd 8a905b7 c765ebd 371129f d2cddaf 371129f 963c9e7 d2cddaf 371129f d2cddaf 371129f d2cddaf 371129f d2cddaf 371129f d2cddaf 371129f d2cddaf 963c9e7 d2cddaf 963c9e7 d2cddaf 0f8b092 d2cddaf 371129f d2cddaf 963c9e7 d2cddaf 371129f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import types
import random
import spaces
import os
import torch
import numpy as np
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
from src.pipeline_wan_nag import NAGWanPipeline
from src.transformer_wan_nag import NagWanTransformer3DModel
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
# MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# # Additional enhancement LoRAs for FusionX-like quality
# ACCVIDEO_LORA_REPO = "alibaba-pai/Wan2.1-Fun-Reward-LoRAs"
# MPS_LORA_FILENAME = "Wan2.1-MPS-Reward-LoRA.safetensors"
# vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
# pipe = NAGWanPipeline.from_pretrained(
# MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
# )
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
# pipe.to("cuda")
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# for name, param in pipe.transformer.named_parameters():
# if "lora_B" in name:
# if "blocks.0" in name:
# param.data = param.data * 0.25
# pipe.fuse_lora()
# pipe.unload_lora_weights()
###### Working attempt 2 #########################
#--- Model and LoRA definitions ---
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
# LoRA 1: CausVid
LORA1_REPO_ID = "Kijai/WanVideo_comfy"
LORA1_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
LORA1_NAME = "causvid_lora"
LORA1_WEIGHT = 0.95
# LoRA 2: MPS Reward
LORA2_REPO_ID = "alibaba-pai/Wan2.1-Fun-Reward-LoRAs"
LORA2_FILENAME = "Wan2.1-MPS-Reward-LoRA.safetensors"
LORA2_NAME = "mps_lora"
LORA2_WEIGHT = 0.7
# # LoRA 3: (NEW) Insert actual repo/filename below
# LORA3_REPO_ID = "your-username/your-lora-repo"
# LORA3_FILENAME = "your_third_lora.safetensors"
# LORA3_NAME = "third_lora"
# LORA3_WEIGHT = 0.85
# --- Load model and VAE ---
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = NAGWanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")
# --- LoRA loading helper ---
def load_lora_from_repo(repo_id, filename, adapter_name, weight):
snapshot_path = snapshot_download(
repo_id=repo_id,
allow_patterns=[filename], # Only download this file
repo_type="model" # or "dataset" if needed
)
lora_path = os.path.join(snapshot_path, filename)
pipe.load_lora_weights(lora_path, adapter_name=adapter_name)
return adapter_name, weight, lora_path
# --- Load all LoRAs ---
lora_adapters = []
lora_weights = []
# Load CausVid LoRA
# name, weight, path = load_lora_from_repo(LORA1_REPO_ID, LORA1_FILENAME, LORA1_NAME, LORA1_WEIGHT)
# lora_adapters.append(name)
# lora_weights.append(weight)
# # Special scale adjustment for causvid blocks.0
# for n, p in pipe.transformer.named_parameters():
# if "lora_B" in n and "blocks.0" in n:
# p.data = p.data * 0.25
# # Load MPS LoRA
name, weight, path = load_lora_from_repo(LORA2_REPO_ID, LORA2_FILENAME, LORA2_NAME, LORA2_WEIGHT)
lora_adapters.append(name)
lora_weights.append(weight)
# # # Load Third LoRA
# name, weight, path = load_lora_from_repo(LORA3_REPO_ID, LORA3_FILENAME, LORA3_NAME, LORA3_WEIGHT)
# lora_adapters.append(name)
# lora_weights.append(weight)
# --- Set and fuse adapters ---
pipe.set_adapters(lora_adapters, adapter_weights=lora_weights)
pipe.fuse_lora()
##### Attempt 3 #####################################################
# MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
# # --- Initialize pipeline ---
# vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
# pipe = NAGWanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
# pipe.to("cuda")
# # --- LoRA config list ---
# LORA_CONFIGS = [
# {
# "repo_id": "Kijai/WanVideo_comfy",
# "filename": "Wan21_CausVid_14B_T2V_lora_rank32.safetensors",
# "adapter_name": "causvid_lora",
# "weight": 0.95,
# "scale_blocks": ["blocks.0"], # special scaling
# },
# {
# "repo_id": "vrgamedevgirl84/Wan14BT2VFusioniX",
# "filename": "OtherLoRa's/DetailEnhancerV1.safetensors",
# "adapter_name": "mps_lora",
# "weight": 0.7
# }
# # {
# # "repo_id": "your-user/your-lora-repo",
# # "filename": "your_third_lora.safetensors",
# # "adapter_name": "third_lora",
# # "weight": 0.85
# # }
# ]
# # --- LoRA loader ---
# def load_lora_from_repo(pipe, repo_id, filename, adapter_name, weight, repo_type="model", scale_blocks=None):
# snapshot_path = snapshot_download(
# repo_id=repo_id,
# allow_patterns=[filename],
# repo_type=repo_type
# )
# lora_path = os.path.join(snapshot_path, filename)
# pipe.load_lora_weights(lora_path, adapter_name=adapter_name)
# # Optional: Apply scale to certain blocks
# if scale_blocks:
# for n, p in pipe.transformer.named_parameters():
# if "lora_B" in n and any(block in n for block in scale_blocks):
# p.data *= 0.25
# return adapter_name, weight
# # --- Load and apply LoRAs ---
# lora_adapters = []
# lora_weights = []
# for config in LORA_CONFIGS:
# name, weight = load_lora_from_repo(
# pipe,
# repo_id=config["repo_id"],
# filename=config["filename"],
# adapter_name=config["adapter_name"],
# weight=config.get("weight", 1.0),
# repo_type=config.get("repo_type", "model"),
# scale_blocks=config.get("scale_blocks", [])
# )
# lora_adapters.append(name)
# lora_weights.append(weight)
# pipe.set_adapters(lora_adapters, adapter_weights=lora_weights)
# pipe.fuse_lora()
# # pipe.unload_lora_weights() # Optional: only needed if you want to release memory
# print(f"✅ Fused LoRAs: {lora_adapters}")
# Optional: unload after fusing
pipe.unload_lora_weights()
print(f"✅ Loaded and fused {len(lora_adapters)} LoRAs: {lora_adapters}")
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
examples = [
["A ginger cat passionately plays eletric guitar with intensity and emotion on a stage. The background is shrouded in deep darkness. Spotlights casts dramatic shadows.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
]
def get_duration(
prompt,
nag_negative_prompt, nag_scale,
height, width, duration_seconds,
steps,
seed, randomize_seed,
compare,
):
duration = int(duration_seconds) * int(steps) * 2.25 + 5
if compare:
duration *= 2
return duration
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
nag_negative_prompt, nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
steps=DEFAULT_STEPS,
seed=DEFAULT_SEED, randomize_seed=False,
compare=True,
):
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
with torch.inference_mode():
nag_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
nag_tau=3.5,
nag_alpha=0.5,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
nag_video_path = tmpfile.name
export_to_video(nag_output_frames_list, nag_video_path, fps=FIXED_FPS)
if compare:
baseline_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
baseline_video_path = tmpfile.name
export_to_video(baseline_output_frames_list, baseline_video_path, fps=FIXED_FPS)
else:
baseline_video_path = None
return nag_video_path, baseline_video_path, current_seed
def generate_video_with_example(
prompt,
nag_negative_prompt,
nag_scale,
):
nag_video_path, baseline_video_path, seed = generate_video(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
steps=DEFAULT_STEPS,
seed=DEFAULT_SEED, randomize_seed=False,
compare=True,
)
return nag_video_path, baseline_video_path, \
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, True
with gr.Blocks() as demo:
gr.Markdown('''# Normalized Attention Guidance + Wan2.1-T2V-14B + CausVid LoRA + Detail Face lora
''')
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
max_lines=3,
placeholder="Enter your prompt",
)
nag_negative_prompt = gr.Textbox(
label="Negative Prompt for NAG",
value=DEFAULT_NAG_NEGATIVE_PROMPT,
max_lines=3,
)
nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=11.)
compare = gr.Checkbox(
label="Compare with baseline",
info="If unchecked, only sample with NAG will be generated.", value=True,
)
with gr.Accordion("Advanced Settings", open=False):
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=DEFAULT_STEPS, label="Inference Steps")
duration_seconds_input = gr.Slider(
minimum=1, maximum=5, step=1, value=DEFAULT_DURATION_SECONDS,
label="Duration (seconds)",
)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"Output Width (multiple of {MOD_VALUE})")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
nag_video_output = gr.Video(label="Video with NAG", autoplay=True, interactive=False)
baseline_video_output = gr.Video(label="Baseline Video without NAG", autoplay=True, interactive=False)
gr.Examples(
examples=examples,
fn=generate_video_with_example,
inputs=[prompt, nag_negative_prompt, nag_scale],
outputs=[
nag_video_output, baseline_video_output,
height_input, width_input, duration_seconds_input,
steps_slider,
seed_input,
compare,
],
cache_examples="lazy"
)
ui_inputs = [
prompt,
nag_negative_prompt, nag_scale,
height_input, width_input, duration_seconds_input,
steps_slider,
seed_input, randomize_seed_checkbox,
compare,
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[nag_video_output, baseline_video_output, seed_input],
)
if __name__ == "__main__":
demo.queue().launch() |