Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
|
4 |
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
5 |
|
6 |
-
#import subprocess
|
7 |
-
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
-
|
9 |
# wan2.2-main/gradio_ti2v.py
|
10 |
import gradio as gr
|
11 |
import torch
|
@@ -26,26 +22,31 @@ import gc
|
|
26 |
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
|
27 |
|
28 |
# Download model snapshots from Hugging Face Hub
|
29 |
-
repo_id = "Wan-AI/Wan2.2-TI2V-5B
|
30 |
print(f"Downloading/loading checkpoints for {repo_id}...")
|
31 |
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
|
32 |
print(f"Using checkpoints from {ckpt_dir}")
|
33 |
|
34 |
# Load the model configuration
|
35 |
-
TASK_NAME = 'ti2v-5B
|
36 |
cfg = WAN_CONFIGS[TASK_NAME]
|
37 |
FIXED_FPS = 24
|
38 |
MIN_FRAMES_MODEL = 8
|
39 |
MAX_FRAMES_MODEL = 121
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Instantiate the pipeline in the global scope
|
42 |
print("Initializing WanTI2V pipeline...")
|
43 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
device_id = 0 if torch.cuda.is_available() else -1
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
pipeline = wan.WanTI2V(
|
50 |
config=cfg,
|
51 |
checkpoint_dir=ckpt_dir,
|
@@ -60,44 +61,52 @@ pipeline = wan.WanTI2V(
|
|
60 |
)
|
61 |
print("Pipeline initialized and ready.")
|
62 |
|
63 |
-
# --- Helper Functions ---
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
best_diff = float('inf')
|
74 |
-
|
75 |
-
for size_str in available_sizes:
|
76 |
-
# Parse size string like "704*1280"
|
77 |
-
height, width = map(int, size_str.split('*'))
|
78 |
-
size_aspect_ratio = height / width
|
79 |
-
diff = abs(img_aspect_ratio - size_aspect_ratio)
|
80 |
-
|
81 |
-
if diff < best_diff:
|
82 |
-
best_diff = diff
|
83 |
-
best_size = size_str
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
if image is None:
|
90 |
-
return gr.update()
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
best_size = select_best_size_for_image(pil_image, available_sizes)
|
95 |
|
96 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def get_duration(image,
|
99 |
prompt,
|
100 |
-
|
|
|
101 |
duration_seconds,
|
102 |
sampling_steps,
|
103 |
guide_scale,
|
@@ -105,8 +114,10 @@ def get_duration(image,
|
|
105 |
seed,
|
106 |
progress):
|
107 |
"""Calculate dynamic GPU duration based on parameters."""
|
108 |
-
if
|
109 |
-
return
|
|
|
|
|
110 |
elif sampling_steps < 35 or duration_seconds < 2:
|
111 |
return 105
|
112 |
else:
|
@@ -117,33 +128,40 @@ def get_duration(image,
|
|
117 |
def generate_video(
|
118 |
image,
|
119 |
prompt,
|
120 |
-
|
|
|
121 |
duration_seconds,
|
122 |
-
sampling_steps,
|
123 |
-
guide_scale,
|
124 |
-
shift,
|
125 |
-
seed,
|
126 |
progress=gr.Progress(track_tqdm=True)
|
127 |
):
|
128 |
"""The main function to generate video, called by the Gradio interface."""
|
129 |
if seed == -1:
|
130 |
seed = random.randint(0, sys.maxsize)
|
131 |
|
|
|
|
|
|
|
|
|
132 |
input_image = None
|
133 |
if image is not None:
|
134 |
input_image = Image.fromarray(image).convert("RGB")
|
135 |
-
# Resize image to match
|
136 |
-
|
137 |
-
input_image = input_image.resize((target_width, target_height))
|
138 |
|
139 |
# Calculate number of frames based on duration
|
140 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
141 |
|
|
|
|
|
|
|
142 |
video_tensor = pipeline.generate(
|
143 |
input_prompt=prompt,
|
144 |
img=input_image, # Pass None for T2V, Image for I2V
|
145 |
-
size=SIZE_CONFIGS
|
146 |
-
max_area=MAX_AREA_CONFIGS
|
147 |
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
|
148 |
shift=shift,
|
149 |
sample_solver='unipc',
|
@@ -175,7 +193,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
175 |
|
176 |
with gr.Row():
|
177 |
with gr.Column(scale=2):
|
178 |
-
image_input = gr.Image(type="numpy", label="
|
179 |
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
|
180 |
duration_input = gr.Slider(
|
181 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
@@ -185,48 +203,49 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
185 |
label="Duration (seconds)",
|
186 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
187 |
)
|
188 |
-
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
|
189 |
-
with gr.Column(scale=2):
|
190 |
-
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
191 |
|
192 |
-
|
193 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
194 |
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
|
195 |
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
196 |
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
197 |
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
198 |
|
|
|
|
|
199 |
run_button = gr.Button("Generate Video", variant="primary")
|
200 |
|
201 |
# Add image upload handler
|
202 |
image_input.upload(
|
203 |
-
fn=
|
204 |
-
inputs=[image_input],
|
205 |
-
outputs=[
|
206 |
)
|
207 |
|
208 |
image_input.clear(
|
209 |
-
fn=
|
210 |
-
inputs=[image_input],
|
211 |
-
outputs=[
|
212 |
)
|
213 |
|
214 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
215 |
gr.Examples(
|
216 |
examples=[
|
217 |
-
[example_image_path, "The cat removes the glasses from its eyes.",
|
218 |
-
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.",
|
219 |
-
[None, "Drone footage flying over a futuristic city with flying cars.",
|
220 |
],
|
221 |
-
inputs=[image_input, prompt_input,
|
222 |
outputs=video_output,
|
223 |
fn=generate_video,
|
224 |
-
cache_examples=
|
225 |
)
|
226 |
|
227 |
run_button.click(
|
228 |
fn=generate_video,
|
229 |
-
inputs=[image_input, prompt_input,
|
230 |
outputs=video_output
|
231 |
)
|
232 |
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
3 |
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
4 |
|
|
|
|
|
|
|
5 |
# wan2.2-main/gradio_ti2v.py
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
22 |
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
|
23 |
|
24 |
# Download model snapshots from Hugging Face Hub
|
25 |
+
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
|
26 |
print(f"Downloading/loading checkpoints for {repo_id}...")
|
27 |
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
|
28 |
print(f"Using checkpoints from {ckpt_dir}")
|
29 |
|
30 |
# Load the model configuration
|
31 |
+
TASK_NAME = 'ti2v-5B'
|
32 |
cfg = WAN_CONFIGS[TASK_NAME]
|
33 |
FIXED_FPS = 24
|
34 |
MIN_FRAMES_MODEL = 8
|
35 |
MAX_FRAMES_MODEL = 121
|
36 |
|
37 |
+
# Dimension calculation constants
|
38 |
+
MOD_VALUE = 32
|
39 |
+
DEFAULT_H_SLIDER_VALUE = 704
|
40 |
+
DEFAULT_W_SLIDER_VALUE = 1280
|
41 |
+
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0
|
42 |
+
|
43 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
|
44 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
|
45 |
+
|
46 |
# Instantiate the pipeline in the global scope
|
47 |
print("Initializing WanTI2V pipeline...")
|
48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
device_id = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
50 |
pipeline = wan.WanTI2V(
|
51 |
config=cfg,
|
52 |
checkpoint_dir=ckpt_dir,
|
|
|
61 |
)
|
62 |
print("Pipeline initialized and ready.")
|
63 |
|
64 |
+
# --- Helper Functions (from Wan 2.1 Fast demo) ---
|
65 |
+
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
66 |
+
min_slider_h, max_slider_h,
|
67 |
+
min_slider_w, max_slider_w,
|
68 |
+
default_h, default_w):
|
69 |
+
orig_w, orig_h = pil_image.size
|
70 |
+
if orig_w <= 0 or orig_h <= 0:
|
71 |
+
return default_h, default_w
|
72 |
+
|
73 |
+
aspect_ratio = orig_h / orig_w
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
|
76 |
+
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
|
77 |
|
78 |
+
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
|
79 |
+
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
|
|
|
|
|
80 |
|
81 |
+
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
|
82 |
+
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
|
|
|
83 |
|
84 |
+
return new_h, new_w
|
85 |
+
|
86 |
+
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
|
87 |
+
if uploaded_pil_image is None:
|
88 |
+
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
89 |
+
try:
|
90 |
+
# Convert numpy array to PIL Image if needed
|
91 |
+
if hasattr(uploaded_pil_image, 'shape'): # numpy array
|
92 |
+
pil_image = Image.fromarray(uploaded_pil_image).convert("RGB")
|
93 |
+
else: # already PIL Image
|
94 |
+
pil_image = uploaded_pil_image
|
95 |
+
|
96 |
+
new_h, new_w = _calculate_new_dimensions_wan(
|
97 |
+
pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
|
98 |
+
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
|
99 |
+
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
|
100 |
+
)
|
101 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
102 |
+
except Exception as e:
|
103 |
+
gr.Warning("Error attempting to calculate new dimensions")
|
104 |
+
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
105 |
|
106 |
def get_duration(image,
|
107 |
prompt,
|
108 |
+
height,
|
109 |
+
width,
|
110 |
duration_seconds,
|
111 |
sampling_steps,
|
112 |
guide_scale,
|
|
|
114 |
seed,
|
115 |
progress):
|
116 |
"""Calculate dynamic GPU duration based on parameters."""
|
117 |
+
if duration_seconds >= 3:
|
118 |
+
return 220
|
119 |
+
elif sampling_steps > 35 and duration_seconds >= 2:
|
120 |
+
return 180
|
121 |
elif sampling_steps < 35 or duration_seconds < 2:
|
122 |
return 105
|
123 |
else:
|
|
|
128 |
def generate_video(
|
129 |
image,
|
130 |
prompt,
|
131 |
+
height,
|
132 |
+
width,
|
133 |
duration_seconds,
|
134 |
+
sampling_steps=38,
|
135 |
+
guide_scale=cfg.sample_guide_scale,
|
136 |
+
shift=cfg.sample_shift,
|
137 |
+
seed=42,
|
138 |
progress=gr.Progress(track_tqdm=True)
|
139 |
):
|
140 |
"""The main function to generate video, called by the Gradio interface."""
|
141 |
if seed == -1:
|
142 |
seed = random.randint(0, sys.maxsize)
|
143 |
|
144 |
+
# Ensure dimensions are multiples of MOD_VALUE
|
145 |
+
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
146 |
+
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
147 |
+
|
148 |
input_image = None
|
149 |
if image is not None:
|
150 |
input_image = Image.fromarray(image).convert("RGB")
|
151 |
+
# Resize image to match target dimensions
|
152 |
+
input_image = input_image.resize((target_w, target_h))
|
|
|
153 |
|
154 |
# Calculate number of frames based on duration
|
155 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
156 |
|
157 |
+
# Create size string for the pipeline
|
158 |
+
size_str = f"{target_h}*{target_w}"
|
159 |
+
|
160 |
video_tensor = pipeline.generate(
|
161 |
input_prompt=prompt,
|
162 |
img=input_image, # Pass None for T2V, Image for I2V
|
163 |
+
size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
|
164 |
+
max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
|
165 |
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
|
166 |
shift=shift,
|
167 |
sample_solver='unipc',
|
|
|
193 |
|
194 |
with gr.Row():
|
195 |
with gr.Column(scale=2):
|
196 |
+
image_input = gr.Image(type="numpy", label="Optional (blank = text-to-image)", elem_id="input_image")
|
197 |
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
|
198 |
duration_input = gr.Slider(
|
199 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
|
|
203 |
label="Duration (seconds)",
|
204 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
205 |
)
|
|
|
|
|
|
|
206 |
|
|
|
207 |
with gr.Accordion("Advanced Settings", open=False):
|
208 |
+
with gr.Row():
|
209 |
+
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
210 |
+
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
211 |
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
|
212 |
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
213 |
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
214 |
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
215 |
|
216 |
+
with gr.Column(scale=2):
|
217 |
+
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
218 |
run_button = gr.Button("Generate Video", variant="primary")
|
219 |
|
220 |
# Add image upload handler
|
221 |
image_input.upload(
|
222 |
+
fn=handle_image_upload_for_dims_wan,
|
223 |
+
inputs=[image_input, height_input, width_input],
|
224 |
+
outputs=[height_input, width_input]
|
225 |
)
|
226 |
|
227 |
image_input.clear(
|
228 |
+
fn=handle_image_upload_for_dims_wan,
|
229 |
+
inputs=[image_input, height_input, width_input],
|
230 |
+
outputs=[height_input, width_input]
|
231 |
)
|
232 |
|
233 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
234 |
gr.Examples(
|
235 |
examples=[
|
236 |
+
[example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5],
|
237 |
+
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
|
238 |
+
[None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
|
239 |
],
|
240 |
+
inputs=[image_input, prompt_input, height_input, width_input, duration_input],
|
241 |
outputs=video_output,
|
242 |
fn=generate_video,
|
243 |
+
cache_examples="lazy",
|
244 |
)
|
245 |
|
246 |
run_button.click(
|
247 |
fn=generate_video,
|
248 |
+
inputs=[image_input, prompt_input, height_input, width_input, duration_input, steps_input, scale_input, shift_input, seed_input],
|
249 |
outputs=video_output
|
250 |
)
|
251 |
|