Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,66 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
import gradio as gr
|
|
|
4 |
import tempfile
|
5 |
from huggingface_hub import snapshot_download
|
|
|
6 |
import spaces
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
LORA_PATH = os.path.join(LORA_DIR, "pusa_v1.pt")
|
14 |
-
|
15 |
-
@spaces.GPU
|
16 |
-
def generate_video(prompt, lora_upload):
|
17 |
-
# Download Wan2.1 model only if missing
|
18 |
-
if not os.path.exists(WAN_MODEL_DIR):
|
19 |
snapshot_download(
|
20 |
-
repo_id=
|
21 |
-
|
22 |
-
|
|
|
23 |
local_dir_use_symlinks=False,
|
24 |
-
resume_download=True,
|
25 |
)
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if not os.path.exists(LORA_PATH):
|
32 |
-
os.makedirs(LORA_DIR, exist_ok=True)
|
33 |
-
snapshot_download(
|
34 |
-
repo_id="RaphaelLiu/PusaV1",
|
35 |
-
allow_patterns=["PusaV1/pusa_v1.pt.part*"],
|
36 |
-
local_dir=LORA_DIR,
|
37 |
-
local_dir_use_symlinks=False,
|
38 |
-
)
|
39 |
-
# Stitch parts
|
40 |
-
part_files = sorted(
|
41 |
-
f for f in os.listdir(LORA_DIR) if f.startswith("pusa_v1.pt.part")
|
42 |
-
)
|
43 |
-
with open(LORA_PATH, "wb") as wfd:
|
44 |
-
for part in part_files:
|
45 |
-
with open(os.path.join(LORA_DIR, part), "rb") as fd:
|
46 |
-
wfd.write(fd.read())
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
pipe.set_lora_adapters(lora_path)
|
54 |
|
55 |
-
#
|
56 |
-
result
|
57 |
|
58 |
-
# Save video
|
59 |
tmp_dir = tempfile.mkdtemp()
|
60 |
-
|
61 |
-
save_video(result.frames,
|
62 |
-
|
63 |
-
return video_path
|
64 |
|
|
|
65 |
|
|
|
66 |
with gr.Blocks() as demo:
|
67 |
-
gr.Markdown("
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
generate_btn.click(fn=generate_video, inputs=
|
74 |
|
75 |
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
import tempfile
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from diffsynth import ModelManager, WanVideoPusaPipeline, save_video
|
6 |
import spaces
|
7 |
|
8 |
+
# Constants
|
9 |
+
WAN_SUBFOLDER = "Wan2.1-T2V-14B"
|
10 |
+
MODEL_REPO_ID = "RaphaelLiu/PusaV1"
|
11 |
+
MODEL_ZOO_DIR = "./model_zoo"
|
12 |
+
WAN_MODEL_PATH = os.path.join(MODEL_ZOO_DIR, WAN_SUBFOLDER)
|
13 |
+
LORA_PATH = os.path.join(MODEL_ZOO_DIR, "PusaV1", "pusa_v1.pt")
|
14 |
|
15 |
+
# Ensure model is downloaded
|
16 |
+
def ensure_model_downloaded():
|
17 |
+
if not os.path.exists(WAN_MODEL_PATH):
|
18 |
+
print("Downloading Wan2.1-T2V-14B from HuggingFace Hub...")
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
snapshot_download(
|
20 |
+
repo_id=MODEL_REPO_ID,
|
21 |
+
local_dir=MODEL_ZOO_DIR,
|
22 |
+
repo_type="model",
|
23 |
+
allow_patterns=[f"{WAN_SUBFOLDER}/**"],
|
24 |
local_dir_use_symlinks=False,
|
|
|
25 |
)
|
26 |
+
print("Model downloaded.")
|
27 |
|
28 |
+
# Video generation logic
|
29 |
+
@spaces.GPU
|
30 |
+
def generate_video(prompt: str):
|
31 |
+
ensure_model_downloaded()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Load model
|
34 |
+
manager = ModelManager(pretrained_model_dir=WAN_MODEL_PATH)
|
35 |
+
model = manager.load_model()
|
36 |
|
37 |
+
# Set up pipeline
|
38 |
+
pipeline = WanVideoPusaPipeline(model=model)
|
39 |
+
pipeline.set_lora_adapters(LORA_PATH)
|
|
|
40 |
|
41 |
+
# Generate video
|
42 |
+
result = pipeline(prompt)
|
43 |
|
44 |
+
# Save video
|
45 |
tmp_dir = tempfile.mkdtemp()
|
46 |
+
output_path = os.path.join(tmp_dir, "video.mp4")
|
47 |
+
save_video(result.frames, output_path, fps=8)
|
|
|
|
|
48 |
|
49 |
+
return output_path
|
50 |
|
51 |
+
# Gradio UI
|
52 |
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("## 🎥 Wan2.1-T2V-14B with Pusa LoRA | Text-to-Video Generator")
|
54 |
+
|
55 |
+
prompt_input = gr.Textbox(
|
56 |
+
lines=4,
|
57 |
+
label="Prompt",
|
58 |
+
placeholder="Describe your video (e.g. A coral reef full of colorful fish...)"
|
59 |
+
)
|
60 |
+
|
61 |
+
generate_btn = gr.Button("Generate Video")
|
62 |
+
video_output = gr.Video(label="Output")
|
63 |
|
64 |
+
generate_btn.click(fn=generate_video, inputs=prompt_input, outputs=video_output)
|
65 |
|
66 |
demo.launch()
|