Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -98,16 +98,70 @@ class PatchedModelManager(ModelManager):
|
|
98 |
return None
|
99 |
|
100 |
# Video generation logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
@spaces.GPU(duration=200)
|
102 |
def generate_video(prompt: str):
|
103 |
ensure_model_downloaded()
|
104 |
|
105 |
# Load model using patched manager
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
|
113 |
|
@@ -117,11 +171,11 @@ def generate_video(prompt: str):
|
|
117 |
# device="cuda"
|
118 |
# )
|
119 |
|
120 |
-
model = manager.load_model(WAN_MODEL_PATH)
|
121 |
|
122 |
# Set up pipeline
|
123 |
pipeline = WanVideoPusaPipeline(model=model)
|
124 |
-
pipeline.set_lora_adapters(LORA_PATH)
|
125 |
|
126 |
# Generate video
|
127 |
result = pipeline(prompt)
|
|
|
98 |
return None
|
99 |
|
100 |
# Video generation logic
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
def generate_t2v_video(self, prompt, lora_alpha, num_inference_steps,
|
105 |
+
negative_prompt, progress=gr.Progress()):
|
106 |
+
"""Generate video from text prompt"""
|
107 |
+
try:
|
108 |
+
progress(0.1, desc="Loading models...")
|
109 |
+
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
|
110 |
+
pipe = self.load_lora_and_get_pipe("t2v", lora_path, lora_alpha)
|
111 |
+
|
112 |
+
progress(0.3, desc="Generating video...")
|
113 |
+
video = pipe(
|
114 |
+
prompt=prompt,
|
115 |
+
negative_prompt=negative_prompt,
|
116 |
+
num_inference_steps=num_inference_steps,
|
117 |
+
height=720, width=1280, num_frames=81,
|
118 |
+
seed=0, tiled=True
|
119 |
+
)
|
120 |
+
|
121 |
+
progress(0.9, desc="Saving video...")
|
122 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
123 |
+
video_filename = os.path.join(self.output_dir, f"t2v_output_{timestamp}.mp4")
|
124 |
+
save_video(video, video_filename, fps=25, quality=5)
|
125 |
+
|
126 |
+
progress(1.0, desc="Complete!")
|
127 |
+
return video_filename, f"Video generated successfully! Saved to {video_filename}"
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
return None, f"Error: {str(e)}"
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
@spaces.GPU(duration=200)
|
136 |
def generate_video(prompt: str):
|
137 |
ensure_model_downloaded()
|
138 |
|
139 |
# Load model using patched manager
|
140 |
+
|
141 |
+
|
142 |
+
model_manager = ModelManager(device="cuda")
|
143 |
+
base_dir = "model_zoo/PusaV1/Wan2.1-T2V-14B"
|
144 |
+
|
145 |
+
model_files = sorted([os.path.join(self.base_dir, f) for f in os.listdir(self.base_dir) if f.endswith('.safetensors')])
|
146 |
+
|
147 |
+
model_manager.load_models(
|
148 |
+
[
|
149 |
+
model_files,
|
150 |
+
os.path.join(self.base_dir, "models_t5_umt5-xxl-enc-bf16.pth"),
|
151 |
+
os.path.join(self.base_dir, "Wan2.1_VAE.pth"),
|
152 |
+
],
|
153 |
+
torch_dtype=torch.bfloat16,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
# manager = ModelManager(
|
161 |
+
# file_path_list=[WAN_MODEL_PATH],
|
162 |
+
# torch_dtype=torch.float16,
|
163 |
+
# device="cuda"
|
164 |
+
# )
|
165 |
|
166 |
|
167 |
|
|
|
171 |
# device="cuda"
|
172 |
# )
|
173 |
|
174 |
+
#model = manager.load_model(WAN_MODEL_PATH)
|
175 |
|
176 |
# Set up pipeline
|
177 |
pipeline = WanVideoPusaPipeline(model=model)
|
178 |
+
#pipeline.set_lora_adapters(LORA_PATH)
|
179 |
|
180 |
# Generate video
|
181 |
result = pipeline(prompt)
|