Spaces:
Sleeping
Sleeping
Add application file
Browse files- README.md +58 -13
- app.py +289 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,13 +1,58 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🎬 视频Pose Estimation处理平台
|
2 |
+
|
3 |
+
一个基于Gradio的视频姿态估计和AI分析平台,支持视频上传、姿态检测、时序下采样和智能分析。
|
4 |
+
|
5 |
+
## 功能特性
|
6 |
+
|
7 |
+
- 📹 **视频上传**: 支持多种视频格式
|
8 |
+
- 🤖 **Pose Estimation**: 人体姿态关键点检测
|
9 |
+
- ⏱️ **时序下采样**: 可配置的帧率降采样
|
10 |
+
- 🧠 **AI分析**: 集成ChatGPT进行智能分析
|
11 |
+
- 🐍 **Python处理**: 后续数据处理和分析
|
12 |
+
- 📊 **结果展示**: 多维度结果可视化
|
13 |
+
|
14 |
+
## 处理流程
|
15 |
+
|
16 |
+
1. **视频上传** → 上传待分析的视频文件
|
17 |
+
2. **Pose Estimation** → 提取人体关键点数据
|
18 |
+
3. **时序下采样** → 根据设定比率降采样
|
19 |
+
4. **ChatGPT分析** → AI智能分析姿态特征
|
20 |
+
5. **Python处理** → 运行自定义分析程序
|
21 |
+
6. **结果生成** → 输出综合分析报告
|
22 |
+
|
23 |
+
## 使用方法
|
24 |
+
|
25 |
+
1. 上传视频文件
|
26 |
+
2. 设置下采样率 (1-10)
|
27 |
+
3. 输入ChatGPT分析提示词
|
28 |
+
4. 点击"开始处理"
|
29 |
+
5. 在不同标签页查看结果
|
30 |
+
|
31 |
+
## 技术栈
|
32 |
+
|
33 |
+
- **前端**: Gradio Web UI
|
34 |
+
- **视频处理**: OpenCV
|
35 |
+
- **数据处理**: NumPy
|
36 |
+
- **AI集成**: ChatGPT API (待集成)
|
37 |
+
- **部署平台**: Hugging Face Spaces
|
38 |
+
|
39 |
+
## 开发说明
|
40 |
+
|
41 |
+
当前版本使用模拟数据进行演示。实际部署时需要:
|
42 |
+
|
43 |
+
1. 集成真实的Pose Estimation模型 (如MediaPipe, OpenPose等)
|
44 |
+
2. 配置ChatGPT API密钥
|
45 |
+
3. 实现具体的Python分析程序
|
46 |
+
4. 添加错误处理和日志记录
|
47 |
+
|
48 |
+
## 部署到Hugging Face
|
49 |
+
|
50 |
+
1. 创建新的Space
|
51 |
+
2. 选择Gradio SDK
|
52 |
+
3. 上传所有文件
|
53 |
+
4. 配置环境变量 (如API密钥)
|
54 |
+
5. 启动应用
|
55 |
+
|
56 |
+
## 许可证
|
57 |
+
|
58 |
+
MIT License
|
app.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
from typing import Tuple, Dict, Any
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
|
10 |
+
class PoseEstimationApp:
|
11 |
+
def __init__(self):
|
12 |
+
self.processing_steps = [
|
13 |
+
"视频上传完成",
|
14 |
+
"开始Pose Estimation...",
|
15 |
+
"执行时序下采样...",
|
16 |
+
"调用ChatGPT分析...",
|
17 |
+
"运行Python程序...",
|
18 |
+
"生成最终结果"
|
19 |
+
]
|
20 |
+
|
21 |
+
def extract_video_frames(self, video_path: str, downsample_rate: int = 2):
|
22 |
+
"""提取视频帧并进行下采样"""
|
23 |
+
cap = cv2.VideoCapture(video_path)
|
24 |
+
frames = []
|
25 |
+
frame_count = 0
|
26 |
+
|
27 |
+
while True:
|
28 |
+
ret, frame = cap.read()
|
29 |
+
if not ret:
|
30 |
+
break
|
31 |
+
|
32 |
+
# 根据下采样率选择帧
|
33 |
+
if frame_count % downsample_rate == 0:
|
34 |
+
frames.append(frame)
|
35 |
+
|
36 |
+
frame_count += 1
|
37 |
+
|
38 |
+
cap.release()
|
39 |
+
return frames, frame_count
|
40 |
+
|
41 |
+
def mock_pose_estimation(self, frames):
|
42 |
+
"""模拟pose estimation处理"""
|
43 |
+
# 这里应该是真实的pose estimation代码
|
44 |
+
# 目前返回模拟数据
|
45 |
+
pose_data = []
|
46 |
+
for i, frame in enumerate(frames):
|
47 |
+
# 模拟关键点数据 (17个关键点,每个点有x,y,confidence)
|
48 |
+
keypoints = np.random.rand(17, 3).tolist()
|
49 |
+
pose_data.append({
|
50 |
+
"frame_id": i,
|
51 |
+
"keypoints": keypoints,
|
52 |
+
"timestamp": i * 0.033 # 假设30fps
|
53 |
+
})
|
54 |
+
return pose_data
|
55 |
+
|
56 |
+
def mock_chatgpt_analysis(self, pose_data, custom_prompt):
|
57 |
+
"""模拟ChatGPT分析"""
|
58 |
+
# 这里应该调用实际的ChatGPT API
|
59 |
+
analysis = f"""
|
60 |
+
基于您的提示词: "{custom_prompt}"
|
61 |
+
|
62 |
+
姿态分析结果:
|
63 |
+
- 检测到 {len(pose_data)} 个有效帧
|
64 |
+
- 主要动作模式:步行/站立
|
65 |
+
- 姿态稳定性:良好
|
66 |
+
- 运动幅度:中等
|
67 |
+
- 异常检测:未发现明显异常
|
68 |
+
|
69 |
+
建议:保持当前运动模式,注意关节角度的稳定性。
|
70 |
+
"""
|
71 |
+
return analysis
|
72 |
+
|
73 |
+
def mock_python_processing(self, chatgpt_result):
|
74 |
+
"""模拟Python程序处理"""
|
75 |
+
# 这里应该运行实际的Python分析程序
|
76 |
+
python_output = f"""
|
77 |
+
执行Python分析程序...
|
78 |
+
|
79 |
+
处理ChatGPT结果: {len(chatgpt_result)} 字符
|
80 |
+
计算统计指标...
|
81 |
+
生成可视化图表...
|
82 |
+
|
83 |
+
结果摘要:
|
84 |
+
- 处理状态: 成功
|
85 |
+
- 分析维度: 多维度姿态分析
|
86 |
+
- 输出格式: JSON + 可视化
|
87 |
+
- 置信度: 0.87
|
88 |
+
"""
|
89 |
+
return python_output
|
90 |
+
|
91 |
+
def generate_final_result(self, pose_data, chatgpt_analysis, python_output):
|
92 |
+
"""生成最终结果"""
|
93 |
+
final_result = {
|
94 |
+
"summary": {
|
95 |
+
"total_frames": len(pose_data),
|
96 |
+
"processing_time": "模拟处理",
|
97 |
+
"confidence_score": 0.87
|
98 |
+
},
|
99 |
+
"pose_analysis": "姿态数据已提取",
|
100 |
+
"ai_insights": chatgpt_analysis,
|
101 |
+
"technical_analysis": python_output,
|
102 |
+
"recommendations": [
|
103 |
+
"继续保持良好的运动姿态",
|
104 |
+
"注意关节角度的协调性",
|
105 |
+
"建议增加运动的多样性"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
return json.dumps(final_result, indent=2, ensure_ascii=False)
|
109 |
+
|
110 |
+
def process_video(self, video_file, downsample_rate, custom_prompt, progress=gr.Progress()):
|
111 |
+
"""主要的视频处理函数"""
|
112 |
+
if video_file is None:
|
113 |
+
return "请先上传视频文件", "", "", ""
|
114 |
+
|
115 |
+
try:
|
116 |
+
# 步骤1: 视频上传完成
|
117 |
+
progress(0.1, desc="视频上传完成")
|
118 |
+
time.sleep(1)
|
119 |
+
|
120 |
+
# 步骤2: 提取帧和Pose Estimation
|
121 |
+
progress(0.3, desc="执行Pose Estimation...")
|
122 |
+
frames, total_frames = self.extract_video_frames(video_file, downsample_rate)
|
123 |
+
pose_data = self.mock_pose_estimation(frames)
|
124 |
+
time.sleep(2)
|
125 |
+
|
126 |
+
# 步骤3: 时序下采样
|
127 |
+
progress(0.5, desc="时序下采样完成")
|
128 |
+
time.sleep(1)
|
129 |
+
|
130 |
+
# 步骤4: ChatGPT分析
|
131 |
+
progress(0.7, desc="ChatGPT分析中...")
|
132 |
+
if not custom_prompt.strip():
|
133 |
+
custom_prompt = "请分析这个视频中的姿态特征"
|
134 |
+
chatgpt_result = self.mock_chatgpt_analysis(pose_data, custom_prompt)
|
135 |
+
time.sleep(2)
|
136 |
+
|
137 |
+
# 步骤5: Python程序处理
|
138 |
+
progress(0.9, desc="运行Python分析程序...")
|
139 |
+
python_result = self.mock_python_processing(chatgpt_result)
|
140 |
+
time.sleep(1)
|
141 |
+
|
142 |
+
# 步骤6: 生成最终结果
|
143 |
+
progress(1.0, desc="生成最终结果")
|
144 |
+
final_result = self.generate_final_result(pose_data, chatgpt_result, python_result)
|
145 |
+
|
146 |
+
# 格式化pose数据用于显示
|
147 |
+
pose_summary = f"提取了 {len(pose_data)} 帧数据\n"
|
148 |
+
pose_summary += f"原始帧数: {total_frames}\n"
|
149 |
+
pose_summary += f"下采样率: {downsample_rate}\n"
|
150 |
+
pose_summary += f"有效关键点数: {len(pose_data[0]['keypoints']) if pose_data else 0}"
|
151 |
+
|
152 |
+
return pose_summary, chatgpt_result, python_result, final_result
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
return f"处理出错: {str(e)}", "", "", ""
|
156 |
+
|
157 |
+
# 创建应用实例
|
158 |
+
app = PoseEstimationApp()
|
159 |
+
|
160 |
+
# 创建Gradio界面
|
161 |
+
def create_interface():
|
162 |
+
with gr.Blocks(
|
163 |
+
theme=gr.themes.Soft(),
|
164 |
+
title="视频Pose Estimation处理平台",
|
165 |
+
css="""
|
166 |
+
.gradio-container {
|
167 |
+
max-width: 1200px !important;
|
168 |
+
}
|
169 |
+
.tab-nav {
|
170 |
+
background: linear-gradient(90deg, #667eea, #764ba2) !important;
|
171 |
+
}
|
172 |
+
"""
|
173 |
+
) as demo:
|
174 |
+
|
175 |
+
gr.Markdown(
|
176 |
+
"""
|
177 |
+
# 🎬 视频Pose Estimation处理平台
|
178 |
+
|
179 |
+
上传视频文件,进行姿态估计分析,获得AI驱动的智能洞察
|
180 |
+
|
181 |
+
**功能流程**: 视频上传 → Pose Estimation → 时序下采样 → ChatGPT分析 → Python处理 → 结果生成
|
182 |
+
"""
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column(scale=1):
|
187 |
+
gr.Markdown("## 📤 输入设置")
|
188 |
+
|
189 |
+
video_input = gr.Video(
|
190 |
+
label="上传视频文件",
|
191 |
+
sources=["upload"],
|
192 |
+
height=300
|
193 |
+
)
|
194 |
+
|
195 |
+
with gr.Row():
|
196 |
+
downsample_rate = gr.Slider(
|
197 |
+
minimum=1,
|
198 |
+
maximum=10,
|
199 |
+
value=2,
|
200 |
+
step=1,
|
201 |
+
label="时序下采样率",
|
202 |
+
info="每N帧取1帧"
|
203 |
+
)
|
204 |
+
|
205 |
+
custom_prompt = gr.Textbox(
|
206 |
+
label="ChatGPT提示词",
|
207 |
+
placeholder="请输入分析姿态数据的提示词...",
|
208 |
+
lines=3,
|
209 |
+
value="请详细分析这个视频中的人体姿态特征,包括运动模式、稳定性和任何异常情况。"
|
210 |
+
)
|
211 |
+
|
212 |
+
with gr.Row():
|
213 |
+
process_btn = gr.Button("🚀 开始处理", variant="primary", size="lg")
|
214 |
+
clear_btn = gr.Button("🔄 清除", variant="secondary")
|
215 |
+
|
216 |
+
with gr.Column(scale=2):
|
217 |
+
gr.Markdown("## 📊 处理结果")
|
218 |
+
|
219 |
+
with gr.Tabs() as tabs:
|
220 |
+
with gr.TabItem("姿态数据"):
|
221 |
+
pose_output = gr.Textbox(
|
222 |
+
label="Pose Estimation结果",
|
223 |
+
lines=8,
|
224 |
+
max_lines=15,
|
225 |
+
placeholder="姿态数据将在此显示..."
|
226 |
+
)
|
227 |
+
|
228 |
+
with gr.TabItem("AI分析"):
|
229 |
+
ai_output = gr.Textbox(
|
230 |
+
label="ChatGPT分析结果",
|
231 |
+
lines=8,
|
232 |
+
max_lines=15,
|
233 |
+
placeholder="AI分析结果将在此显示..."
|
234 |
+
)
|
235 |
+
|
236 |
+
with gr.TabItem("Python输出"):
|
237 |
+
python_output = gr.Textbox(
|
238 |
+
label="Python程序输出",
|
239 |
+
lines=8,
|
240 |
+
max_lines=15,
|
241 |
+
placeholder="Python处理结果将在此显示..."
|
242 |
+
)
|
243 |
+
|
244 |
+
with gr.TabItem("最终结果"):
|
245 |
+
final_output = gr.Textbox(
|
246 |
+
label="综合分析结果",
|
247 |
+
lines=8,
|
248 |
+
max_lines=15,
|
249 |
+
placeholder="最终结果将在此显示..."
|
250 |
+
)
|
251 |
+
|
252 |
+
# 事件绑定
|
253 |
+
process_btn.click(
|
254 |
+
fn=app.process_video,
|
255 |
+
inputs=[video_input, downsample_rate, custom_prompt],
|
256 |
+
outputs=[pose_output, ai_output, python_output, final_output],
|
257 |
+
show_progress=True
|
258 |
+
)
|
259 |
+
|
260 |
+
clear_btn.click(
|
261 |
+
fn=lambda: (None, 2, "", "", "", "", ""),
|
262 |
+
outputs=[video_input, downsample_rate, custom_prompt, pose_output, ai_output, python_output, final_output]
|
263 |
+
)
|
264 |
+
|
265 |
+
# 示例
|
266 |
+
gr.Markdown(
|
267 |
+
"""
|
268 |
+
## 💡 使用说明
|
269 |
+
|
270 |
+
1. **上传视频**: 支持常见视频格式 (MP4, AVI, MOV等)
|
271 |
+
2. **设置参数**: 调整下采样率和自定义提示词
|
272 |
+
3. **开始处理**: 点击处理按钮,等待分析完成
|
273 |
+
4. **查看结果**: 在不同标签页中查看详细结果
|
274 |
+
|
275 |
+
**注意**: 当前版本使用模拟数据,实际部署时需要集成真实的API和算法。
|
276 |
+
"""
|
277 |
+
)
|
278 |
+
|
279 |
+
return demo
|
280 |
+
|
281 |
+
# 创建并启动应用
|
282 |
+
if __name__ == "__main__":
|
283 |
+
demo = create_interface()
|
284 |
+
demo.launch(
|
285 |
+
server_name="0.0.0.0",
|
286 |
+
server_port=7860,
|
287 |
+
share=True,
|
288 |
+
show_error=True
|
289 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
opencv-python-headless>=4.8.0
|
3 |
+
numpy>=1.24.0
|
4 |
+
Pillow>=9.5.0
|
5 |
+
requests>=2.31.0
|
6 |
+
python-multipart>=0.0.6
|