Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,530 +1,532 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
-
import random
|
7 |
-
import uuid
|
8 |
-
from typing import Tuple, Union, List, Optional, Any, Dict
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import zipfile
|
12 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
13 |
-
|
14 |
-
# Description for the app
|
15 |
-
DESCRIPTION = """## flux comparator hpc/."""
|
16 |
-
|
17 |
-
# Helper functions
|
18 |
-
def save_image(img):
|
19 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
20 |
-
img.save(unique_name)
|
21 |
-
return unique_name
|
22 |
-
|
23 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
24 |
-
if randomize_seed:
|
25 |
-
seed = random.randint(0, MAX_SEED)
|
26 |
-
return seed
|
27 |
-
|
28 |
-
MAX_SEED = np.iinfo(np.int32).max
|
29 |
-
MAX_IMAGE_SIZE = 2048
|
30 |
-
|
31 |
-
# Load pipelines for both models
|
32 |
-
# Flux.1-dev-realism
|
33 |
-
base_model_dev = "black-forest-labs/FLUX.1-dev
|
34 |
-
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
|
35 |
-
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
36 |
-
trigger_word = "Super Realism"
|
37 |
-
pipe_dev.load_lora_weights(lora_repo)
|
38 |
-
pipe_dev.to("cuda")
|
39 |
-
|
40 |
-
# Flux.1-krea
|
41 |
-
dtype = torch.bfloat16
|
42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
self.
|
84 |
-
self.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
self.scheduler.config.
|
119 |
-
self.scheduler.config.
|
120 |
-
self.scheduler.config.
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
latents_for_image = (
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
latents = (latents
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
timesteps =
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
{"name": "
|
209 |
-
{"name": "
|
210 |
-
{"name": "
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
)
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
)
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
"
|
385 |
-
"
|
386 |
-
"
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
gr.
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
|
|
|
|
530 |
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
+
import random
|
7 |
+
import uuid
|
8 |
+
from typing import Tuple, Union, List, Optional, Any, Dict
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import zipfile
|
12 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
13 |
+
|
14 |
+
# Description for the app
|
15 |
+
DESCRIPTION = """## flux comparator hpc/."""
|
16 |
+
|
17 |
+
# Helper functions
|
18 |
+
def save_image(img):
|
19 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
20 |
+
img.save(unique_name)
|
21 |
+
return unique_name
|
22 |
+
|
23 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
24 |
+
if randomize_seed:
|
25 |
+
seed = random.randint(0, MAX_SEED)
|
26 |
+
return seed
|
27 |
+
|
28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
MAX_IMAGE_SIZE = 2048
|
30 |
+
|
31 |
+
# Load pipelines for both models
|
32 |
+
# Flux.1-dev-realism
|
33 |
+
base_model_dev = "prithivMLmods/Flux.1-Merged" # Merge of (black-forest-labs/FLUX.1-dev + black-forest-labs/FLUX.1-schnell)
|
34 |
+
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
|
35 |
+
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
36 |
+
trigger_word = "Super Realism"
|
37 |
+
pipe_dev.load_lora_weights(lora_repo)
|
38 |
+
pipe_dev.to("cuda")
|
39 |
+
|
40 |
+
# Flux.1-krea
|
41 |
+
dtype = torch.bfloat16
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
44 |
+
# Merge of (black-forest-labs/FLUX.1-dev + https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev)
|
45 |
+
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
|
46 |
+
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)
|
47 |
+
|
48 |
+
# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
|
49 |
+
@torch.inference_mode()
|
50 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
51 |
+
self,
|
52 |
+
prompt: Union[str, List[str]] = None,
|
53 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
54 |
+
height: Optional[int] = None,
|
55 |
+
width: Optional[int] = None,
|
56 |
+
num_inference_steps: int = 28,
|
57 |
+
timesteps: List[int] = None,
|
58 |
+
guidance_scale: float = 3.5,
|
59 |
+
num_images_per_prompt: Optional[int] = 1,
|
60 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
61 |
+
latents: Optional[torch.FloatTensor] = None,
|
62 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
+
output_type: Optional[str] = "pil",
|
65 |
+
return_dict: bool = True,
|
66 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
67 |
+
max_sequence_length: int = 512,
|
68 |
+
good_vae: Optional[Any] = None,
|
69 |
+
):
|
70 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
71 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
72 |
+
|
73 |
+
self.check_inputs(
|
74 |
+
prompt,
|
75 |
+
prompt_2,
|
76 |
+
height,
|
77 |
+
width,
|
78 |
+
prompt_embeds=prompt_embeds,
|
79 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
80 |
+
max_sequence_length=max_sequence_length,
|
81 |
+
)
|
82 |
+
|
83 |
+
self._guidance_scale = guidance_scale
|
84 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
85 |
+
self._interrupt = False
|
86 |
+
|
87 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
88 |
+
device = self._execution_device
|
89 |
+
|
90 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
91 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
92 |
+
prompt=prompt,
|
93 |
+
prompt_2=prompt_2,
|
94 |
+
prompt_embeds=prompt_embeds,
|
95 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
96 |
+
device=device,
|
97 |
+
num_images_per_prompt=num_images_per_prompt,
|
98 |
+
max_sequence_length=max_sequence_length,
|
99 |
+
lora_scale=lora_scale,
|
100 |
+
)
|
101 |
+
|
102 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
103 |
+
latents, latent_image_ids = self.prepare_latents(
|
104 |
+
batch_size * num_images_per_prompt,
|
105 |
+
num_channels_latents,
|
106 |
+
height,
|
107 |
+
width,
|
108 |
+
prompt_embeds.dtype,
|
109 |
+
device,
|
110 |
+
generator,
|
111 |
+
latents,
|
112 |
+
)
|
113 |
+
|
114 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
115 |
+
image_seq_len = latents.shape[1]
|
116 |
+
mu = calculate_shift(
|
117 |
+
image_seq_len,
|
118 |
+
self.scheduler.config.base_image_seq_len,
|
119 |
+
self.scheduler.config.max_image_seq_len,
|
120 |
+
self.scheduler.config.base_shift,
|
121 |
+
self.scheduler.config.max_shift,
|
122 |
+
)
|
123 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
124 |
+
self.scheduler,
|
125 |
+
num_inference_steps,
|
126 |
+
device,
|
127 |
+
timesteps,
|
128 |
+
sigmas,
|
129 |
+
mu=mu,
|
130 |
+
)
|
131 |
+
self._num_timesteps = len(timesteps)
|
132 |
+
|
133 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
134 |
+
|
135 |
+
for i, t in enumerate(timesteps):
|
136 |
+
if self.interrupt:
|
137 |
+
continue
|
138 |
+
|
139 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
+
|
141 |
+
noise_pred = self.transformer(
|
142 |
+
hidden_states=latents,
|
143 |
+
timestep=timestep / 1000,
|
144 |
+
guidance=guidance,
|
145 |
+
pooled_projections=pooled_prompt_embeds,
|
146 |
+
encoder_hidden_states=prompt_embeds,
|
147 |
+
txt_ids=text_ids,
|
148 |
+
img_ids=latent_image_ids,
|
149 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
+
return_dict=False,
|
151 |
+
)[0]
|
152 |
+
|
153 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
154 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
155 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
156 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
157 |
+
|
158 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
|
161 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
+
self.maybe_free_model_hooks()
|
165 |
+
torch.cuda.empty_cache()
|
166 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
167 |
+
|
168 |
+
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
|
169 |
+
|
170 |
+
# Helper functions for flux.1-krea
|
171 |
+
def calculate_shift(
|
172 |
+
image_seq_len,
|
173 |
+
base_seq_len: int = 256,
|
174 |
+
max_seq_len: int = 4096,
|
175 |
+
base_shift: float = 0.5,
|
176 |
+
max_shift: float = 1.16,
|
177 |
+
):
|
178 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
179 |
+
b = base_shift - m * base_seq_len
|
180 |
+
mu = image_seq_len * m + b
|
181 |
+
return mu
|
182 |
+
|
183 |
+
def retrieve_timesteps(
|
184 |
+
scheduler,
|
185 |
+
num_inference_steps: Optional[int] = None,
|
186 |
+
device: Optional[Union[str, torch.device]] = None,
|
187 |
+
timesteps: Optional[List[int]] = None,
|
188 |
+
sigmas: Optional[List[float]] = None,
|
189 |
+
**kwargs,
|
190 |
+
):
|
191 |
+
if timesteps is not None and sigmas is not None:
|
192 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
193 |
+
if timesteps is not None:
|
194 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
195 |
+
timesteps = scheduler.timesteps
|
196 |
+
num_inference_steps = len(timesteps)
|
197 |
+
elif sigmas is not None:
|
198 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
199 |
+
timesteps = scheduler.timesteps
|
200 |
+
num_inference_steps = len(timesteps)
|
201 |
+
else:
|
202 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
203 |
+
timesteps = scheduler.timesteps
|
204 |
+
return timesteps, num_inference_steps
|
205 |
+
|
206 |
+
# Styles for flux.1-dev-realism
|
207 |
+
style_list = [
|
208 |
+
{"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
209 |
+
{"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
210 |
+
{"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
211 |
+
{"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
|
212 |
+
]
|
213 |
+
|
214 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
215 |
+
DEFAULT_STYLE_NAME = "Style Zero"
|
216 |
+
STYLE_NAMES = list(styles.keys())
|
217 |
+
|
218 |
+
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
|
219 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
220 |
+
return p.replace("{prompt}", positive), n
|
221 |
+
|
222 |
+
# Generation function for flux.1-dev-realism
|
223 |
+
@spaces.GPU
|
224 |
+
def generate_dev(
|
225 |
+
prompt: str,
|
226 |
+
negative_prompt: str = "",
|
227 |
+
use_negative_prompt: bool = False,
|
228 |
+
seed: int = 0,
|
229 |
+
width: int = 1024,
|
230 |
+
height: int = 1024,
|
231 |
+
guidance_scale: float = 3,
|
232 |
+
randomize_seed: bool = False,
|
233 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
234 |
+
num_inference_steps: int = 30,
|
235 |
+
num_images: int = 1,
|
236 |
+
zip_images: bool = False,
|
237 |
+
progress=gr.Progress(track_tqdm=True),
|
238 |
+
):
|
239 |
+
positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
|
240 |
+
|
241 |
+
if use_negative_prompt:
|
242 |
+
final_negative_prompt = style_negative_prompt + " " + negative_prompt
|
243 |
+
else:
|
244 |
+
final_negative_prompt = style_negative_prompt
|
245 |
+
|
246 |
+
final_negative_prompt = final_negative_prompt.strip()
|
247 |
+
|
248 |
+
if trigger_word:
|
249 |
+
positive_prompt = f"{trigger_word} {positive_prompt}"
|
250 |
+
|
251 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
252 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
253 |
+
|
254 |
+
start_time = time.time()
|
255 |
+
|
256 |
+
images = pipe_dev(
|
257 |
+
prompt=positive_prompt,
|
258 |
+
negative_prompt=final_negative_prompt if final_negative_prompt else None,
|
259 |
+
width=width,
|
260 |
+
height=height,
|
261 |
+
guidance_scale=guidance_scale,
|
262 |
+
num_inference_steps=num_inference_steps,
|
263 |
+
num_images_per_prompt=num_images,
|
264 |
+
generator=generator,
|
265 |
+
output_type="pil",
|
266 |
+
).images
|
267 |
+
|
268 |
+
end_time = time.time()
|
269 |
+
duration = end_time - start_time
|
270 |
+
|
271 |
+
image_paths = [save_image(img) for img in images]
|
272 |
+
|
273 |
+
zip_path = None
|
274 |
+
if zip_images:
|
275 |
+
zip_name = str(uuid.uuid4()) + ".zip"
|
276 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
277 |
+
for i, img_path in enumerate(image_paths):
|
278 |
+
zipf.write(img_path, arcname=f"Img_{i}.png")
|
279 |
+
zip_path = zip_name
|
280 |
+
|
281 |
+
return image_paths, seed, f"{duration:.2f}", zip_path
|
282 |
+
|
283 |
+
# Generation function for flux.1-krea
|
284 |
+
@spaces.GPU
|
285 |
+
def generate_krea(
|
286 |
+
prompt: str,
|
287 |
+
seed: int = 0,
|
288 |
+
width: int = 1024,
|
289 |
+
height: int = 1024,
|
290 |
+
guidance_scale: float = 4.5,
|
291 |
+
randomize_seed: bool = False,
|
292 |
+
num_inference_steps: int = 28,
|
293 |
+
num_images: int = 1,
|
294 |
+
zip_images: bool = False,
|
295 |
+
progress=gr.Progress(track_tqdm=True),
|
296 |
+
):
|
297 |
+
if randomize_seed:
|
298 |
+
seed = random.randint(0, MAX_SEED)
|
299 |
+
generator = torch.Generator().manual_seed(seed)
|
300 |
+
|
301 |
+
start_time = time.time()
|
302 |
+
|
303 |
+
images = []
|
304 |
+
for _ in range(num_images):
|
305 |
+
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
|
306 |
+
prompt=prompt,
|
307 |
+
guidance_scale=guidance_scale,
|
308 |
+
num_inference_steps=num_inference_steps,
|
309 |
+
width=width,
|
310 |
+
height=height,
|
311 |
+
generator=generator,
|
312 |
+
output_type="pil",
|
313 |
+
good_vae=good_vae,
|
314 |
+
))[-1] # Take the final image only
|
315 |
+
images.append(final_img)
|
316 |
+
|
317 |
+
end_time = time.time()
|
318 |
+
duration = end_time - start_time
|
319 |
+
|
320 |
+
image_paths = [save_image(img) for img in images]
|
321 |
+
|
322 |
+
zip_path = None
|
323 |
+
if zip_images:
|
324 |
+
zip_name = str(uuid.uuid4()) + ".zip"
|
325 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
326 |
+
for i, img_path in enumerate(image_paths):
|
327 |
+
zipf.write(img_path, arcname=f"Img_{i}.png")
|
328 |
+
zip_path = zip_name
|
329 |
+
|
330 |
+
return image_paths, seed, f"{duration:.2f}", zip_path
|
331 |
+
|
332 |
+
# Main generation function to handle model choice
|
333 |
+
@spaces.GPU
|
334 |
+
def generate(
|
335 |
+
model_choice: str,
|
336 |
+
prompt: str,
|
337 |
+
negative_prompt: str = "",
|
338 |
+
use_negative_prompt: bool = False,
|
339 |
+
seed: int = 0,
|
340 |
+
width: int = 1024,
|
341 |
+
height: int = 1024,
|
342 |
+
guidance_scale: float = 3,
|
343 |
+
randomize_seed: bool = False,
|
344 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
345 |
+
num_inference_steps: int = 30,
|
346 |
+
num_images: int = 1,
|
347 |
+
zip_images: bool = False,
|
348 |
+
progress=gr.Progress(track_tqdm=True),
|
349 |
+
):
|
350 |
+
if model_choice == "flux.1-dev-merged":
|
351 |
+
return generate_dev(
|
352 |
+
prompt=prompt,
|
353 |
+
negative_prompt=negative_prompt,
|
354 |
+
use_negative_prompt=use_negative_prompt,
|
355 |
+
seed=seed,
|
356 |
+
width=width,
|
357 |
+
height=height,
|
358 |
+
guidance_scale=guidance_scale,
|
359 |
+
randomize_seed=randomize_seed,
|
360 |
+
style_name=style_name,
|
361 |
+
num_inference_steps=num_inference_steps,
|
362 |
+
num_images=num_images,
|
363 |
+
zip_images=zip_images,
|
364 |
+
progress=progress,
|
365 |
+
)
|
366 |
+
elif model_choice == "flux.1-krea-merged-dev":
|
367 |
+
return generate_krea(
|
368 |
+
prompt=prompt,
|
369 |
+
seed=seed,
|
370 |
+
width=width,
|
371 |
+
height=height,
|
372 |
+
guidance_scale=guidance_scale,
|
373 |
+
randomize_seed=randomize_seed,
|
374 |
+
num_inference_steps=num_inference_steps,
|
375 |
+
num_images=num_images,
|
376 |
+
zip_images=zip_images,
|
377 |
+
progress=progress,
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
raise ValueError("Invalid model choice")
|
381 |
+
|
382 |
+
# Examples (tailored for flux.1-dev-realism)
|
383 |
+
examples = [
|
384 |
+
"cinematic close-up of a mysterious man in a black leather jacket, wet city streets glowing with neon lights in the background, raindrops visible on his hair, moody cyberpunk vibe --ar 16:9 --chaos 30 --stylize 600 --v 6.1",
|
385 |
+
"elegant portrait of a young woman wearing a flowing red silk gown, standing on marble stairs inside a grand palace, chandelier light casting golden highlights, fashion photography style --ar 3:4 --stylize 500 --v 6.0",
|
386 |
+
"vibrant outdoor shot of a teenage skateboarder mid-jump, urban graffiti walls behind him, bright sunlight with dynamic motion blur, sports action shot --ar 21:9 --chaos 40 --stylize 700 --v 6.1",
|
387 |
+
"softly lit, intimate headshot of an elderly woman with silver hair tied in a bun, wearing a knitted cardigan, warm tones and shallow depth of field, fine art photography --ar 4:5 --style raw --stylize 300 --v 6.0"
|
388 |
+
]
|
389 |
+
|
390 |
+
|
391 |
+
css = '''
|
392 |
+
.gradio-container {
|
393 |
+
max-width: 590px !important;
|
394 |
+
margin: 0 auto !important;
|
395 |
+
}
|
396 |
+
h1 {
|
397 |
+
text-align: center;
|
398 |
+
}
|
399 |
+
footer {
|
400 |
+
visibility: hidden;
|
401 |
+
}
|
402 |
+
'''
|
403 |
+
|
404 |
+
# Gradio interface
|
405 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
406 |
+
gr.Markdown(DESCRIPTION)
|
407 |
+
with gr.Row():
|
408 |
+
prompt = gr.Text(
|
409 |
+
label="Prompt",
|
410 |
+
show_label=False,
|
411 |
+
max_lines=1,
|
412 |
+
placeholder="Enter your prompt",
|
413 |
+
container=False,
|
414 |
+
)
|
415 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
416 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
417 |
+
|
418 |
+
with gr.Row():
|
419 |
+
# Model choice radio button above additional options
|
420 |
+
model_choice = gr.Radio(
|
421 |
+
choices=["flux.1-krea-merged-dev", "flux.1-dev-merged"],
|
422 |
+
label="Select Model",
|
423 |
+
value="flux.1-krea-merged-dev"
|
424 |
+
)
|
425 |
+
|
426 |
+
with gr.Accordion("Additional Options", open=False):
|
427 |
+
style_selection = gr.Dropdown(
|
428 |
+
label="Quality Style (for flux.1-dev-realism only)",
|
429 |
+
choices=STYLE_NAMES,
|
430 |
+
value=DEFAULT_STYLE_NAME,
|
431 |
+
interactive=True,
|
432 |
+
)
|
433 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
|
434 |
+
negative_prompt = gr.Text(
|
435 |
+
label="Negative prompt",
|
436 |
+
max_lines=1,
|
437 |
+
placeholder="Enter a negative prompt",
|
438 |
+
visible=False,
|
439 |
+
)
|
440 |
+
seed = gr.Slider(
|
441 |
+
label="Seed",
|
442 |
+
minimum=0,
|
443 |
+
maximum=MAX_SEED,
|
444 |
+
step=1,
|
445 |
+
value=0,
|
446 |
+
)
|
447 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
448 |
+
with gr.Row():
|
449 |
+
width = gr.Slider(
|
450 |
+
label="Width",
|
451 |
+
minimum=512,
|
452 |
+
maximum=2048,
|
453 |
+
step=64,
|
454 |
+
value=1024,
|
455 |
+
)
|
456 |
+
height = gr.Slider(
|
457 |
+
label="Height",
|
458 |
+
minimum=512,
|
459 |
+
maximum=2048,
|
460 |
+
step=64,
|
461 |
+
value=1024,
|
462 |
+
)
|
463 |
+
guidance_scale = gr.Slider(
|
464 |
+
label="Guidance Scale",
|
465 |
+
minimum=0.1,
|
466 |
+
maximum=20.0,
|
467 |
+
step=0.1,
|
468 |
+
value=3.5,
|
469 |
+
)
|
470 |
+
num_inference_steps = gr.Slider(
|
471 |
+
label="Number of inference steps",
|
472 |
+
minimum=1,
|
473 |
+
maximum=40,
|
474 |
+
step=1,
|
475 |
+
value=28,
|
476 |
+
)
|
477 |
+
num_images = gr.Slider(
|
478 |
+
label="Number of images",
|
479 |
+
minimum=1,
|
480 |
+
maximum=5,
|
481 |
+
step=1,
|
482 |
+
value=1,
|
483 |
+
)
|
484 |
+
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
485 |
+
|
486 |
+
gr.Markdown("### Output Information")
|
487 |
+
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
488 |
+
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
489 |
+
zip_file = gr.File(label="Download ZIP")
|
490 |
+
|
491 |
+
gr.Examples(
|
492 |
+
examples=examples,
|
493 |
+
inputs=prompt,
|
494 |
+
outputs=[result, seed_display, generation_time, zip_file],
|
495 |
+
fn=generate,
|
496 |
+
cache_examples=False,
|
497 |
+
)
|
498 |
+
|
499 |
+
use_negative_prompt.change(
|
500 |
+
fn=lambda x: gr.update(visible=x),
|
501 |
+
inputs=use_negative_prompt,
|
502 |
+
outputs=negative_prompt,
|
503 |
+
api_name=False,
|
504 |
+
)
|
505 |
+
|
506 |
+
gr.on(
|
507 |
+
triggers=[
|
508 |
+
prompt.submit,
|
509 |
+
run_button.click,
|
510 |
+
],
|
511 |
+
fn=generate,
|
512 |
+
inputs=[
|
513 |
+
model_choice,
|
514 |
+
prompt,
|
515 |
+
negative_prompt,
|
516 |
+
use_negative_prompt,
|
517 |
+
seed,
|
518 |
+
width,
|
519 |
+
height,
|
520 |
+
guidance_scale,
|
521 |
+
randomize_seed,
|
522 |
+
style_selection,
|
523 |
+
num_inference_steps,
|
524 |
+
num_images,
|
525 |
+
zip_images,
|
526 |
+
],
|
527 |
+
outputs=[result, seed_display, generation_time, zip_file],
|
528 |
+
api_name="run",
|
529 |
+
)
|
530 |
+
|
531 |
+
if __name__ == "__main__":
|
532 |
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|