FLUX-REALISM / app.py
prithivMLmods's picture
Update app.py
75c323b verified
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import random
import uuid
from typing import Tuple, Union, List, Optional, Any, Dict
import numpy as np
import time
import zipfile
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
# Description for the app
DESCRIPTION = """## flux realism hpc/."""
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load pipelines for both models
# Flux.1-dev-realism
base_model_dev = "black-forest-labs/FLUX.1-dev"
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"
pipe_dev.load_lora_weights(lora_repo)
pipe_dev.to("cuda")
# Flux.1-krea
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe_krea = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=dtype, vae=taef1).to(device)
# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
# Helper functions for flux.1-krea
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Styles for flux.1-dev-realism
style_list = [
{"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n
# Generation function for flux.1-dev-realism
@spaces.GPU
def generate_dev(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
if use_negative_prompt:
final_negative_prompt = style_negative_prompt + " " + negative_prompt
else:
final_negative_prompt = style_negative_prompt
final_negative_prompt = final_negative_prompt.strip()
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device="cuda").manual_seed(seed)
start_time = time.time()
images = pipe_dev(
prompt=positive_prompt,
negative_prompt=final_negative_prompt if final_negative_prompt else None,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Generation function for flux.1-krea
@spaces.GPU
def generate_krea(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.5,
randomize_seed: bool = False,
num_inference_steps: int = 28,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
images = []
for _ in range(num_images):
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
))[-1] # Take the final image only
images.append(final_img)
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Main generation function to handle model choice
@spaces.GPU
def generate(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if model_choice == "flux.1-dev-realism":
return generate_dev(
prompt=prompt,
negative_prompt=negative_prompt,
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
style_name=style_name,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
elif model_choice == "flux.1-krea-dev":
return generate_krea(
prompt=prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
else:
raise ValueError("Invalid model choice")
# Examples (tailored for flux.1-dev-realism)
examples = [
"An attractive young woman with blue eyes lying face down on the bed, in the style of animated gifs, light white and light amber, jagged edges, the snapshot aesthetic, timeless beauty, goosepunk, sunrays shine upon it --no freckles --chaos 65 --ar 1:2 --profile yruxpc2 --stylize 750 --v 6.1",
"Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
"Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights.",
"High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250"
]
css = '''
.gradio-container {
max-width: 590px !important;
margin: 0 auto !important;
}
h1 {
text-align: center;
}
footer {
visibility: hidden;
}
'''
# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
with gr.Row():
# Model choice radio button above additional options
model_choice = gr.Radio(
choices=["flux.1-krea-dev", "flux.1-dev-realism"],
label="Select Model",
value="flux.1-krea-dev"
)
with gr.Accordion("Additional Options", open=False):
style_selection = gr.Dropdown(
label="Quality Style (for flux.1-dev-realism only)",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
interactive=True,
)
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=28,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=5,
step=1,
value=1,
)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
gr.Markdown("### Output Information")
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed_display, generation_time, zip_file],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
num_inference_steps,
num_images,
zip_images,
],
outputs=[result, seed_display, generation_time, zip_file],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)