Spaces:
Running
Running
ping98k
commited on
Commit
·
f2e1fb8
1
Parent(s):
88218fc
Implement event handler functions for heatmap, K-Means, cluster plot, and naming events; refactor main.js to use these handlers.
Browse files- clusterplot_event.js +70 -0
- heatmap_event.js +164 -0
- kmeans_event.js +41 -0
- main.js +9 -308
- naming_event.js +37 -0
clusterplot_event.js
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Handles cluster plot (UMAP scatter) event
|
2 |
+
import { getLineEmbeddings } from './embedding.js';
|
3 |
+
import { plotScatter } from './plotting.js';
|
4 |
+
|
5 |
+
const task = "Given a textual input sentence, retrieve relevant categories that best describe it.";
|
6 |
+
|
7 |
+
export async function handleClusterPlotEvent() {
|
8 |
+
const progressBar = document.getElementById("progress-bar");
|
9 |
+
const progressBarInner = document.getElementById("progress-bar-inner");
|
10 |
+
progressBar.style.display = "block";
|
11 |
+
progressBarInner.style.width = "0%";
|
12 |
+
|
13 |
+
// Recalculate embeddings from current textarea
|
14 |
+
const text = document.getElementById("input").value;
|
15 |
+
// Remove ## lines for embedding
|
16 |
+
const lines = text.split(/\n/).map(x => x.trim()).filter(x => x && !x.startsWith("##"));
|
17 |
+
const embeddings = await getLineEmbeddings(lines, task);
|
18 |
+
const n = embeddings.length;
|
19 |
+
if (n < 2) return;
|
20 |
+
|
21 |
+
// Parse clusters from textarea (split by triple newlines)
|
22 |
+
const groups = text.split(/\n{3,}/);
|
23 |
+
const k = groups.length;
|
24 |
+
// Build labels array: for each line, assign the cluster index it belongs to
|
25 |
+
let labels = [];
|
26 |
+
let lineIdx = 0;
|
27 |
+
for (let c = 0; c < k; ++c) {
|
28 |
+
const groupLines = groups[c].split('\n').map(x => x.trim()).filter(x => x && !x.startsWith('##'));
|
29 |
+
for (let i = 0; i < groupLines.length; ++i) {
|
30 |
+
labels[lineIdx++] = c;
|
31 |
+
}
|
32 |
+
}
|
33 |
+
if (labels.length !== n) return;
|
34 |
+
|
35 |
+
// UMAP projection
|
36 |
+
const { UMAP } = await import('https://cdn.jsdelivr.net/npm/umap-js@1.4.0/+esm');
|
37 |
+
const nNeighbors = Math.max(1, Math.min(lines.length - 1, 15));
|
38 |
+
const umap = new UMAP({ nComponents: 2, nNeighbors, minDist: 0.2, metric: "cosine" });
|
39 |
+
const proj = umap.fit(embeddings);
|
40 |
+
// Group lines by cluster
|
41 |
+
const clustered = Array.from({ length: k }, () => []);
|
42 |
+
for (let i = 0; i < lines.length; ++i)
|
43 |
+
clustered[labels[i]].push(lines[i]);
|
44 |
+
// Prepare scatter plot traces
|
45 |
+
const colors = ["red", "blue", "green", "orange", "purple", "cyan", "magenta", "yellow", "brown", "black", "lime", "navy", "teal", "olive", "maroon", "pink", "gray", "gold", "aqua", "indigo"];
|
46 |
+
// Try to extract cluster names from textarea headers
|
47 |
+
const clusterNames = groups.map(g => {
|
48 |
+
const m = g.match(/^##\s*(.*)/m);
|
49 |
+
return m ? m[1].trim() : null;
|
50 |
+
});
|
51 |
+
const placeholderNames = clusterNames.map((name, i) => name || `Cluster ${i + 1}`);
|
52 |
+
const traces = Array.from({ length: k }, (_, c) => ({
|
53 |
+
x: [], y: [], text: [],
|
54 |
+
mode: "markers", type: "scatter",
|
55 |
+
name: placeholderNames[c],
|
56 |
+
marker: { color: colors[c % colors.length], size: 12, line: { width: 1, color: "#333" } }
|
57 |
+
}));
|
58 |
+
for (let i = 0; i < lines.length; ++i) {
|
59 |
+
traces[labels[i]].x.push(proj[i][0]);
|
60 |
+
traces[labels[i]].y.push(proj[i][1]);
|
61 |
+
traces[labels[i]].text.push(lines[i]);
|
62 |
+
}
|
63 |
+
plotScatter(traces, k);
|
64 |
+
window.traces = traces;
|
65 |
+
// Optionally update textarea with cluster names as markdown headers
|
66 |
+
document.getElementById("input").value = clustered.map((g, i) =>
|
67 |
+
`## ${placeholderNames[i]}\n${g.join("\n")}`
|
68 |
+
).join("\n\n\n");
|
69 |
+
progressBarInner.style.width = "100%";
|
70 |
+
}
|
heatmap_event.js
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Handles the heatmap event and group similarity logic
|
2 |
+
import { getGroupEmbeddings, getLineEmbeddings } from './embedding.js';
|
3 |
+
import { plotHeatmap } from './plotting.js';
|
4 |
+
|
5 |
+
const task = "Given a textual input sentence, retrieve relevant categories that best describe it.";
|
6 |
+
|
7 |
+
export async function handleHeatmapEvent() {
|
8 |
+
const progressBar = document.getElementById("progress-bar");
|
9 |
+
const progressBarInner = document.getElementById("progress-bar-inner");
|
10 |
+
progressBar.style.display = "block";
|
11 |
+
progressBarInner.style.width = "0%";
|
12 |
+
|
13 |
+
const text = document.getElementById("input").value;
|
14 |
+
// Get search sort mode from dropdown
|
15 |
+
const searchSortMode = document.getElementById("search-sort-mode")?.value || "group";
|
16 |
+
const search_by_max_search_line = searchSortMode === "line";
|
17 |
+
const search_by_max_search_group = searchSortMode === "group";
|
18 |
+
|
19 |
+
// Find the index of the search cluster (case-insensitive)
|
20 |
+
const clusterNames = text.split(/\n/)
|
21 |
+
.map(x => x.trim())
|
22 |
+
.filter(x => x && x.startsWith('##'))
|
23 |
+
.map(x => x.replace(/^##\s*/, ''));
|
24 |
+
let searchIdx = clusterNames.findIndex(name => name.toLowerCase().includes('search'));
|
25 |
+
|
26 |
+
const groups = text.split(/\n{3,}/);
|
27 |
+
// Get group embeddings (removes ## lines internally)
|
28 |
+
const groupEmbeddings = await getGroupEmbeddings(groups, task);
|
29 |
+
const n = groupEmbeddings.length;
|
30 |
+
progressBarInner.style.width = "30%";
|
31 |
+
// Cosine similarity matrix
|
32 |
+
const sim = [];
|
33 |
+
for (let i = 0; i < n; i++) {
|
34 |
+
const row = [];
|
35 |
+
for (let j = 0; j < n; j++) {
|
36 |
+
let dot = 0, na = 0, nb = 0;
|
37 |
+
for (let k = 0; k < groupEmbeddings[i].length; k++) {
|
38 |
+
dot += groupEmbeddings[i][k] * groupEmbeddings[j][k];
|
39 |
+
na += groupEmbeddings[i][k] ** 2;
|
40 |
+
nb += groupEmbeddings[j][k] ** 2;
|
41 |
+
}
|
42 |
+
row.push(dot / Math.sqrt(na * nb));
|
43 |
+
}
|
44 |
+
sim.push(row);
|
45 |
+
}
|
46 |
+
progressBarInner.style.width = "60%";
|
47 |
+
// Reorder clusters if search cluster is found
|
48 |
+
let order = Array.from({ length: n }, (_, i) => i);
|
49 |
+
if (searchIdx !== -1) {
|
50 |
+
// Compute similarity to search cluster
|
51 |
+
const simToSearch = sim[searchIdx].map((v, i) => ({ idx: i, sim: v }));
|
52 |
+
// Exclude searchIdx from sorting
|
53 |
+
const others = simToSearch.filter(x => x.idx !== searchIdx);
|
54 |
+
others.sort((a, b) => b.sim - a.sim); // descending similarity
|
55 |
+
order = [searchIdx, ...others.map(x => x.idx)];
|
56 |
+
}
|
57 |
+
// Reorder sim matrix and clusterNames
|
58 |
+
const simOrdered = order.map(i => order.map(j => sim[i][j]));
|
59 |
+
const xLabels = (clusterNames && clusterNames.length === n)
|
60 |
+
? order.map(i => clusterNames[i])
|
61 |
+
: order.map((_, i) => `Group ${i + 1}`);
|
62 |
+
plotHeatmap(simOrdered, xLabels, xLabels);
|
63 |
+
|
64 |
+
// Reorder text if search cluster is found
|
65 |
+
// First group is search then follow by hight sim group
|
66 |
+
// in each group order by high sim line
|
67 |
+
if (searchIdx !== -1 && search_by_max_search_line) {
|
68 |
+
const searchLines = groups[searchIdx]
|
69 |
+
.split("\n")
|
70 |
+
.filter(l => l && !l.startsWith("##"));
|
71 |
+
const searchEmbeds = await getLineEmbeddings(searchLines, task);
|
72 |
+
|
73 |
+
const cleanGroups = groups.map(g =>
|
74 |
+
g.split("\n").filter(l => l && !l.startsWith("##"))
|
75 |
+
);
|
76 |
+
const allLines = cleanGroups.flat();
|
77 |
+
const allEmbeds = await getLineEmbeddings(allLines, task);
|
78 |
+
|
79 |
+
const cosine = (a, b) => {
|
80 |
+
let dot = 0, na = 0, nb = 0;
|
81 |
+
for (let i = 0; i < a.length; i++) {
|
82 |
+
dot += a[i] * b[i];
|
83 |
+
na += a[i] * a[i];
|
84 |
+
nb += b[i] * b[i];
|
85 |
+
}
|
86 |
+
return na && nb ? dot / Math.sqrt(na * nb) : 0;
|
87 |
+
};
|
88 |
+
|
89 |
+
const score = e =>
|
90 |
+
Math.max(...searchEmbeds.map(se => cosine(se, e)));
|
91 |
+
|
92 |
+
const idxByGroup = [];
|
93 |
+
let p = 0;
|
94 |
+
for (const g of cleanGroups) {
|
95 |
+
idxByGroup.push(Array.from({ length: g.length }, (_, i) => p + i));
|
96 |
+
p += g.length;
|
97 |
+
}
|
98 |
+
|
99 |
+
const sorted = order.map(g =>
|
100 |
+
idxByGroup[g]
|
101 |
+
.map(i => ({ t: allLines[i], s: score(allEmbeds[i]) }))
|
102 |
+
.sort((a, b) => b.s - a.s)
|
103 |
+
.map(o => o.t)
|
104 |
+
);
|
105 |
+
|
106 |
+
const finalText = order
|
107 |
+
.map((gIdx, i) => {
|
108 |
+
const header =
|
109 |
+
clusterNames?.length === n ? clusterNames[gIdx] : `Group ${i + 1}`;
|
110 |
+
return `## ${header}\n${sorted[i].join("\n")}`;
|
111 |
+
})
|
112 |
+
.join("\n\n\n");
|
113 |
+
|
114 |
+
document.getElementById("input").value = finalText;
|
115 |
+
}
|
116 |
+
|
117 |
+
if (searchIdx !== -1 && search_by_max_search_group) {
|
118 |
+
const refEmbed = groupEmbeddings[searchIdx];
|
119 |
+
|
120 |
+
const cleanGroups = groups.map(g =>
|
121 |
+
g.split("\n").filter(l => l && !l.startsWith("##"))
|
122 |
+
);
|
123 |
+
|
124 |
+
const allLines = cleanGroups.flat();
|
125 |
+
const allEmbeds = await getLineEmbeddings(allLines, task);
|
126 |
+
|
127 |
+
const idxByGroup = [];
|
128 |
+
let p = 0;
|
129 |
+
for (const g of cleanGroups) {
|
130 |
+
idxByGroup.push(Array.from({ length: g.length }, (_, i) => p + i));
|
131 |
+
p += g.length;
|
132 |
+
}
|
133 |
+
|
134 |
+
const cosine = (a, b) => {
|
135 |
+
let dot = 0,
|
136 |
+
na = 0,
|
137 |
+
nb = 0;
|
138 |
+
for (let i = 0; i < a.length; i++) {
|
139 |
+
dot += a[i] * b[i];
|
140 |
+
na += a[i] * a[i];
|
141 |
+
nb += b[i] * b[i];
|
142 |
+
}
|
143 |
+
return na && nb ? dot / Math.sqrt(na * nb) : 0;
|
144 |
+
};
|
145 |
+
|
146 |
+
const sortedLines = order.map(gIdx =>
|
147 |
+
idxByGroup[gIdx]
|
148 |
+
.map(i => ({ t: allLines[i], s: cosine(refEmbed, allEmbeds[i]) }))
|
149 |
+
.sort((a, b) => b.s - a.s)
|
150 |
+
.map(o => o.t)
|
151 |
+
);
|
152 |
+
|
153 |
+
const finalText = order
|
154 |
+
.map((gIdx, i) => {
|
155 |
+
const header =
|
156 |
+
clusterNames?.length === n ? clusterNames[gIdx] : `Group ${i + 1}`;
|
157 |
+
return `## ${header}\n${sortedLines[i].join("\n")}`;
|
158 |
+
})
|
159 |
+
.join("\n\n\n");
|
160 |
+
|
161 |
+
document.getElementById("input").value = finalText;
|
162 |
+
}
|
163 |
+
progressBarInner.style.width = "100%";
|
164 |
+
}
|
kmeans_event.js
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Handles K-Means and Balanced K-Means clustering event
|
2 |
+
import { getLineEmbeddings } from './embedding.js';
|
3 |
+
import { kmeans, balancedKMeans } from './clustering.js';
|
4 |
+
|
5 |
+
const task = "Given a textual input sentence, retrieve relevant categories that best describe it.";
|
6 |
+
|
7 |
+
export async function handleKMeansEvent() {
|
8 |
+
const progressBar = document.getElementById("progress-bar");
|
9 |
+
const progressBarInner = document.getElementById("progress-bar-inner");
|
10 |
+
progressBar.style.display = "block";
|
11 |
+
progressBarInner.style.width = "0%";
|
12 |
+
|
13 |
+
const text = document.getElementById("input").value;
|
14 |
+
// Remove ## lines for embedding
|
15 |
+
const lines = text.split(/\n/).map(x => x.trim()).filter(x => x && !x.startsWith("##"));
|
16 |
+
const embeddings = await getLineEmbeddings(lines, task);
|
17 |
+
const n = embeddings.length;
|
18 |
+
if (n < 2) return;
|
19 |
+
const requestedK = parseInt(document.getElementById("kmeans-k").value) || 3;
|
20 |
+
const k = Math.max(2, Math.min(requestedK, n));
|
21 |
+
// Read clustering type and beta
|
22 |
+
const clusteringType = document.getElementById("kmeans-type").value;
|
23 |
+
const beta = parseFloat(document.getElementById("kmeans-beta").value) || 0.01;
|
24 |
+
let labels;
|
25 |
+
if (clusteringType === "balancedKMeans") {
|
26 |
+
labels = balancedKMeans(embeddings, k, beta).labels;
|
27 |
+
} else {
|
28 |
+
labels = kmeans(embeddings, k).labels;
|
29 |
+
}
|
30 |
+
|
31 |
+
// Build clustered text for textarea
|
32 |
+
const clustered = Array.from({ length: k }, () => []);
|
33 |
+
for (let i = 0; i < n; ++i)
|
34 |
+
clustered[labels[i]].push(lines[i]);
|
35 |
+
const clusterNames = Array.from({ length: k }, (_, c) => `Cluster ${c + 1}`);
|
36 |
+
document.getElementById("input").value = clustered.map((g, i) =>
|
37 |
+
`## ${clusterNames[i]}\n${g.join("\n")}`
|
38 |
+
).join("\n\n\n");
|
39 |
+
|
40 |
+
progressBarInner.style.width = "100%";
|
41 |
+
}
|
main.js
CHANGED
@@ -1,310 +1,11 @@
|
|
1 |
-
import {
|
2 |
-
import {
|
3 |
-
import {
|
4 |
-
import {
|
5 |
-
import { prompt_cluster } from './prompt_cluster.js';
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
document.getElementById("heatmap-btn").onclick = async () => {
|
14 |
-
const progressBar = document.getElementById("progress-bar");
|
15 |
-
const progressBarInner = document.getElementById("progress-bar-inner");
|
16 |
-
progressBar.style.display = "block";
|
17 |
-
progressBarInner.style.width = "0%";
|
18 |
-
|
19 |
-
const text = document.getElementById("input").value;
|
20 |
-
// Get search sort mode from dropdown
|
21 |
-
const searchSortMode = document.getElementById("search-sort-mode")?.value || "group";
|
22 |
-
const search_by_max_search_line = searchSortMode === "line";
|
23 |
-
const search_by_max_search_group = searchSortMode === "group";
|
24 |
-
|
25 |
-
// Find the index of the search cluster (case-insensitive)
|
26 |
-
const clusterNames = text.split(/\n/)
|
27 |
-
.map(x => x.trim())
|
28 |
-
.filter(x => x && x.startsWith('##'))
|
29 |
-
.map(x => x.replace(/^##\s*/, ''));
|
30 |
-
let searchIdx = clusterNames.findIndex(name => name.toLowerCase().includes('search'));
|
31 |
-
|
32 |
-
const groups = text.split(/\n{3,}/);
|
33 |
-
// Get group embeddings (removes ## lines internally)
|
34 |
-
const groupEmbeddings = await getGroupEmbeddings(groups, task);
|
35 |
-
const n = groupEmbeddings.length;
|
36 |
-
progressBarInner.style.width = "30%";
|
37 |
-
// Cosine similarity matrix
|
38 |
-
const sim = [];
|
39 |
-
for (let i = 0; i < n; i++) {
|
40 |
-
const row = [];
|
41 |
-
for (let j = 0; j < n; j++) {
|
42 |
-
let dot = 0, na = 0, nb = 0;
|
43 |
-
for (let k = 0; k < groupEmbeddings[i].length; k++) {
|
44 |
-
dot += groupEmbeddings[i][k] * groupEmbeddings[j][k];
|
45 |
-
na += groupEmbeddings[i][k] ** 2;
|
46 |
-
nb += groupEmbeddings[j][k] ** 2;
|
47 |
-
}
|
48 |
-
row.push(dot / Math.sqrt(na * nb));
|
49 |
-
}
|
50 |
-
sim.push(row);
|
51 |
-
}
|
52 |
-
progressBarInner.style.width = "60%";
|
53 |
-
// Reorder clusters if search cluster is found
|
54 |
-
let order = Array.from({ length: n }, (_, i) => i);
|
55 |
-
if (searchIdx !== -1) {
|
56 |
-
// Compute similarity to search cluster
|
57 |
-
const simToSearch = sim[searchIdx].map((v, i) => ({ idx: i, sim: v }));
|
58 |
-
// Exclude searchIdx from sorting
|
59 |
-
const others = simToSearch.filter(x => x.idx !== searchIdx);
|
60 |
-
others.sort((a, b) => b.sim - a.sim); // descending similarity
|
61 |
-
order = [searchIdx, ...others.map(x => x.idx)];
|
62 |
-
}
|
63 |
-
// Reorder sim matrix and clusterNames
|
64 |
-
const simOrdered = order.map(i => order.map(j => sim[i][j]));
|
65 |
-
const xLabels = (clusterNames && clusterNames.length === n)
|
66 |
-
? order.map(i => clusterNames[i])
|
67 |
-
: order.map((_, i) => `Group ${i + 1}`);
|
68 |
-
plotHeatmap(simOrdered, xLabels, xLabels);
|
69 |
-
|
70 |
-
// Reorder text if search cluster is found
|
71 |
-
// First group is search then follow by hight sim group
|
72 |
-
// in each group order by high sim line
|
73 |
-
if (searchIdx !== -1 && search_by_max_search_line) {
|
74 |
-
const searchLines = groups[searchIdx]
|
75 |
-
.split("\n")
|
76 |
-
.filter(l => l && !l.startsWith("##"));
|
77 |
-
const searchEmbeds = await getLineEmbeddings(searchLines, task);
|
78 |
-
|
79 |
-
const cleanGroups = groups.map(g =>
|
80 |
-
g.split("\n").filter(l => l && !l.startsWith("##"))
|
81 |
-
);
|
82 |
-
const allLines = cleanGroups.flat();
|
83 |
-
const allEmbeds = await getLineEmbeddings(allLines, task);
|
84 |
-
|
85 |
-
const cosine = (a, b) => {
|
86 |
-
let dot = 0, na = 0, nb = 0;
|
87 |
-
for (let i = 0; i < a.length; i++) {
|
88 |
-
dot += a[i] * b[i];
|
89 |
-
na += a[i] * a[i];
|
90 |
-
nb += b[i] * b[i];
|
91 |
-
}
|
92 |
-
return na && nb ? dot / Math.sqrt(na * nb) : 0;
|
93 |
-
};
|
94 |
-
|
95 |
-
const score = e =>
|
96 |
-
Math.max(...searchEmbeds.map(se => cosine(se, e)));
|
97 |
-
|
98 |
-
const idxByGroup = [];
|
99 |
-
let p = 0;
|
100 |
-
for (const g of cleanGroups) {
|
101 |
-
idxByGroup.push(Array.from({ length: g.length }, (_, i) => p + i));
|
102 |
-
p += g.length;
|
103 |
-
}
|
104 |
-
|
105 |
-
const sorted = order.map(g =>
|
106 |
-
idxByGroup[g]
|
107 |
-
.map(i => ({ t: allLines[i], s: score(allEmbeds[i]) }))
|
108 |
-
.sort((a, b) => b.s - a.s)
|
109 |
-
.map(o => o.t)
|
110 |
-
);
|
111 |
-
|
112 |
-
const finalText = order
|
113 |
-
.map((gIdx, i) => {
|
114 |
-
const header =
|
115 |
-
clusterNames?.length === n ? clusterNames[gIdx] : `Group ${i + 1}`;
|
116 |
-
return `## ${header}\n${sorted[i].join("\n")}`;
|
117 |
-
})
|
118 |
-
.join("\n\n\n");
|
119 |
-
|
120 |
-
document.getElementById("input").value = finalText;
|
121 |
-
}
|
122 |
-
|
123 |
-
|
124 |
-
if (searchIdx !== -1 && search_by_max_search_group) {
|
125 |
-
const refEmbed = groupEmbeddings[searchIdx];
|
126 |
-
|
127 |
-
const cleanGroups = groups.map(g =>
|
128 |
-
g.split("\n").filter(l => l && !l.startsWith("##"))
|
129 |
-
);
|
130 |
-
|
131 |
-
const allLines = cleanGroups.flat();
|
132 |
-
const allEmbeds = await getLineEmbeddings(allLines, task);
|
133 |
-
|
134 |
-
const idxByGroup = [];
|
135 |
-
let p = 0;
|
136 |
-
for (const g of cleanGroups) {
|
137 |
-
idxByGroup.push(Array.from({ length: g.length }, (_, i) => p + i));
|
138 |
-
p += g.length;
|
139 |
-
}
|
140 |
-
|
141 |
-
const cosine = (a, b) => {
|
142 |
-
let dot = 0,
|
143 |
-
na = 0,
|
144 |
-
nb = 0;
|
145 |
-
for (let i = 0; i < a.length; i++) {
|
146 |
-
dot += a[i] * b[i];
|
147 |
-
na += a[i] * a[i];
|
148 |
-
nb += b[i] * b[i];
|
149 |
-
}
|
150 |
-
return na && nb ? dot / Math.sqrt(na * nb) : 0;
|
151 |
-
};
|
152 |
-
|
153 |
-
const sortedLines = order.map(gIdx =>
|
154 |
-
idxByGroup[gIdx]
|
155 |
-
.map(i => ({ t: allLines[i], s: cosine(refEmbed, allEmbeds[i]) }))
|
156 |
-
.sort((a, b) => b.s - a.s)
|
157 |
-
.map(o => o.t)
|
158 |
-
);
|
159 |
-
|
160 |
-
const finalText = order
|
161 |
-
.map((gIdx, i) => {
|
162 |
-
const header =
|
163 |
-
clusterNames?.length === n ? clusterNames[gIdx] : `Group ${i + 1}`;
|
164 |
-
return `## ${header}\n${sortedLines[i].join("\n")}`;
|
165 |
-
})
|
166 |
-
.join("\n\n\n");
|
167 |
-
|
168 |
-
document.getElementById("input").value = finalText;
|
169 |
-
}
|
170 |
-
progressBarInner.style.width = "100%";
|
171 |
-
};
|
172 |
-
|
173 |
-
// K-Means event: only clustering, no plotting
|
174 |
-
|
175 |
-
document.getElementById("kmeans-btn").onclick = async () => {
|
176 |
-
const progressBar = document.getElementById("progress-bar");
|
177 |
-
const progressBarInner = document.getElementById("progress-bar-inner");
|
178 |
-
progressBar.style.display = "block";
|
179 |
-
progressBarInner.style.width = "0%";
|
180 |
-
|
181 |
-
const text = document.getElementById("input").value;
|
182 |
-
// Remove ## lines for embedding
|
183 |
-
const lines = text.split(/\n/).map(x => x.trim()).filter(x => x && !x.startsWith("##"));
|
184 |
-
const embeddings = await getLineEmbeddings(lines, task);
|
185 |
-
const n = embeddings.length;
|
186 |
-
if (n < 2) return;
|
187 |
-
const requestedK = parseInt(document.getElementById("kmeans-k").value) || 3;
|
188 |
-
const k = Math.max(2, Math.min(requestedK, n));
|
189 |
-
// Read clustering type and beta
|
190 |
-
const clusteringType = document.getElementById("kmeans-type").value;
|
191 |
-
const beta = parseFloat(document.getElementById("kmeans-beta").value) || 0.01;
|
192 |
-
let labels;
|
193 |
-
if (clusteringType === "balancedKMeans") {
|
194 |
-
labels = balancedKMeans(embeddings, k, beta).labels;
|
195 |
-
} else {
|
196 |
-
labels = kmeans(embeddings, k).labels;
|
197 |
-
}
|
198 |
-
|
199 |
-
// Build clustered text for textarea
|
200 |
-
const clustered = Array.from({ length: k }, () => []);
|
201 |
-
for (let i = 0; i < n; ++i)
|
202 |
-
clustered[labels[i]].push(lines[i]);
|
203 |
-
const clusterNames = Array.from({ length: k }, (_, c) => `Cluster ${c + 1}`);
|
204 |
-
document.getElementById("input").value = clustered.map((g, i) =>
|
205 |
-
`## ${clusterNames[i]}\n${g.join("\n")}`
|
206 |
-
).join("\n\n\n");
|
207 |
-
|
208 |
-
progressBarInner.style.width = "100%";
|
209 |
-
};
|
210 |
-
|
211 |
-
// Cluster Plot event: only plotting, no clustering
|
212 |
-
|
213 |
-
document.getElementById("clusterplot-btn").onclick = async () => {
|
214 |
-
const progressBar = document.getElementById("progress-bar");
|
215 |
-
const progressBarInner = document.getElementById("progress-bar-inner");
|
216 |
-
progressBar.style.display = "block";
|
217 |
-
progressBarInner.style.width = "0%";
|
218 |
-
|
219 |
-
// Recalculate embeddings from current textarea
|
220 |
-
const text = document.getElementById("input").value;
|
221 |
-
// Remove ## lines for embedding
|
222 |
-
const lines = text.split(/\n/).map(x => x.trim()).filter(x => x && !x.startsWith("##"));
|
223 |
-
const embeddings = await getLineEmbeddings(lines, task);
|
224 |
-
const n = embeddings.length;
|
225 |
-
if (n < 2) return;
|
226 |
-
|
227 |
-
// Parse clusters from textarea (split by triple newlines)
|
228 |
-
const groups = text.split(/\n{3,}/);
|
229 |
-
const k = groups.length;
|
230 |
-
// Build labels array: for each line, assign the cluster index it belongs to
|
231 |
-
let labels = [];
|
232 |
-
let lineIdx = 0;
|
233 |
-
for (let c = 0; c < k; ++c) {
|
234 |
-
const groupLines = groups[c].split('\n').map(x => x.trim()).filter(x => x && !x.startsWith('##'));
|
235 |
-
for (let i = 0; i < groupLines.length; ++i) {
|
236 |
-
labels[lineIdx++] = c;
|
237 |
-
}
|
238 |
-
}
|
239 |
-
if (labels.length !== n) return;
|
240 |
-
|
241 |
-
// UMAP projection
|
242 |
-
const { UMAP } = await import('https://cdn.jsdelivr.net/npm/umap-js@1.4.0/+esm');
|
243 |
-
const nNeighbors = Math.max(1, Math.min(lines.length - 1, 15));
|
244 |
-
const umap = new UMAP({ nComponents: 2, nNeighbors, minDist: 0.2, metric: "cosine" });
|
245 |
-
const proj = umap.fit(embeddings);
|
246 |
-
// Group lines by cluster
|
247 |
-
const clustered = Array.from({ length: k }, () => []);
|
248 |
-
for (let i = 0; i < lines.length; ++i)
|
249 |
-
clustered[labels[i]].push(lines[i]);
|
250 |
-
// Prepare scatter plot traces
|
251 |
-
const colors = ["red", "blue", "green", "orange", "purple", "cyan", "magenta", "yellow", "brown", "black", "lime", "navy", "teal", "olive", "maroon", "pink", "gray", "gold", "aqua", "indigo"];
|
252 |
-
// Try to extract cluster names from textarea headers
|
253 |
-
const clusterNames = groups.map(g => {
|
254 |
-
const m = g.match(/^##\s*(.*)/m);
|
255 |
-
return m ? m[1].trim() : null;
|
256 |
-
});
|
257 |
-
const placeholderNames = clusterNames.map((name, i) => name || `Cluster ${i + 1}`);
|
258 |
-
const traces = Array.from({ length: k }, (_, c) => ({
|
259 |
-
x: [], y: [], text: [],
|
260 |
-
mode: "markers", type: "scatter",
|
261 |
-
name: placeholderNames[c],
|
262 |
-
marker: { color: colors[c % colors.length], size: 12, line: { width: 1, color: "#333" } }
|
263 |
-
}));
|
264 |
-
for (let i = 0; i < lines.length; ++i) {
|
265 |
-
traces[labels[i]].x.push(proj[i][0]);
|
266 |
-
traces[labels[i]].y.push(proj[i][1]);
|
267 |
-
traces[labels[i]].text.push(lines[i]);
|
268 |
-
}
|
269 |
-
plotScatter(traces, k);
|
270 |
-
window.traces = traces;
|
271 |
-
// Optionally update textarea with cluster names as markdown headers
|
272 |
-
document.getElementById("input").value = clustered.map((g, i) =>
|
273 |
-
`## ${placeholderNames[i]}\n${g.join("\n")}`
|
274 |
-
).join("\n\n\n");
|
275 |
-
progressBarInner.style.width = "100%";
|
276 |
-
};
|
277 |
-
|
278 |
-
document.getElementById("naming-btn").onclick = async () => {
|
279 |
-
const progressBar = document.getElementById("progress-bar");
|
280 |
-
const progressBarInner = document.getElementById("progress-bar-inner");
|
281 |
-
progressBar.style.display = "block";
|
282 |
-
progressBarInner.style.width = "0%";
|
283 |
-
|
284 |
-
const text = document.getElementById("input").value;
|
285 |
-
// Reconstruct clusters from textarea (split by triple newlines)
|
286 |
-
const clustered = text.split(/\n{3,}/).map(group =>
|
287 |
-
group.split('\n').filter(line => line && !line.startsWith('##'))
|
288 |
-
);
|
289 |
-
const k = clustered.length;
|
290 |
-
|
291 |
-
const clusterNames = [];
|
292 |
-
for (let c = 0; c < k; ++c) {
|
293 |
-
progressBarInner.style.width = `${Math.round(((c + 1) / k) * 100)}%`;
|
294 |
-
const name = await nameCluster(clustered[c]);
|
295 |
-
clusterNames.push(name || `Cluster ${c + 1}`);
|
296 |
-
// Update UMAP scatter plot legend with new cluster names
|
297 |
-
if (window.traces && window.traces[c]) {
|
298 |
-
window.traces[c].name = clusterNames[c];
|
299 |
-
}
|
300 |
-
}
|
301 |
-
// Update textarea with cluster names as markdown headers
|
302 |
-
document.getElementById("input").value = clustered.map((g, i) =>
|
303 |
-
`## ${clusterNames[i]}\n${g.join("\n")}`
|
304 |
-
).join("\n\n\n");
|
305 |
-
// Update UMAP scatter plot if traces are available
|
306 |
-
if (window.traces) {
|
307 |
-
updateScatter(window.traces, k);
|
308 |
-
}
|
309 |
-
progressBarInner.style.width = "100%";
|
310 |
-
};
|
|
|
1 |
+
import { handleHeatmapEvent } from './heatmap_event.js';
|
2 |
+
import { handleKMeansEvent } from './kmeans_event.js';
|
3 |
+
import { handleClusterPlotEvent } from './clusterplot_event.js';
|
4 |
+
import { handleNamingEvent } from './naming_event.js';
|
|
|
5 |
|
6 |
+
// Attach event handlers to buttons
|
7 |
|
8 |
+
document.getElementById("heatmap-btn").onclick = handleHeatmapEvent;
|
9 |
+
document.getElementById("kmeans-btn").onclick = handleKMeansEvent;
|
10 |
+
document.getElementById("clusterplot-btn").onclick = handleClusterPlotEvent;
|
11 |
+
document.getElementById("naming-btn").onclick = handleNamingEvent;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
naming_event.js
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Handles cluster naming event
|
2 |
+
import { nameCluster } from './cluster_naming.js';
|
3 |
+
import { updateScatter } from './plotting.js';
|
4 |
+
|
5 |
+
export async function handleNamingEvent() {
|
6 |
+
const progressBar = document.getElementById("progress-bar");
|
7 |
+
const progressBarInner = document.getElementById("progress-bar-inner");
|
8 |
+
progressBar.style.display = "block";
|
9 |
+
progressBarInner.style.width = "0%";
|
10 |
+
|
11 |
+
const text = document.getElementById("input").value;
|
12 |
+
// Reconstruct clusters from textarea (split by triple newlines)
|
13 |
+
const clustered = text.split(/\n{3,}/).map(group =>
|
14 |
+
group.split('\n').filter(line => line && !line.startsWith('##'))
|
15 |
+
);
|
16 |
+
const k = clustered.length;
|
17 |
+
|
18 |
+
const clusterNames = [];
|
19 |
+
for (let c = 0; c < k; ++c) {
|
20 |
+
progressBarInner.style.width = `${Math.round(((c + 1) / k) * 100)}%`;
|
21 |
+
const name = await nameCluster(clustered[c]);
|
22 |
+
clusterNames.push(name || `Cluster ${c + 1}`);
|
23 |
+
// Update UMAP scatter plot legend with new cluster names
|
24 |
+
if (window.traces && window.traces[c]) {
|
25 |
+
window.traces[c].name = clusterNames[c];
|
26 |
+
}
|
27 |
+
}
|
28 |
+
// Update textarea with cluster names as markdown headers
|
29 |
+
document.getElementById("input").value = clustered.map((g, i) =>
|
30 |
+
`## ${clusterNames[i]}\n${g.join("\n")}`
|
31 |
+
).join("\n\n\n");
|
32 |
+
// Update UMAP scatter plot if traces are available
|
33 |
+
if (window.traces) {
|
34 |
+
updateScatter(window.traces, k);
|
35 |
+
}
|
36 |
+
progressBarInner.style.width = "100%";
|
37 |
+
}
|