ping98k commited on
Commit
c00b847
·
1 Parent(s): 802de67

Update README.md to improve clarity and enhance K-Means clustering instructions

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -6,12 +6,15 @@ colorTo: yellow
6
  sdk: static
7
  pinned: false
8
  license: apache-2.0
9
- short_description: 'Exploring text embeddings and group similarity '
 
 
 
10
  ---
11
 
12
  # Embedding WebGPU Playground
13
 
14
- This is a browser-based playground for exploring text embeddings and group similarity using WebGPU and ONNX models.
15
 
16
  ## How it works
17
  - **Input text** in the textarea. Use single newlines (`\n`) to separate lines within a group, and triple newlines (`\n\n\n`) to separate groups.
@@ -23,18 +26,21 @@ This is a browser-based playground for exploring text embeddings and group simil
23
  - Cosine similarity is calculated between all group embeddings, resulting in a group-by-group similarity matrix.
24
  - The similarity matrix is visualized as a heatmap using Plotly (color range locked to 0–1).
25
 
26
-
27
- K-Means Clustering
28
- re group text by using K-Means and number of group
 
29
 
30
  ## Tech stack
31
  - [@huggingface/transformers](https://www.npmjs.com/package/@huggingface/transformers) (ESM, WebGPU)
32
  - [ONNX Qwen3-Embedding-0.6B-ONNX](https://huggingface.co/onnx-community/Qwen3-Embedding-0.6B-ONNX)
33
  - [Plotly.js](https://plotly.com/javascript/) (UMD)
 
34
 
35
  ## Usage
36
  1. Enter or paste your text in the textarea.
37
- 2. Separate groups with triple newlines.
38
- 3. Click **Run** to compute and visualize group similarities.
 
39
 
40
  ---
 
6
  sdk: static
7
  pinned: false
8
  license: apache-2.0
9
+ short_description: 'Exploring text embeddings and group similarity'
10
+ models:
11
+ - onnx-community/Qwen3-0.6B-ONNX
12
+ - onnx-community/Qwen3-Embedding-0.6B-ONNX
13
  ---
14
 
15
  # Embedding WebGPU Playground
16
 
17
+ This is a browser-based playground for exploring text embeddings, group similarity, and clustering using WebGPU and ONNX models.
18
 
19
  ## How it works
20
  - **Input text** in the textarea. Use single newlines (`\n`) to separate lines within a group, and triple newlines (`\n\n\n`) to separate groups.
 
26
  - Cosine similarity is calculated between all group embeddings, resulting in a group-by-group similarity matrix.
27
  - The similarity matrix is visualized as a heatmap using Plotly (color range locked to 0–1).
28
 
29
+ ## K-Means Clustering & UMAP
30
+ - Enter the number of clusters in the **Clusters:** input.
31
+ - Click **Cluster & Show UMAP** to cluster all lines (ignoring groups) using K-Means and visualize the result with UMAP in a scatter plot.
32
+ - After clustering, the textarea is updated to group lines by cluster (triple newlines between clusters), and the heatmap is automatically refreshed to reflect the new groupings.
33
 
34
  ## Tech stack
35
  - [@huggingface/transformers](https://www.npmjs.com/package/@huggingface/transformers) (ESM, WebGPU)
36
  - [ONNX Qwen3-Embedding-0.6B-ONNX](https://huggingface.co/onnx-community/Qwen3-Embedding-0.6B-ONNX)
37
  - [Plotly.js](https://plotly.com/javascript/) (UMD)
38
+ - [umap-js](https://github.com/PAIR-code/umap-js) (for 2D projection)
39
 
40
  ## Usage
41
  1. Enter or paste your text in the textarea.
42
+ 2. Separate groups with triple newlines if you want to compare group similarity.
43
+ 3. Click **Show Similarity Heatmap** to compute and visualize group similarities.
44
+ 4. To cluster all lines, set the number of clusters and click **Cluster & Show UMAP**. The textarea and heatmap will update to reflect the new clusters.
45
 
46
  ---