Spaces:
Running
Running
Commit
·
755ac75
0
Parent(s):
almost working
Browse files- .gitignore +2 -0
- alarm-states.ipynb +513 -0
- concattedfiles.py +381 -0
- cw-alarm-creation-form.png +0 -0
- cw-alarm-missing-data-treatment.png +0 -0
- requirements.txt +6 -0
- streamlit_app.py +225 -0
- utils.py +140 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# nothing
|
2 |
+
*env
|
alarm-states.ipynb
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/html": [
|
11 |
+
"<div>\n",
|
12 |
+
"<style scoped>\n",
|
13 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
14 |
+
" vertical-align: middle;\n",
|
15 |
+
" }\n",
|
16 |
+
"\n",
|
17 |
+
" .dataframe tbody tr th {\n",
|
18 |
+
" vertical-align: top;\n",
|
19 |
+
" }\n",
|
20 |
+
"\n",
|
21 |
+
" .dataframe thead th {\n",
|
22 |
+
" text-align: right;\n",
|
23 |
+
" }\n",
|
24 |
+
"</style>\n",
|
25 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
26 |
+
" <thead>\n",
|
27 |
+
" <tr style=\"text-align: right;\">\n",
|
28 |
+
" <th></th>\n",
|
29 |
+
" <th>Timestamp</th>\n",
|
30 |
+
" <th>ResponseTime(ms)</th>\n",
|
31 |
+
" </tr>\n",
|
32 |
+
" </thead>\n",
|
33 |
+
" <tbody>\n",
|
34 |
+
" <tr>\n",
|
35 |
+
" <th>0</th>\n",
|
36 |
+
" <td>2024-07-26 12:00:12</td>\n",
|
37 |
+
" <td>169.0</td>\n",
|
38 |
+
" </tr>\n",
|
39 |
+
" <tr>\n",
|
40 |
+
" <th>1</th>\n",
|
41 |
+
" <td>2024-07-26 12:00:27</td>\n",
|
42 |
+
" <td>NaN</td>\n",
|
43 |
+
" </tr>\n",
|
44 |
+
" <tr>\n",
|
45 |
+
" <th>2</th>\n",
|
46 |
+
" <td>2024-07-26 12:00:42</td>\n",
|
47 |
+
" <td>NaN</td>\n",
|
48 |
+
" </tr>\n",
|
49 |
+
" <tr>\n",
|
50 |
+
" <th>3</th>\n",
|
51 |
+
" <td>2024-07-26 12:00:57</td>\n",
|
52 |
+
" <td>146.0</td>\n",
|
53 |
+
" </tr>\n",
|
54 |
+
" <tr>\n",
|
55 |
+
" <th>4</th>\n",
|
56 |
+
" <td>2024-07-26 12:01:30</td>\n",
|
57 |
+
" <td>202.0</td>\n",
|
58 |
+
" </tr>\n",
|
59 |
+
" </tbody>\n",
|
60 |
+
"</table>\n",
|
61 |
+
"</div>"
|
62 |
+
],
|
63 |
+
"text/plain": [
|
64 |
+
" Timestamp ResponseTime(ms)\n",
|
65 |
+
"0 2024-07-26 12:00:12 169.0\n",
|
66 |
+
"1 2024-07-26 12:00:27 NaN\n",
|
67 |
+
"2 2024-07-26 12:00:42 NaN\n",
|
68 |
+
"3 2024-07-26 12:00:57 146.0\n",
|
69 |
+
"4 2024-07-26 12:01:30 202.0"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
"execution_count": 1,
|
73 |
+
"metadata": {},
|
74 |
+
"output_type": "execute_result"
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"import random\n",
|
79 |
+
"from datetime import datetime, timedelta\n",
|
80 |
+
"import pandas as pd\n",
|
81 |
+
"import numpy as np\n",
|
82 |
+
"\n",
|
83 |
+
"\n",
|
84 |
+
"# Function to generate random timestamps and response times\n",
|
85 |
+
"def generate_random_data(date, start_time, end_time, count, response_time_range, null_percentage):\n",
|
86 |
+
" # Combine date with start and end times\n",
|
87 |
+
" start_datetime = datetime.combine(date, start_time)\n",
|
88 |
+
" end_datetime = datetime.combine(date, end_time)\n",
|
89 |
+
" \n",
|
90 |
+
" # Generate random timestamps\n",
|
91 |
+
" random_timestamps = [\n",
|
92 |
+
" start_datetime + timedelta(seconds=random.randint(0, int((end_datetime - start_datetime).total_seconds())))\n",
|
93 |
+
" for _ in range(count)\n",
|
94 |
+
" ]\n",
|
95 |
+
" \n",
|
96 |
+
" # Sort the timestamps\n",
|
97 |
+
" random_timestamps.sort()\n",
|
98 |
+
" \n",
|
99 |
+
" # Generate random response times\n",
|
100 |
+
" random_response_times = [\n",
|
101 |
+
" random.randint(response_time_range[0], response_time_range[1]) for _ in range(count)\n",
|
102 |
+
" ]\n",
|
103 |
+
" \n",
|
104 |
+
" # Introduce null values in response times\n",
|
105 |
+
" null_count = int(null_percentage * count)\n",
|
106 |
+
" null_indices = random.sample(range(count), null_count)\n",
|
107 |
+
" for idx in null_indices:\n",
|
108 |
+
" random_response_times[idx] = None\n",
|
109 |
+
" \n",
|
110 |
+
" # Create a pandas DataFrame\n",
|
111 |
+
" data = {\n",
|
112 |
+
" 'Timestamp': random_timestamps,\n",
|
113 |
+
" 'ResponseTime(ms)': random_response_times\n",
|
114 |
+
" }\n",
|
115 |
+
" df = pd.DataFrame(data)\n",
|
116 |
+
" return df\n",
|
117 |
+
"\n",
|
118 |
+
"# Parameters\n",
|
119 |
+
"date = datetime.strptime('2024-07-26', '%Y-%m-%d').date()\n",
|
120 |
+
"start_time = datetime.strptime('12:00:00', '%H:%M:%S').time()\n",
|
121 |
+
"end_time = datetime.strptime('12:30:00', '%H:%M:%S').time()\n",
|
122 |
+
"count = 60\n",
|
123 |
+
"response_time_range = (100, 250)\n",
|
124 |
+
"null_percentage = 0.50\n",
|
125 |
+
"\n",
|
126 |
+
"# Generate random data and get the DataFrame\n",
|
127 |
+
"df = generate_random_data(date, start_time, end_time, count, response_time_range, null_percentage)\n",
|
128 |
+
"df.head()\n"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 109,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"data": {
|
138 |
+
"text/html": [
|
139 |
+
"<div>\n",
|
140 |
+
"<style scoped>\n",
|
141 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
142 |
+
" vertical-align: middle;\n",
|
143 |
+
" }\n",
|
144 |
+
"\n",
|
145 |
+
" .dataframe tbody tr th {\n",
|
146 |
+
" vertical-align: top;\n",
|
147 |
+
" }\n",
|
148 |
+
"\n",
|
149 |
+
" .dataframe thead th {\n",
|
150 |
+
" text-align: right;\n",
|
151 |
+
" }\n",
|
152 |
+
"</style>\n",
|
153 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
154 |
+
" <thead>\n",
|
155 |
+
" <tr style=\"text-align: right;\">\n",
|
156 |
+
" <th></th>\n",
|
157 |
+
" <th>Timestamp</th>\n",
|
158 |
+
" <th>p95_ResponseTime(ms)</th>\n",
|
159 |
+
" </tr>\n",
|
160 |
+
" </thead>\n",
|
161 |
+
" <tbody>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>0</th>\n",
|
164 |
+
" <td>2024-07-26 12:02:00</td>\n",
|
165 |
+
" <td>None</td>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>1</th>\n",
|
169 |
+
" <td>2024-07-26 12:03:00</td>\n",
|
170 |
+
" <td>None</td>\n",
|
171 |
+
" </tr>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>2</th>\n",
|
174 |
+
" <td>2024-07-26 12:04:00</td>\n",
|
175 |
+
" <td>184.8</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>3</th>\n",
|
179 |
+
" <td>2024-07-26 12:05:00</td>\n",
|
180 |
+
" <td>None</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>4</th>\n",
|
184 |
+
" <td>2024-07-26 12:06:00</td>\n",
|
185 |
+
" <td>181.3</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>5</th>\n",
|
189 |
+
" <td>2024-07-26 12:07:00</td>\n",
|
190 |
+
" <td>223.0</td>\n",
|
191 |
+
" </tr>\n",
|
192 |
+
" <tr>\n",
|
193 |
+
" <th>6</th>\n",
|
194 |
+
" <td>2024-07-26 12:08:00</td>\n",
|
195 |
+
" <td>196.2</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>7</th>\n",
|
199 |
+
" <td>2024-07-26 12:09:00</td>\n",
|
200 |
+
" <td>151.0</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>8</th>\n",
|
204 |
+
" <td>2024-07-26 12:10:00</td>\n",
|
205 |
+
" <td>None</td>\n",
|
206 |
+
" </tr>\n",
|
207 |
+
" <tr>\n",
|
208 |
+
" <th>9</th>\n",
|
209 |
+
" <td>2024-07-26 12:11:00</td>\n",
|
210 |
+
" <td>227.45</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" </tbody>\n",
|
213 |
+
"</table>\n",
|
214 |
+
"</div>"
|
215 |
+
],
|
216 |
+
"text/plain": [
|
217 |
+
" Timestamp p95_ResponseTime(ms)\n",
|
218 |
+
"0 2024-07-26 12:02:00 None\n",
|
219 |
+
"1 2024-07-26 12:03:00 None\n",
|
220 |
+
"2 2024-07-26 12:04:00 184.8\n",
|
221 |
+
"3 2024-07-26 12:05:00 None\n",
|
222 |
+
"4 2024-07-26 12:06:00 181.3\n",
|
223 |
+
"5 2024-07-26 12:07:00 223.0\n",
|
224 |
+
"6 2024-07-26 12:08:00 196.2\n",
|
225 |
+
"7 2024-07-26 12:09:00 151.0\n",
|
226 |
+
"8 2024-07-26 12:10:00 None\n",
|
227 |
+
"9 2024-07-26 12:11:00 227.45"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
"execution_count": 109,
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "execute_result"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"# Function to calculate the specified percentile of response times over specified frequency\n",
|
237 |
+
"def calculate_percentile(df, freq, percentile):\n",
|
238 |
+
" \"\"\"\n",
|
239 |
+
" freq: Frequency for grouping the data (e.g., '1Min', '5Min', '1H')\n",
|
240 |
+
" percentile: Percentile value (e.g., 0.95, 0.99)\n",
|
241 |
+
" \"\"\"\n",
|
242 |
+
" percentile_df = df.groupby(pd.Grouper(key='Timestamp', freq=freq))[\"ResponseTime(ms)\"].quantile(percentile).reset_index(name=f\"p{int(percentile*100)}_ResponseTime(ms)\")\n",
|
243 |
+
" percentile_df.replace(to_replace=np.nan, value=None, inplace=True)\n",
|
244 |
+
" return percentile_df\n",
|
245 |
+
"\n",
|
246 |
+
"\n",
|
247 |
+
"\n",
|
248 |
+
"# df.groupby(pd.Grouper(key='Timestamp', freq='1Min'))[\"ResponseTime(ms)\"]\\\n",
|
249 |
+
"# .quantile(0.95).reset_index(name=\"p95_ResponseTime(ms)\")\n",
|
250 |
+
"\n",
|
251 |
+
"percentile_df = calculate_percentile(df, '1min', 0.95)\n",
|
252 |
+
"percentile_df.head(10)"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 82,
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [
|
260 |
+
{
|
261 |
+
"data": {
|
262 |
+
"text/plain": [
|
263 |
+
"array([229.8 , nan, 224. , nan, 234. , nan, 162.5 , nan,\n",
|
264 |
+
" 136. , nan, 205.35, nan, nan, 183. , 241. , 221.8 ,\n",
|
265 |
+
" nan, 116.4 , 174.65, 133.35, 176. , 127. , 209.85, 207. ,\n",
|
266 |
+
" 200. , 241.25, 217. , nan, 188.7 , 188. ])"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
"execution_count": 82,
|
270 |
+
"metadata": {},
|
271 |
+
"output_type": "execute_result"
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"percentile_df[\"p95_ResponseTime(ms)\"].values"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": 81,
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [],
|
283 |
+
"source": [
|
284 |
+
"def chunk_list(input_list, size=3):\n",
|
285 |
+
" while input_list:\n",
|
286 |
+
" chunk = input_list[:size]\n",
|
287 |
+
" yield chunk\n",
|
288 |
+
" input_list = input_list[size:]\n",
|
289 |
+
"\n",
|
290 |
+
"\n",
|
291 |
+
"# for chunk in chunk_list(list(percentile_df[\"p95_ResponseTime(ms)\"].values)):\n",
|
292 |
+
"# print(chunk)\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 72,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"text/plain": [
|
303 |
+
"3"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
"execution_count": 72,
|
307 |
+
"metadata": {},
|
308 |
+
"output_type": "execute_result"
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"source": [
|
312 |
+
"s_ = \"0-X-X\"\n",
|
313 |
+
"# len(s_) - s_.count(\"-\")"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": 112,
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [
|
321 |
+
{
|
322 |
+
"data": {
|
323 |
+
"text/html": [
|
324 |
+
"<div>\n",
|
325 |
+
"<style scoped>\n",
|
326 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
327 |
+
" vertical-align: middle;\n",
|
328 |
+
" }\n",
|
329 |
+
"\n",
|
330 |
+
" .dataframe tbody tr th {\n",
|
331 |
+
" vertical-align: top;\n",
|
332 |
+
" }\n",
|
333 |
+
"\n",
|
334 |
+
" .dataframe thead th {\n",
|
335 |
+
" text-align: right;\n",
|
336 |
+
" }\n",
|
337 |
+
"</style>\n",
|
338 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
339 |
+
" <thead>\n",
|
340 |
+
" <tr style=\"text-align: right;\">\n",
|
341 |
+
" <th></th>\n",
|
342 |
+
" <th>DataPoints</th>\n",
|
343 |
+
" <th># of data points that must be filled</th>\n",
|
344 |
+
" <th>MISSING</th>\n",
|
345 |
+
" <th>IGNORE</th>\n",
|
346 |
+
" <th>BREACHING</th>\n",
|
347 |
+
" <th>NOT BREACHING</th>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" </thead>\n",
|
350 |
+
" <tbody>\n",
|
351 |
+
" <tr>\n",
|
352 |
+
" <th>0</th>\n",
|
353 |
+
" <td>--X-X</td>\n",
|
354 |
+
" <td>1</td>\n",
|
355 |
+
" <td></td>\n",
|
356 |
+
" <td></td>\n",
|
357 |
+
" <td></td>\n",
|
358 |
+
" <td></td>\n",
|
359 |
+
" </tr>\n",
|
360 |
+
" <tr>\n",
|
361 |
+
" <th>1</th>\n",
|
362 |
+
" <td>XXX-X</td>\n",
|
363 |
+
" <td>0</td>\n",
|
364 |
+
" <td></td>\n",
|
365 |
+
" <td></td>\n",
|
366 |
+
" <td></td>\n",
|
367 |
+
" <td></td>\n",
|
368 |
+
" </tr>\n",
|
369 |
+
" <tr>\n",
|
370 |
+
" <th>2</th>\n",
|
371 |
+
" <td>XX0--</td>\n",
|
372 |
+
" <td>0</td>\n",
|
373 |
+
" <td></td>\n",
|
374 |
+
" <td></td>\n",
|
375 |
+
" <td></td>\n",
|
376 |
+
" <td></td>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" <tr>\n",
|
379 |
+
" <th>3</th>\n",
|
380 |
+
" <td>XXXXX</td>\n",
|
381 |
+
" <td>0</td>\n",
|
382 |
+
" <td></td>\n",
|
383 |
+
" <td></td>\n",
|
384 |
+
" <td></td>\n",
|
385 |
+
" <td></td>\n",
|
386 |
+
" </tr>\n",
|
387 |
+
" <tr>\n",
|
388 |
+
" <th>4</th>\n",
|
389 |
+
" <td>X00-X</td>\n",
|
390 |
+
" <td>0</td>\n",
|
391 |
+
" <td></td>\n",
|
392 |
+
" <td></td>\n",
|
393 |
+
" <td></td>\n",
|
394 |
+
" <td></td>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" <tr>\n",
|
397 |
+
" <th>5</th>\n",
|
398 |
+
" <td>--X--</td>\n",
|
399 |
+
" <td>2</td>\n",
|
400 |
+
" <td></td>\n",
|
401 |
+
" <td></td>\n",
|
402 |
+
" <td></td>\n",
|
403 |
+
" <td></td>\n",
|
404 |
+
" </tr>\n",
|
405 |
+
" </tbody>\n",
|
406 |
+
"</table>\n",
|
407 |
+
"</div>"
|
408 |
+
],
|
409 |
+
"text/plain": [
|
410 |
+
" DataPoints # of data points that must be filled MISSING IGNORE BREACHING \\\n",
|
411 |
+
"0 --X-X 1 \n",
|
412 |
+
"1 XXX-X 0 \n",
|
413 |
+
"2 XX0-- 0 \n",
|
414 |
+
"3 XXXXX 0 \n",
|
415 |
+
"4 X00-X 0 \n",
|
416 |
+
"5 --X-- 2 \n",
|
417 |
+
"\n",
|
418 |
+
" NOT BREACHING \n",
|
419 |
+
"0 \n",
|
420 |
+
"1 \n",
|
421 |
+
"2 \n",
|
422 |
+
"3 \n",
|
423 |
+
"4 \n",
|
424 |
+
"5 "
|
425 |
+
]
|
426 |
+
},
|
427 |
+
"execution_count": 112,
|
428 |
+
"metadata": {},
|
429 |
+
"output_type": "execute_result"
|
430 |
+
}
|
431 |
+
],
|
432 |
+
"source": [
|
433 |
+
"def evaluate_alarm_state(percentile_df, percentile_value, threshold, datapoints_to_alarm, evaluation_range=5):\n",
|
434 |
+
" data_points = list(percentile_df[f\"p{int(percentile_value*100)}_ResponseTime(ms)\"].values)\n",
|
435 |
+
" \n",
|
436 |
+
" data_table_dict = {\n",
|
437 |
+
" \"DataPoints\": [],\n",
|
438 |
+
" \"# of data points that must be filled\": [],\n",
|
439 |
+
" \"MISSING\": [],\n",
|
440 |
+
" \"IGNORE\": [],\n",
|
441 |
+
" \"BREACHING\": [],\n",
|
442 |
+
" \"NOT BREACHING\": []\n",
|
443 |
+
" }\n",
|
444 |
+
" \n",
|
445 |
+
" for chunk in chunk_list(data_points, size=evaluation_range):\n",
|
446 |
+
" data_point_repr = ''\n",
|
447 |
+
" num_dp_that_must_be_filled = 0\n",
|
448 |
+
" # missing_state, ignore_state, breaching_state, not_breaching_state = None, None, None, None\n",
|
449 |
+
" for dp in chunk:\n",
|
450 |
+
" if dp is None:\n",
|
451 |
+
" data_point_repr += '-'\n",
|
452 |
+
" elif dp < threshold:\n",
|
453 |
+
" data_point_repr += '0'\n",
|
454 |
+
" else:\n",
|
455 |
+
" data_point_repr += 'X'\n",
|
456 |
+
" \n",
|
457 |
+
" # Fill the remaining data points with '-' if the chunk is less than evaluation_range\n",
|
458 |
+
" if len(chunk) < evaluation_range:\n",
|
459 |
+
" data_point_repr += '-'*(evaluation_range - len(chunk))\n",
|
460 |
+
" \n",
|
461 |
+
" if data_point_repr.count('-') > (evaluation_range - datapoints_to_alarm):\n",
|
462 |
+
" num_dp_that_must_be_filled = datapoints_to_alarm - sum([data_point_repr.count('0'), data_point_repr.count('X')])\n",
|
463 |
+
" \n",
|
464 |
+
" \n",
|
465 |
+
" data_table_dict[\"DataPoints\"].append(data_point_repr)\n",
|
466 |
+
" data_table_dict[\"# of data points that must be filled\"].append(num_dp_that_must_be_filled)\n",
|
467 |
+
" \n",
|
468 |
+
" data_table_dict[\"MISSING\"] = [\"\"]*len(data_table_dict[\"DataPoints\"])\n",
|
469 |
+
" data_table_dict[\"IGNORE\"] = [\"\"]*len(data_table_dict[\"DataPoints\"])\n",
|
470 |
+
" data_table_dict[\"BREACHING\"] = [\"\"]*len(data_table_dict[\"DataPoints\"])\n",
|
471 |
+
" data_table_dict[\"NOT BREACHING\"] = [\"\"]*len(data_table_dict[\"DataPoints\"])\n",
|
472 |
+
" \n",
|
473 |
+
" return pd.DataFrame(data_table_dict)\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"evaluate_alarm_state(\n",
|
477 |
+
" percentile_df=percentile_df,\n",
|
478 |
+
" threshold=150,\n",
|
479 |
+
" percentile_value=0.95,\n",
|
480 |
+
" datapoints_to_alarm=3,\n",
|
481 |
+
")"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": []
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"metadata": {
|
493 |
+
"kernelspec": {
|
494 |
+
"display_name": ".venv",
|
495 |
+
"language": "python",
|
496 |
+
"name": "python3"
|
497 |
+
},
|
498 |
+
"language_info": {
|
499 |
+
"codemirror_mode": {
|
500 |
+
"name": "ipython",
|
501 |
+
"version": 3
|
502 |
+
},
|
503 |
+
"file_extension": ".py",
|
504 |
+
"mimetype": "text/x-python",
|
505 |
+
"name": "python",
|
506 |
+
"nbconvert_exporter": "python",
|
507 |
+
"pygments_lexer": "ipython3",
|
508 |
+
"version": "3.9.6"
|
509 |
+
}
|
510 |
+
},
|
511 |
+
"nbformat": 4,
|
512 |
+
"nbformat_minor": 2
|
513 |
+
}
|
concattedfiles.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.
|
2 |
+
├── streamlit_app.py
|
3 |
+
└── utils.py
|
4 |
+
|
5 |
+
1 directory, 2 files
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# File: ./streamlit_app.py
|
10 |
+
import streamlit as st
|
11 |
+
import pandas as pd
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from datetime import datetime, time, date
|
14 |
+
from typing import List, Dict, Any, Tuple
|
15 |
+
from utils import generate_random_data, calculate_percentile, evaluate_alarm_state, aggregate_data
|
16 |
+
|
17 |
+
# Constants
|
18 |
+
HARD_CODED_DATE = date(2024, 7, 26)
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.title("Streamlit App for Data Generation and Analysis")
|
22 |
+
|
23 |
+
# Initialize session state
|
24 |
+
initialize_session_state()
|
25 |
+
|
26 |
+
# Section 1 - Generate random data
|
27 |
+
st.header("Section 1 - Generate Random Data")
|
28 |
+
generate_data_form()
|
29 |
+
|
30 |
+
if not st.session_state.df.empty:
|
31 |
+
display_dataframe("Raw Event Data", st.session_state.df)
|
32 |
+
|
33 |
+
# Section 2 - Calculate Percentile
|
34 |
+
st.header("Section 2 - Calculate Percentile")
|
35 |
+
percentile_form()
|
36 |
+
|
37 |
+
if not st.session_state.percentile_df.empty:
|
38 |
+
display_dataframe("Aggregated Summary Data", st.session_state.percentile_df)
|
39 |
+
|
40 |
+
# Section 3 - Summary Data Aggregated by Period
|
41 |
+
st.header("Section 3 - Summary Data Aggregated by Period")
|
42 |
+
summary_by_period_form()
|
43 |
+
|
44 |
+
if not st.session_state.summary_by_period_df.empty:
|
45 |
+
display_dataframe("Summary Data Aggregated by Period", st.session_state.summary_by_period_df)
|
46 |
+
|
47 |
+
# Section 4 - Evaluate Alarm State
|
48 |
+
st.header("Section 4 - Evaluate Alarm State")
|
49 |
+
alarm_state_form()
|
50 |
+
|
51 |
+
if not st.session_state.alarm_state_df.empty:
|
52 |
+
plot_time_series(st.session_state.summary_by_period_df, st.session_state.threshold_input, st.session_state.alarm_condition_input, st.session_state.evaluation_range_input)
|
53 |
+
display_alarm_state_evaluation(st.session_state.alarm_state_df)
|
54 |
+
|
55 |
+
display_key_tables()
|
56 |
+
|
57 |
+
def initialize_session_state() -> None:
|
58 |
+
if 'df' not in st.session_state:
|
59 |
+
st.session_state.df = pd.DataFrame()
|
60 |
+
if 'percentile_df' not in st.session_state:
|
61 |
+
st.session_state.percentile_df = pd.DataFrame()
|
62 |
+
if 'summary_by_period_df' not in st.session_state:
|
63 |
+
st.session_state.summary_by_period_df = pd.DataFrame()
|
64 |
+
if 'alarm_state_df' not in st.session_state:
|
65 |
+
st.session_state.alarm_state_df = pd.DataFrame()
|
66 |
+
|
67 |
+
def generate_data_form() -> None:
|
68 |
+
with st.form(key='generate_data_form'):
|
69 |
+
start_time_input = st.time_input("Start Time", time(12, 0), help="Select the start time for generating random data.")
|
70 |
+
end_time_input = st.time_input("End Time", time(12, 30), help="Select the end time for generating random data.")
|
71 |
+
count_input = st.slider("Count", min_value=1, max_value=200, value=60, help="Specify the number of data points to generate.")
|
72 |
+
response_time_range_input = st.slider("Response Time Range (ms)", min_value=50, max_value=300, value=(100, 250), help="Select the range of response times in milliseconds.")
|
73 |
+
null_percentage_input = st.slider("Null Percentage", min_value=0.0, max_value=1.0, value=0.5, help="Select the percentage of null values in the generated data.")
|
74 |
+
submit_button = st.form_submit_button(label='Generate Data')
|
75 |
+
|
76 |
+
if submit_button:
|
77 |
+
st.session_state.df = generate_random_data(
|
78 |
+
date=HARD_CODED_DATE,
|
79 |
+
start_time=start_time_input,
|
80 |
+
end_time=end_time_input,
|
81 |
+
count=count_input,
|
82 |
+
response_time_range=response_time_range_input,
|
83 |
+
null_percentage=null_percentage_input
|
84 |
+
)
|
85 |
+
|
86 |
+
def percentile_form() -> None:
|
87 |
+
freq_input = st.selectbox("Period (bin)", ['1min', '5min', '15min'], key='freq_input', help="Select the frequency for aggregating the data.")
|
88 |
+
percentile_input = st.slider("Percentile", min_value=0.0, max_value=1.0, value=0.95, key='percentile_input', help="Select the percentile for calculating the aggregated summary data.")
|
89 |
+
if not st.session_state.df.empty:
|
90 |
+
st.session_state.percentile_df = calculate_percentile(st.session_state.df, freq_input, percentile_input)
|
91 |
+
|
92 |
+
def summary_by_period_form() -> None:
|
93 |
+
period_length_input = st.selectbox("Period Length", ['1min', '5min', '15min'], key='period_length_input', help="Select the period length for aggregating the summary data.")
|
94 |
+
if not st.session_state.df.empty:
|
95 |
+
st.session_state.summary_by_period_df = aggregate_data(st.session_state.df, period_length_input)
|
96 |
+
|
97 |
+
def alarm_state_form() -> None:
|
98 |
+
threshold_input = st.number_input("Threshold (ms)", min_value=50, max_value=300, value=150, key='threshold_input', help="Specify the threshold value for evaluating the alarm state.")
|
99 |
+
datapoints_to_alarm_input = st.number_input("Datapoints to Alarm", min_value=1, value=3, key='datapoints_to_alarm_input', help="Specify the number of data points required to trigger an alarm.")
|
100 |
+
evaluation_range_input = st.number_input("Evaluation Range", min_value=1, value=5, key='evaluation_range_input', help="Specify the range of data points to evaluate for alarm state.")
|
101 |
+
aggregation_function_input = st.selectbox(
|
102 |
+
"Aggregation Function",
|
103 |
+
['p50', 'p95', 'p99', 'max', 'min', 'average'],
|
104 |
+
key='aggregation_function_input',
|
105 |
+
help="Select the aggregation function for visualizing the data and computing alarms."
|
106 |
+
)
|
107 |
+
alarm_condition_input = st.selectbox(
|
108 |
+
"Alarm Condition",
|
109 |
+
['>', '>=', '<', '<='],
|
110 |
+
key='alarm_condition_input',
|
111 |
+
help="Select the condition for evaluating the alarm state."
|
112 |
+
)
|
113 |
+
if not st.session_state.summary_by_period_df.empty:
|
114 |
+
st.session_state.alarm_state_df = evaluate_alarm_state(
|
115 |
+
summary_df=st.session_state.summary_by_period_df,
|
116 |
+
threshold=threshold_input,
|
117 |
+
datapoints_to_alarm=datapoints_to_alarm_input,
|
118 |
+
evaluation_range=evaluation_range_input,
|
119 |
+
aggregation_function=aggregation_function_input,
|
120 |
+
alarm_condition=alarm_condition_input
|
121 |
+
)
|
122 |
+
|
123 |
+
def display_dataframe(title: str, df: pd.DataFrame) -> None:
|
124 |
+
st.write(title)
|
125 |
+
st.dataframe(df)
|
126 |
+
|
127 |
+
def plot_time_series(df: pd.DataFrame, threshold: int, alarm_condition: str, evaluation_range: int) -> None:
|
128 |
+
timestamps = df['Timestamp']
|
129 |
+
response_times = df[st.session_state.aggregation_function_input]
|
130 |
+
|
131 |
+
segments = []
|
132 |
+
current_segment = {'timestamps': [], 'values': []}
|
133 |
+
|
134 |
+
for timestamp, value in zip(timestamps, response_times):
|
135 |
+
if pd.isna(value):
|
136 |
+
if current_segment['timestamps']:
|
137 |
+
segments.append(current_segment)
|
138 |
+
current_segment = {'timestamps': [], 'values': []}
|
139 |
+
else:
|
140 |
+
current_segment['timestamps'].append(timestamp)
|
141 |
+
current_segment['values'].append(value)
|
142 |
+
|
143 |
+
if current_segment['timestamps']:
|
144 |
+
segments.append(current_segment)
|
145 |
+
|
146 |
+
fig, ax1 = plt.subplots()
|
147 |
+
|
148 |
+
color = 'tab:blue'
|
149 |
+
ax1.set_xlabel('Timestamp')
|
150 |
+
ax1.set_ylabel('Response Time (ms)', color=color)
|
151 |
+
|
152 |
+
for segment in segments:
|
153 |
+
ax1.plot(segment['timestamps'], segment['values'], color=color, linewidth=0.5)
|
154 |
+
ax1.scatter(segment['timestamps'], segment['values'], color=color, s=10)
|
155 |
+
|
156 |
+
line_style = '--' if alarm_condition in ['<', '>'] else '-'
|
157 |
+
ax1.axhline(y=threshold, color='r', linestyle=line_style, linewidth=0.8, label='Threshold')
|
158 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
159 |
+
|
160 |
+
if alarm_condition in ['<=', '<']:
|
161 |
+
ax1.fill_between(timestamps, 0, threshold, color='pink', alpha=0.3)
|
162 |
+
else:
|
163 |
+
ax1.fill_between(timestamps, threshold, response_times.max(), color='pink', alpha=0.3)
|
164 |
+
|
165 |
+
period_indices = range(len(df))
|
166 |
+
ax2 = ax1.twiny()
|
167 |
+
ax2.set_xticks(period_indices)
|
168 |
+
ax2.set_xticklabels(period_indices, fontsize=8)
|
169 |
+
ax2.set_xlabel('Time Periods', fontsize=8)
|
170 |
+
ax2.xaxis.set_tick_params(width=0.5)
|
171 |
+
|
172 |
+
for idx in period_indices:
|
173 |
+
if idx % evaluation_range == 0:
|
174 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='green', linestyle='-', alpha=0.3)
|
175 |
+
max_value = max(filter(lambda x: x is not None, df[st.session_state.aggregation_function_input]))
|
176 |
+
ax1.text(df['Timestamp'].iloc[idx], max_value * 0.95, f"[{idx // evaluation_range}]", rotation=90, verticalalignment='bottom', color='grey', alpha=0.7, fontsize=8)
|
177 |
+
else:
|
178 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='grey', linestyle='--', alpha=0.3)
|
179 |
+
|
180 |
+
ax1.annotate('Alarm threshold', xy=(0.98, threshold), xycoords=('axes fraction', 'data'), ha='right', va='bottom', fontsize=8, color='red', backgroundcolor='none')
|
181 |
+
|
182 |
+
fig.tight_layout()
|
183 |
+
st.pyplot(fig)
|
184 |
+
|
185 |
+
def display_alarm_state_evaluation(df: pd.DataFrame) -> None:
|
186 |
+
st.write("Alarm State Evaluation")
|
187 |
+
st.dataframe(df)
|
188 |
+
|
189 |
+
def display_key_tables() -> None:
|
190 |
+
st.write("### Key")
|
191 |
+
|
192 |
+
# Symbols
|
193 |
+
st.write("#### Symbols")
|
194 |
+
symbol_data = {
|
195 |
+
"Symbol": ["X", "-", "0"],
|
196 |
+
"Meaning": [
|
197 |
+
"Breaching data point: This data point exceeds the threshold.",
|
198 |
+
"Missing data point: This data point is missing or not reported.",
|
199 |
+
"Non-breaching data point: This data point is within the threshold."
|
200 |
+
]
|
201 |
+
}
|
202 |
+
symbol_df = pd.DataFrame(symbol_data)
|
203 |
+
st.table(symbol_df)
|
204 |
+
|
205 |
+
# Columns
|
206 |
+
st.write("#### Columns")
|
207 |
+
column_data = {
|
208 |
+
"Column": ["MISSING", "IGNORE", "BREACHING", "NOT BREACHING"],
|
209 |
+
"Meaning": [
|
210 |
+
"Action to take when all data points are missing. Possible values: INSUFFICIENT_DATA, Retain current state, ALARM, OK.",
|
211 |
+
"Action to take when data points are missing but ignored. Possible values: Retain current state, ALARM, OK.",
|
212 |
+
"Action to take when missing data points are treated as breaching. Possible values: ALARM, OK.",
|
213 |
+
"Action to take when missing data points are treated as not breaching. Possible values: ALARM, OK."
|
214 |
+
]
|
215 |
+
}
|
216 |
+
column_df = pd.DataFrame(column_data)
|
217 |
+
st.table(column_df)
|
218 |
+
|
219 |
+
# States
|
220 |
+
st.write("#### States")
|
221 |
+
state_data = {
|
222 |
+
"State": ["ALARM", "OK", "Retain current state", "INSUFFICIENT_DATA"],
|
223 |
+
"Description": [
|
224 |
+
"Alarm state is triggered.",
|
225 |
+
"Everything is within the threshold.",
|
226 |
+
"The current alarm state is maintained.",
|
227 |
+
"Not enough data to make a determination."
|
228 |
+
]
|
229 |
+
}
|
230 |
+
state_df = pd.DataFrame(state_data)
|
231 |
+
st.table(state_df)
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
main()
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
# File: ./utils.py
|
239 |
+
import random
|
240 |
+
from datetime import datetime, timedelta, date, time
|
241 |
+
import pandas as pd
|
242 |
+
import numpy as np
|
243 |
+
from typing import List, Iterator, Dict, Any, Optional
|
244 |
+
|
245 |
+
def generate_random_data(
|
246 |
+
date: date,
|
247 |
+
start_time: time,
|
248 |
+
end_time: time,
|
249 |
+
count: int,
|
250 |
+
response_time_range: (int, int),
|
251 |
+
null_percentage: float
|
252 |
+
) -> pd.DataFrame:
|
253 |
+
start_datetime: datetime = datetime.combine(date, start_time)
|
254 |
+
end_datetime: datetime = datetime.combine(date, end_time)
|
255 |
+
|
256 |
+
random_timestamps: List[datetime] = [
|
257 |
+
start_datetime + timedelta(seconds=random.randint(0, int((end_datetime - start_datetime).total_seconds())))
|
258 |
+
for _ in range(count)
|
259 |
+
]
|
260 |
+
random_timestamps.sort()
|
261 |
+
|
262 |
+
random_response_times: List[Optional[int]] = [
|
263 |
+
random.randint(response_time_range[0], response_time_range[1]) for _ in range(count)
|
264 |
+
]
|
265 |
+
|
266 |
+
null_count: int = int(null_percentage * count)
|
267 |
+
null_indices: List[int] = random.sample(range(count), null_count)
|
268 |
+
for idx in null_indices:
|
269 |
+
random_response_times[idx] = None
|
270 |
+
|
271 |
+
data: Dict[str, Any] = {
|
272 |
+
'Timestamp': random_timestamps,
|
273 |
+
'ResponseTime(ms)': random_response_times
|
274 |
+
}
|
275 |
+
df: pd.DataFrame = pd.DataFrame(data)
|
276 |
+
return df
|
277 |
+
|
278 |
+
def calculate_percentile(
|
279 |
+
df: pd.DataFrame,
|
280 |
+
freq: str,
|
281 |
+
percentile: float
|
282 |
+
) -> pd.DataFrame:
|
283 |
+
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='Timestamp', freq=freq))["ResponseTime(ms)"]\
|
284 |
+
.quantile(percentile).reset_index(name=f"p{int(percentile * 100)}_ResponseTime(ms)")
|
285 |
+
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
|
286 |
+
return percentile_df
|
287 |
+
|
288 |
+
def aggregate_data(
|
289 |
+
df: pd.DataFrame,
|
290 |
+
period_length: str
|
291 |
+
) -> pd.DataFrame:
|
292 |
+
aggregation_funcs = {
|
293 |
+
'p50': lambda x: np.percentile(x.dropna(), 50),
|
294 |
+
'p95': lambda x: np.percentile(x.dropna(), 95),
|
295 |
+
'p99': lambda x: np.percentile(x.dropna(), 99),
|
296 |
+
'max': lambda x: np.max(x.dropna()),
|
297 |
+
'min': lambda x: np.min(x.dropna()),
|
298 |
+
'average': lambda x: np.mean(x.dropna())
|
299 |
+
}
|
300 |
+
|
301 |
+
summary_df = df.groupby(pd.Grouper(key='Timestamp', freq=period_length)).agg(
|
302 |
+
p50=('ResponseTime(ms)', aggregation_funcs['p50']),
|
303 |
+
p95=('ResponseTime(ms)', aggregation_funcs['p95']),
|
304 |
+
p99=('ResponseTime(ms)', aggregation_funcs['p99']),
|
305 |
+
max=('ResponseTime(ms)', aggregation_funcs['max']),
|
306 |
+
min=('ResponseTime(ms)', aggregation_funcs['min']),
|
307 |
+
average=('ResponseTime(ms)', aggregation_funcs['average']),
|
308 |
+
).reset_index()
|
309 |
+
return summary_df
|
310 |
+
|
311 |
+
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
|
312 |
+
while input_list:
|
313 |
+
chunk: List[Any] = input_list[:size]
|
314 |
+
yield chunk
|
315 |
+
input_list = input_list[size:]
|
316 |
+
|
317 |
+
def evaluate_alarm_state(
|
318 |
+
summary_df: pd.DataFrame,
|
319 |
+
threshold: int,
|
320 |
+
datapoints_to_alarm: int,
|
321 |
+
evaluation_range: int,
|
322 |
+
aggregation_function: str,
|
323 |
+
alarm_condition: str
|
324 |
+
) -> pd.DataFrame:
|
325 |
+
data_points: List[Optional[float]] = list(summary_df[aggregation_function].values)
|
326 |
+
|
327 |
+
data_table_dict: Dict[str, List[Any]] = {
|
328 |
+
"DataPoints": [],
|
329 |
+
"# of data points that must be filled": [],
|
330 |
+
"MISSING": [],
|
331 |
+
"IGNORE": [],
|
332 |
+
"BREACHING": [],
|
333 |
+
"NOT BREACHING": []
|
334 |
+
}
|
335 |
+
|
336 |
+
def check_condition(value, threshold, condition):
|
337 |
+
if condition == '>':
|
338 |
+
return value > threshold
|
339 |
+
elif condition == '>=':
|
340 |
+
return value >= threshold
|
341 |
+
elif condition == '<':
|
342 |
+
return value < threshold
|
343 |
+
elif condition == '<=':
|
344 |
+
return value <= threshold
|
345 |
+
|
346 |
+
for chunk in chunk_list(input_list=data_points, size=evaluation_range):
|
347 |
+
data_point_repr: str = ''
|
348 |
+
num_dp_that_must_be_filled: int = 0
|
349 |
+
|
350 |
+
for dp in chunk:
|
351 |
+
if dp is None:
|
352 |
+
data_point_repr += '-'
|
353 |
+
elif check_condition(dp, threshold, alarm_condition):
|
354 |
+
data_point_repr += 'X'
|
355 |
+
else:
|
356 |
+
data_point_repr += '0'
|
357 |
+
|
358 |
+
if len(chunk) < evaluation_range:
|
359 |
+
data_point_repr += '-' * (evaluation_range - len(chunk))
|
360 |
+
|
361 |
+
if data_point_repr.count('-') > (evaluation_range - datapoints_to_alarm):
|
362 |
+
num_dp_that_must_be_filled = datapoints_to_alarm - sum([data_point_repr.count('0'), data_point_repr.count('X')])
|
363 |
+
|
364 |
+
data_table_dict["DataPoints"].append(data_point_repr)
|
365 |
+
data_table_dict["# of data points that must be filled"].append(num_dp_that_must_be_filled)
|
366 |
+
|
367 |
+
if num_dp_that_must_be_filled > 0:
|
368 |
+
data_table_dict["MISSING"].append("INSUFFICIENT_DATA" if data_point_repr.count('-') == evaluation_range else "Retain current state")
|
369 |
+
data_table_dict["IGNORE"].append("Retain current state")
|
370 |
+
data_table_dict["BREACHING"].append("ALARM")
|
371 |
+
data_table_dict["NOT BREACHING"].append("OK")
|
372 |
+
else:
|
373 |
+
data_table_dict["MISSING"].append("OK")
|
374 |
+
data_table_dict["IGNORE"].append("Retain current state")
|
375 |
+
data_table_dict["BREACHING"].append("ALARM" if 'X' * datapoints_to_alarm in data_point_repr else "OK")
|
376 |
+
data_table_dict["NOT BREACHING"].append("ALARM" if '0' * datapoints_to_alarm not in data_point_repr else "OK")
|
377 |
+
|
378 |
+
return pd.DataFrame(data_table_dict)
|
379 |
+
|
380 |
+
|
381 |
+
|
cw-alarm-creation-form.png
ADDED
![]() |
cw-alarm-missing-data-treatment.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
ipykernel
|
4 |
+
jupyterlab
|
5 |
+
streamlit
|
6 |
+
matplotlib
|
streamlit_app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from datetime import datetime, time, date
|
5 |
+
from typing import List, Dict, Any, Tuple
|
6 |
+
from utils import generate_random_data, calculate_percentile, evaluate_alarm_state, aggregate_data
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
HARD_CODED_DATE = date(2024, 7, 26)
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("Streamlit App for Data Generation and Analysis")
|
13 |
+
|
14 |
+
# Initialize session state
|
15 |
+
initialize_session_state()
|
16 |
+
|
17 |
+
# Section 1 - Generate random data
|
18 |
+
st.header("Section 1 - Generate Random Data")
|
19 |
+
generate_data_form()
|
20 |
+
|
21 |
+
if not st.session_state.df.empty:
|
22 |
+
display_dataframe("Raw Event Data", st.session_state.df)
|
23 |
+
|
24 |
+
# Section 2 - Calculate Percentile
|
25 |
+
st.header("Section 2 - Calculate Percentile")
|
26 |
+
percentile_form()
|
27 |
+
|
28 |
+
if not st.session_state.percentile_df.empty:
|
29 |
+
display_dataframe("Aggregated Summary Data", st.session_state.percentile_df)
|
30 |
+
|
31 |
+
# Section 3 - Summary Data Aggregated by Period
|
32 |
+
st.header("Section 3 - Summary Data Aggregated by Period")
|
33 |
+
summary_by_period_form()
|
34 |
+
|
35 |
+
if not st.session_state.summary_by_period_df.empty:
|
36 |
+
display_dataframe("Summary Data Aggregated by Period", st.session_state.summary_by_period_df)
|
37 |
+
|
38 |
+
# Section 4 - Evaluate Alarm State
|
39 |
+
st.header("Section 4 - Evaluate Alarm State")
|
40 |
+
alarm_state_form()
|
41 |
+
|
42 |
+
if not st.session_state.alarm_state_df.empty:
|
43 |
+
plot_time_series(st.session_state.summary_by_period_df, st.session_state.threshold_input, st.session_state.alarm_condition_input, st.session_state.evaluation_range_input)
|
44 |
+
display_alarm_state_evaluation(st.session_state.alarm_state_df)
|
45 |
+
|
46 |
+
display_key_tables()
|
47 |
+
|
48 |
+
def initialize_session_state() -> None:
|
49 |
+
if 'df' not in st.session_state:
|
50 |
+
st.session_state.df = pd.DataFrame()
|
51 |
+
if 'percentile_df' not in st.session_state:
|
52 |
+
st.session_state.percentile_df = pd.DataFrame()
|
53 |
+
if 'summary_by_period_df' not in st.session_state:
|
54 |
+
st.session_state.summary_by_period_df = pd.DataFrame()
|
55 |
+
if 'alarm_state_df' not in st.session_state:
|
56 |
+
st.session_state.alarm_state_df = pd.DataFrame()
|
57 |
+
|
58 |
+
def generate_data_form() -> None:
|
59 |
+
with st.form(key='generate_data_form'):
|
60 |
+
start_time_input = st.time_input("Start Time", time(12, 0), help="Select the start time for generating random data.")
|
61 |
+
end_time_input = st.time_input("End Time", time(12, 30), help="Select the end time for generating random data.")
|
62 |
+
count_input = st.slider("Count", min_value=1, max_value=200, value=60, help="Specify the number of data points to generate.")
|
63 |
+
response_time_range_input = st.slider("Response Time Range (ms)", min_value=50, max_value=300, value=(100, 250), help="Select the range of response times in milliseconds.")
|
64 |
+
null_percentage_input = st.slider("Null Percentage", min_value=0.0, max_value=1.0, value=0.5, help="Select the percentage of null values in the generated data.")
|
65 |
+
submit_button = st.form_submit_button(label='Generate Data')
|
66 |
+
|
67 |
+
if submit_button:
|
68 |
+
st.session_state.df = generate_random_data(
|
69 |
+
date=HARD_CODED_DATE,
|
70 |
+
start_time=start_time_input,
|
71 |
+
end_time=end_time_input,
|
72 |
+
count=count_input,
|
73 |
+
response_time_range=response_time_range_input,
|
74 |
+
null_percentage=null_percentage_input
|
75 |
+
)
|
76 |
+
|
77 |
+
def percentile_form() -> None:
|
78 |
+
freq_input = st.selectbox("Period (bin)", ['1min', '5min', '15min'], key='freq_input', help="Select the frequency for aggregating the data.")
|
79 |
+
percentile_input = st.slider("Percentile", min_value=0.0, max_value=1.0, value=0.95, key='percentile_input', help="Select the percentile for calculating the aggregated summary data.")
|
80 |
+
if not st.session_state.df.empty:
|
81 |
+
st.session_state.percentile_df = calculate_percentile(st.session_state.df, freq_input, percentile_input)
|
82 |
+
|
83 |
+
def summary_by_period_form() -> None:
|
84 |
+
period_length_input = st.selectbox("Period Length", ['1min', '5min', '15min'], key='period_length_input', help="Select the period length for aggregating the summary data.")
|
85 |
+
if not st.session_state.df.empty:
|
86 |
+
st.session_state.summary_by_period_df = aggregate_data(st.session_state.df, period_length_input)
|
87 |
+
|
88 |
+
def alarm_state_form() -> None:
|
89 |
+
threshold_input = st.number_input("Threshold (ms)", min_value=50, max_value=300, value=150, key='threshold_input', help="Specify the threshold value for evaluating the alarm state.")
|
90 |
+
datapoints_to_alarm_input = st.number_input("Datapoints to Alarm", min_value=1, value=3, key='datapoints_to_alarm_input', help="Specify the number of data points required to trigger an alarm.")
|
91 |
+
evaluation_range_input = st.number_input("Evaluation Range", min_value=1, value=5, key='evaluation_range_input', help="Specify the range of data points to evaluate for alarm state.")
|
92 |
+
aggregation_function_input = st.selectbox(
|
93 |
+
"Aggregation Function",
|
94 |
+
['p50', 'p95', 'p99', 'max', 'min', 'average'],
|
95 |
+
key='aggregation_function_input',
|
96 |
+
help="Select the aggregation function for visualizing the data and computing alarms."
|
97 |
+
)
|
98 |
+
alarm_condition_input = st.selectbox(
|
99 |
+
"Alarm Condition",
|
100 |
+
['>', '>=', '<', '<='],
|
101 |
+
key='alarm_condition_input',
|
102 |
+
help="Select the condition for evaluating the alarm state."
|
103 |
+
)
|
104 |
+
if not st.session_state.summary_by_period_df.empty:
|
105 |
+
st.session_state.alarm_state_df = evaluate_alarm_state(
|
106 |
+
summary_df=st.session_state.summary_by_period_df,
|
107 |
+
threshold=threshold_input,
|
108 |
+
datapoints_to_alarm=datapoints_to_alarm_input,
|
109 |
+
evaluation_range=evaluation_range_input,
|
110 |
+
aggregation_function=aggregation_function_input,
|
111 |
+
alarm_condition=alarm_condition_input
|
112 |
+
)
|
113 |
+
|
114 |
+
def display_dataframe(title: str, df: pd.DataFrame) -> None:
|
115 |
+
st.write(title)
|
116 |
+
st.dataframe(df)
|
117 |
+
|
118 |
+
def plot_time_series(df: pd.DataFrame, threshold: int, alarm_condition: str, evaluation_range: int) -> None:
|
119 |
+
timestamps = df['Timestamp']
|
120 |
+
response_times = df[st.session_state.aggregation_function_input]
|
121 |
+
|
122 |
+
segments = []
|
123 |
+
current_segment = {'timestamps': [], 'values': []}
|
124 |
+
|
125 |
+
for timestamp, value in zip(timestamps, response_times):
|
126 |
+
if pd.isna(value):
|
127 |
+
if current_segment['timestamps']:
|
128 |
+
segments.append(current_segment)
|
129 |
+
current_segment = {'timestamps': [], 'values': []}
|
130 |
+
else:
|
131 |
+
current_segment['timestamps'].append(timestamp)
|
132 |
+
current_segment['values'].append(value)
|
133 |
+
|
134 |
+
if current_segment['timestamps']:
|
135 |
+
segments.append(current_segment)
|
136 |
+
|
137 |
+
fig, ax1 = plt.subplots()
|
138 |
+
|
139 |
+
color = 'tab:blue'
|
140 |
+
ax1.set_xlabel('Timestamp')
|
141 |
+
ax1.set_ylabel('Response Time (ms)', color=color)
|
142 |
+
|
143 |
+
for segment in segments:
|
144 |
+
ax1.plot(segment['timestamps'], segment['values'], color=color, linewidth=0.5)
|
145 |
+
ax1.scatter(segment['timestamps'], segment['values'], color=color, s=10)
|
146 |
+
|
147 |
+
line_style = '--' if alarm_condition in ['<', '>'] else '-'
|
148 |
+
ax1.axhline(y=threshold, color='r', linestyle=line_style, linewidth=0.8, label='Threshold')
|
149 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
150 |
+
|
151 |
+
if alarm_condition in ['<=', '<']:
|
152 |
+
ax1.fill_between(timestamps, 0, threshold, color='pink', alpha=0.3)
|
153 |
+
else:
|
154 |
+
ax1.fill_between(timestamps, threshold, response_times.max(), color='pink', alpha=0.3)
|
155 |
+
|
156 |
+
period_indices = range(len(df))
|
157 |
+
ax2 = ax1.twiny()
|
158 |
+
ax2.set_xticks(period_indices)
|
159 |
+
ax2.set_xticklabels(period_indices, fontsize=8)
|
160 |
+
ax2.set_xlabel('Time Periods', fontsize=8)
|
161 |
+
ax2.xaxis.set_tick_params(width=0.5)
|
162 |
+
|
163 |
+
for idx in period_indices:
|
164 |
+
if idx % evaluation_range == 0:
|
165 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='green', linestyle='-', alpha=0.3)
|
166 |
+
max_value = max(filter(lambda x: x is not None, df[st.session_state.aggregation_function_input]))
|
167 |
+
ax1.text(df['Timestamp'].iloc[idx], max_value * 0.95, f"[{idx // evaluation_range}]", rotation=90, verticalalignment='bottom', color='grey', alpha=0.7, fontsize=8)
|
168 |
+
else:
|
169 |
+
ax1.axvline(x=df['Timestamp'].iloc[idx], color='grey', linestyle='--', alpha=0.3)
|
170 |
+
|
171 |
+
ax1.annotate('Alarm threshold', xy=(0.98, threshold), xycoords=('axes fraction', 'data'), ha='right', va='bottom', fontsize=8, color='red', backgroundcolor='none')
|
172 |
+
|
173 |
+
fig.tight_layout()
|
174 |
+
st.pyplot(fig)
|
175 |
+
|
176 |
+
def display_alarm_state_evaluation(df: pd.DataFrame) -> None:
|
177 |
+
st.write("Alarm State Evaluation")
|
178 |
+
st.dataframe(df)
|
179 |
+
|
180 |
+
def display_key_tables() -> None:
|
181 |
+
st.write("### Key")
|
182 |
+
|
183 |
+
# Symbols
|
184 |
+
st.write("#### Symbols")
|
185 |
+
symbol_data = {
|
186 |
+
"Symbol": ["X", "-", "0"],
|
187 |
+
"Meaning": [
|
188 |
+
"Breaching data point: This data point exceeds the threshold.",
|
189 |
+
"Missing data point: This data point is missing or not reported.",
|
190 |
+
"Non-breaching data point: This data point is within the threshold."
|
191 |
+
]
|
192 |
+
}
|
193 |
+
symbol_df = pd.DataFrame(symbol_data)
|
194 |
+
st.table(symbol_df)
|
195 |
+
|
196 |
+
# Columns
|
197 |
+
st.write("#### Columns")
|
198 |
+
column_data = {
|
199 |
+
"Column": ["MISSING", "IGNORE", "BREACHING", "NOT BREACHING"],
|
200 |
+
"Meaning": [
|
201 |
+
"Action to take when all data points are missing. Possible values: INSUFFICIENT_DATA, Retain current state, ALARM, OK.",
|
202 |
+
"Action to take when data points are missing but ignored. Possible values: Retain current state, ALARM, OK.",
|
203 |
+
"Action to take when missing data points are treated as breaching. Possible values: ALARM, OK.",
|
204 |
+
"Action to take when missing data points are treated as not breaching. Possible values: ALARM, OK."
|
205 |
+
]
|
206 |
+
}
|
207 |
+
column_df = pd.DataFrame(column_data)
|
208 |
+
st.table(column_df)
|
209 |
+
|
210 |
+
# States
|
211 |
+
st.write("#### States")
|
212 |
+
state_data = {
|
213 |
+
"State": ["ALARM", "OK", "Retain current state", "INSUFFICIENT_DATA"],
|
214 |
+
"Description": [
|
215 |
+
"Alarm state is triggered.",
|
216 |
+
"Everything is within the threshold.",
|
217 |
+
"The current alarm state is maintained.",
|
218 |
+
"Not enough data to make a determination."
|
219 |
+
]
|
220 |
+
}
|
221 |
+
state_df = pd.DataFrame(state_data)
|
222 |
+
st.table(state_df)
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
main()
|
utils.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from datetime import datetime, timedelta, date, time
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from typing import List, Iterator, Dict, Any, Optional
|
6 |
+
|
7 |
+
def generate_random_data(
|
8 |
+
date: date,
|
9 |
+
start_time: time,
|
10 |
+
end_time: time,
|
11 |
+
count: int,
|
12 |
+
response_time_range: (int, int),
|
13 |
+
null_percentage: float
|
14 |
+
) -> pd.DataFrame:
|
15 |
+
start_datetime: datetime = datetime.combine(date, start_time)
|
16 |
+
end_datetime: datetime = datetime.combine(date, end_time)
|
17 |
+
|
18 |
+
random_timestamps: List[datetime] = [
|
19 |
+
start_datetime + timedelta(seconds=random.randint(0, int((end_datetime - start_datetime).total_seconds())))
|
20 |
+
for _ in range(count)
|
21 |
+
]
|
22 |
+
random_timestamps.sort()
|
23 |
+
|
24 |
+
random_response_times: List[Optional[int]] = [
|
25 |
+
random.randint(response_time_range[0], response_time_range[1]) for _ in range(count)
|
26 |
+
]
|
27 |
+
|
28 |
+
null_count: int = int(null_percentage * count)
|
29 |
+
null_indices: List[int] = random.sample(range(count), null_count)
|
30 |
+
for idx in null_indices:
|
31 |
+
random_response_times[idx] = None
|
32 |
+
|
33 |
+
data: Dict[str, Any] = {
|
34 |
+
'Timestamp': random_timestamps,
|
35 |
+
'ResponseTime(ms)': random_response_times
|
36 |
+
}
|
37 |
+
df: pd.DataFrame = pd.DataFrame(data)
|
38 |
+
return df
|
39 |
+
|
40 |
+
def calculate_percentile(
|
41 |
+
df: pd.DataFrame,
|
42 |
+
freq: str,
|
43 |
+
percentile: float
|
44 |
+
) -> pd.DataFrame:
|
45 |
+
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='Timestamp', freq=freq))["ResponseTime(ms)"]\
|
46 |
+
.quantile(percentile).reset_index(name=f"p{int(percentile * 100)}_ResponseTime(ms)")
|
47 |
+
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
|
48 |
+
return percentile_df
|
49 |
+
|
50 |
+
def aggregate_data(
|
51 |
+
df: pd.DataFrame,
|
52 |
+
period_length: str
|
53 |
+
) -> pd.DataFrame:
|
54 |
+
aggregation_funcs = {
|
55 |
+
'p50': lambda x: np.percentile(x.dropna(), 50),
|
56 |
+
'p95': lambda x: np.percentile(x.dropna(), 95),
|
57 |
+
'p99': lambda x: np.percentile(x.dropna(), 99),
|
58 |
+
'max': lambda x: np.max(x.dropna()),
|
59 |
+
'min': lambda x: np.min(x.dropna()),
|
60 |
+
'average': lambda x: np.mean(x.dropna())
|
61 |
+
}
|
62 |
+
|
63 |
+
summary_df = df.groupby(pd.Grouper(key='Timestamp', freq=period_length)).agg(
|
64 |
+
p50=('ResponseTime(ms)', aggregation_funcs['p50']),
|
65 |
+
p95=('ResponseTime(ms)', aggregation_funcs['p95']),
|
66 |
+
p99=('ResponseTime(ms)', aggregation_funcs['p99']),
|
67 |
+
max=('ResponseTime(ms)', aggregation_funcs['max']),
|
68 |
+
min=('ResponseTime(ms)', aggregation_funcs['min']),
|
69 |
+
average=('ResponseTime(ms)', aggregation_funcs['average']),
|
70 |
+
).reset_index()
|
71 |
+
return summary_df
|
72 |
+
|
73 |
+
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
|
74 |
+
while input_list:
|
75 |
+
chunk: List[Any] = input_list[:size]
|
76 |
+
yield chunk
|
77 |
+
input_list = input_list[size:]
|
78 |
+
|
79 |
+
def evaluate_alarm_state(
|
80 |
+
summary_df: pd.DataFrame,
|
81 |
+
threshold: int,
|
82 |
+
datapoints_to_alarm: int,
|
83 |
+
evaluation_range: int,
|
84 |
+
aggregation_function: str,
|
85 |
+
alarm_condition: str
|
86 |
+
) -> pd.DataFrame:
|
87 |
+
data_points: List[Optional[float]] = list(summary_df[aggregation_function].values)
|
88 |
+
|
89 |
+
data_table_dict: Dict[str, List[Any]] = {
|
90 |
+
"DataPoints": [],
|
91 |
+
"# of data points that must be filled": [],
|
92 |
+
"MISSING": [],
|
93 |
+
"IGNORE": [],
|
94 |
+
"BREACHING": [],
|
95 |
+
"NOT BREACHING": []
|
96 |
+
}
|
97 |
+
|
98 |
+
def check_condition(value, threshold, condition):
|
99 |
+
if condition == '>':
|
100 |
+
return value > threshold
|
101 |
+
elif condition == '>=':
|
102 |
+
return value >= threshold
|
103 |
+
elif condition == '<':
|
104 |
+
return value < threshold
|
105 |
+
elif condition == '<=':
|
106 |
+
return value <= threshold
|
107 |
+
|
108 |
+
for chunk in chunk_list(input_list=data_points, size=evaluation_range):
|
109 |
+
data_point_repr: str = ''
|
110 |
+
num_dp_that_must_be_filled: int = 0
|
111 |
+
|
112 |
+
for dp in chunk:
|
113 |
+
if dp is None:
|
114 |
+
data_point_repr += '-'
|
115 |
+
elif check_condition(dp, threshold, alarm_condition):
|
116 |
+
data_point_repr += 'X'
|
117 |
+
else:
|
118 |
+
data_point_repr += '0'
|
119 |
+
|
120 |
+
if len(chunk) < evaluation_range:
|
121 |
+
data_point_repr += '-' * (evaluation_range - len(chunk))
|
122 |
+
|
123 |
+
if data_point_repr.count('-') > (evaluation_range - datapoints_to_alarm):
|
124 |
+
num_dp_that_must_be_filled = datapoints_to_alarm - sum([data_point_repr.count('0'), data_point_repr.count('X')])
|
125 |
+
|
126 |
+
data_table_dict["DataPoints"].append(data_point_repr)
|
127 |
+
data_table_dict["# of data points that must be filled"].append(num_dp_that_must_be_filled)
|
128 |
+
|
129 |
+
if num_dp_that_must_be_filled > 0:
|
130 |
+
data_table_dict["MISSING"].append("INSUFFICIENT_DATA" if data_point_repr.count('-') == evaluation_range else "Retain current state")
|
131 |
+
data_table_dict["IGNORE"].append("Retain current state")
|
132 |
+
data_table_dict["BREACHING"].append("ALARM")
|
133 |
+
data_table_dict["NOT BREACHING"].append("OK")
|
134 |
+
else:
|
135 |
+
data_table_dict["MISSING"].append("OK")
|
136 |
+
data_table_dict["IGNORE"].append("Retain current state")
|
137 |
+
data_table_dict["BREACHING"].append("ALARM" if 'X' * datapoints_to_alarm in data_point_repr else "OK")
|
138 |
+
data_table_dict["NOT BREACHING"].append("ALARM" if '0' * datapoints_to_alarm not in data_point_repr else "OK")
|
139 |
+
|
140 |
+
return pd.DataFrame(data_table_dict)
|