pawlo2013's picture
try fix
8ef1b85
raw
history blame
6.22 kB
import os
import gradio as gr
from PIL import Image
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
from datasets import load_dataset
import matplotlib.pyplot as plt
import numpy as np
import cv2
# Model and processor configuration
model_name_or_path = "google/vit-base-patch16-224-in21k"
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
# Load dataset (adjust dataset_path accordingly)
dataset_path = "pawlo2013/chest_xray"
train_dataset = load_dataset(dataset_path, split="train")
class_names = train_dataset.features["label"].names
# Load ViT model
model = ViTForImageClassification.from_pretrained(
"./models",
num_labels=len(class_names),
id2label={str(i): label for i, label in enumerate(class_names)},
label2id={label: i for i, label in enumerate(class_names)},
)
# Set model to evaluation mode
model.eval()
# Define the classification function
# Define the classification function
def classify_and_visualize(img, device="cpu", discard_ratio=0.9, head_fusion="mean"):
# filename = img.filename
img = img.convert("RGB")
processed_input = processor(images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**processed_input)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)[0].tolist()
prediction = torch.argmax(logits, dim=-1).item()
predicted_class = class_names[prediction]
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
# get the filename from the image object
# Generate attention heatmap
heatmap_img = show_final_layer_attention_maps(
model, processed_input, device, discard_ratio, head_fusion
)
return {"probabilities": result, "heatmap": heatmap_img}
def format_output(output):
return (
output["probabilities"],
output["heatmap"] if output["heatmap"] is not None else None,
)
# Function to load examples from a folder
def load_examples_from_folder(folder_path):
examples = []
for file in os.listdir(folder_path):
if file.endswith((".png", ".jpg", ".jpeg")):
examples.append(Image.open(os.path.join(folder_path, file)))
return examples
# Function to show final layer attention maps
def show_final_layer_attention_maps(
model, tensor, device, discard_ratio=0.6, head_fusion="max", only_last_layer=False
):
# Create a DataLoader with batch size equal to the number of images
image = tensor["pixel_values"].to(device).squeeze(0)
# Iterate over the samples
with torch.no_grad():
# Forward pass through the model
outputs = model(**tensor, output_attentions=True)
print(type(outputs.attentions[0]))
if outputs.attentions[0] is None:
print("Attention outputs are None.")
return None
# Scale image to [0, 1]
image = image - image.min()
image = image / image.max()
# Initialize the result tensor and recursively fuse the attention maps
result = torch.eye(outputs.attentions[0].size(-1)).to(device)
if only_last_layer:
attention_list = outputs.attentions[-1].unsqueeze(0).to(device)
else:
attention_list = outputs.attentions
for attention in attention_list:
if head_fusion == "mean":
attention_heads_fused = attention.mean(axis=1)
elif head_fusion == "max":
attention_heads_fused = attention.max(axis=1)[0]
elif head_fusion == "min":
attention_heads_fused = attention.min(axis=1)[0]
flat = attention_heads_fused.view(attention_heads_fused.size(0), -1)
_, indices = flat.topk(int(flat.size(-1) * discard_ratio), -1, False)
indices = indices[indices != 0]
flat[0, indices] = 0
I = torch.eye(attention_heads_fused.size(-1)).to(device)
a = (attention_heads_fused + 1.0 * I) / 2
a = a / a.sum(dim=-1)
result = torch.matmul(a, result)
mask = result[0, 0, 1:]
# In case of 224x224 image, this brings us from 196 to 14
width = int(mask.size(-1) ** 0.5)
mask = mask.reshape(width, width).cpu().numpy()
mask = mask / np.max(mask)
mask = cv2.resize(mask, (224, 224))
# Normalize mask to [0, 1] for visualization
mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
heatmap = plt.cm.jet(mask)[:, :, :3] # Apply colormap
# Superimpose heatmap on the original image
showed_img = image.permute(1, 2, 0).detach().cpu().numpy()
showed_img = (showed_img - np.min(showed_img)) / (
np.max(showed_img) - np.min(showed_img)
) # Normalize image
superimposed_img = (
heatmap * 0.4 + showed_img * 0.6
) # Combine heatmap with original image
# Plot attention map
superimposed_img_pil = Image.fromarray(
(superimposed_img * 255).astype(np.uint8)
)
return superimposed_img_pil
# Define the path to the examples folder
examples_folder = "./examples"
examples = load_examples_from_folder(examples_folder)
# Create the Gradio interface
iface = gr.Interface(
fn=lambda img: format_output(classify_and_visualize(img)),
inputs=gr.Image(type="pil", label="Upload X-Ray Image"),
outputs=[
gr.Label(),
gr.Image(label="Attention Heatmap"),
],
examples=examples,
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are taken from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2.) The attention heatmap over all layers of the transfomer done by the attention rollout techinique by the implementation of [jacobgil](https://github.com/jacobgil/vit-explain).",
)
# Launch the app
if __name__ == "__main__":
iface.launch()