Spaces:
Running
on
Zero
Running
on
Zero
Update live_preview_helpers.py
Browse files- live_preview_helpers.py +23 -32
live_preview_helpers.py
CHANGED
@@ -60,7 +60,6 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
60 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
max_sequence_length: int = 512,
|
62 |
good_vae: Optional[Any] = None,
|
63 |
-
cache_scope: Optional[Any] = None,
|
64 |
):
|
65 |
height = height or self.default_sample_size * self.vae_scale_factor
|
66 |
width = width or self.default_sample_size * self.vae_scale_factor
|
@@ -132,39 +131,31 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
132 |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
133 |
|
134 |
# 6. Denoising loop
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
if self.interrupt:
|
139 |
-
continue
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
if cache_scope:
|
164 |
-
with cache_scope:
|
165 |
-
yield from denoise_loop_generator()
|
166 |
-
else:
|
167 |
-
yield from denoise_loop_generator()
|
168 |
|
169 |
# Final image using good_vae
|
170 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
|
60 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
max_sequence_length: int = 512,
|
62 |
good_vae: Optional[Any] = None,
|
|
|
63 |
):
|
64 |
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
131 |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
|
133 |
# 6. Denoising loop
|
134 |
+
for i, t in enumerate(timesteps):
|
135 |
+
if self.interrupt:
|
136 |
+
continue
|
|
|
|
|
137 |
|
138 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
|
140 |
+
noise_pred = self.transformer(
|
141 |
+
hidden_states=latents,
|
142 |
+
timestep=timestep / 1000,
|
143 |
+
guidance=guidance,
|
144 |
+
pooled_projections=pooled_prompt_embeds,
|
145 |
+
encoder_hidden_states=prompt_embeds,
|
146 |
+
txt_ids=text_ids,
|
147 |
+
img_ids=latent_image_ids,
|
148 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
+
return_dict=False,
|
150 |
+
)[0]
|
151 |
+
# Yield intermediate result
|
152 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
153 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
154 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
155 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
156 |
+
|
157 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
158 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
# Final image using good_vae
|
161 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|