ovi054 commited on
Commit
db088ca
·
verified ·
1 Parent(s): 55a6c69

Update live_preview_helpers.py

Browse files
Files changed (1) hide show
  1. live_preview_helpers.py +23 -32
live_preview_helpers.py CHANGED
@@ -60,7 +60,6 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
60
  joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
  max_sequence_length: int = 512,
62
  good_vae: Optional[Any] = None,
63
- cache_scope: Optional[Any] = None,
64
  ):
65
  height = height or self.default_sample_size * self.vae_scale_factor
66
  width = width or self.default_sample_size * self.vae_scale_factor
@@ -132,39 +131,31 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
132
  guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
133
 
134
  # 6. Denoising loop
135
- def denoise_loop_generator():
136
- nonlocal latents
137
- for i, t in enumerate(timesteps):
138
- if self.interrupt:
139
- continue
140
 
141
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
142
 
143
- noise_pred = self.transformer(
144
- hidden_states=latents,
145
- timestep=timestep / 1000,
146
- guidance=guidance,
147
- pooled_projections=pooled_prompt_embeds,
148
- encoder_hidden_states=prompt_embeds,
149
- txt_ids=text_ids,
150
- img_ids=latent_image_ids,
151
- joint_attention_kwargs=self.joint_attention_kwargs,
152
- return_dict=False,
153
- )[0]
154
- # Yield intermediate result
155
- latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
156
- latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
157
- image = self.vae.decode(latents_for_image, return_dict=False)[0]
158
- yield self.image_processor.postprocess(image, output_type=output_type)[0]
159
-
160
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
161
- torch.cuda.empty_cache()
162
-
163
- if cache_scope:
164
- with cache_scope:
165
- yield from denoise_loop_generator()
166
- else:
167
- yield from denoise_loop_generator()
168
 
169
  # Final image using good_vae
170
  latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
 
60
  joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
  max_sequence_length: int = 512,
62
  good_vae: Optional[Any] = None,
 
63
  ):
64
  height = height or self.default_sample_size * self.vae_scale_factor
65
  width = width or self.default_sample_size * self.vae_scale_factor
 
131
  guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
 
133
  # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
 
 
137
 
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
 
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+
157
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
158
+ torch.cuda.empty_cache()
 
 
 
 
 
 
159
 
160
  # Final image using good_vae
161
  latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)