Abhishek Gola
commited on
Commit
·
c741d15
1
Parent(s):
fafc849
Added face image quality assessment to opencv spaces
Browse files- README.md +7 -0
- app.py +92 -0
- ediffiqa.py +45 -0
- requirements.txt +4 -0
- yunet.py +55 -0
README.md
CHANGED
@@ -7,6 +7,13 @@ sdk: gradio
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Face image quality assessment with ediffiqa using OpenCV
|
11 |
+
tags:
|
12 |
+
- opencv
|
13 |
+
- face-image-quality
|
14 |
+
- image-quality-assessment
|
15 |
+
- ediffiqa
|
16 |
+
- yunet
|
17 |
---
|
18 |
|
19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from yunet import YuNet
|
6 |
+
from ediffiqa import eDifFIQA
|
7 |
+
|
8 |
+
# Download face detection model (YuNet)
|
9 |
+
model_path_yunet = hf_hub_download(
|
10 |
+
repo_id="opencv/face_detection_yunet",
|
11 |
+
filename="face_detection_yunet_2023mar.onnx"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Download face quality assessment model (eDifFIQA Tiny)
|
15 |
+
model_path_quality = hf_hub_download(
|
16 |
+
repo_id="opencv/face_image_quality_assessment_ediffiqa",
|
17 |
+
filename="ediffiqa_tiny_jun2024.onnx"
|
18 |
+
)
|
19 |
+
|
20 |
+
# Backend and target
|
21 |
+
backend_id = cv.dnn.DNN_BACKEND_OPENCV
|
22 |
+
target_id = cv.dnn.DNN_TARGET_CPU
|
23 |
+
|
24 |
+
# Initialize YuNet for face detection
|
25 |
+
face_detector = YuNet(
|
26 |
+
modelPath=model_path_yunet,
|
27 |
+
inputSize=[320, 320],
|
28 |
+
confThreshold=0.9,
|
29 |
+
nmsThreshold=0.3,
|
30 |
+
topK=5000,
|
31 |
+
backendId=backend_id,
|
32 |
+
targetId=target_id
|
33 |
+
)
|
34 |
+
|
35 |
+
# Initialize eDifFIQA for quality assessment
|
36 |
+
quality_model = eDifFIQA(
|
37 |
+
modelPath=model_path_quality,
|
38 |
+
inputSize=[112, 112]
|
39 |
+
)
|
40 |
+
quality_model.setBackendAndTarget(
|
41 |
+
backendId=backend_id,
|
42 |
+
targetId=target_id
|
43 |
+
)
|
44 |
+
|
45 |
+
REFERENCE_FACIAL_POINTS = np.array([
|
46 |
+
[38.2946 , 51.6963 ],
|
47 |
+
[73.5318 , 51.5014 ],
|
48 |
+
[56.0252 , 71.7366 ],
|
49 |
+
[41.5493 , 92.3655 ],
|
50 |
+
[70.729904, 92.2041 ]
|
51 |
+
], dtype=np.float32)
|
52 |
+
|
53 |
+
def align_image(image, detection_data):
|
54 |
+
src_pts = np.float32(detection_data[0][4:-1]).reshape(5, 2)
|
55 |
+
tfm, _ = cv.estimateAffinePartial2D(src_pts, REFERENCE_FACIAL_POINTS, method=cv.LMEDS)
|
56 |
+
face_img = cv.warpAffine(image, tfm, (112, 112))
|
57 |
+
return face_img
|
58 |
+
|
59 |
+
def assess_face_quality(input_image):
|
60 |
+
bgr_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
61 |
+
h, w, _ = bgr_image.shape
|
62 |
+
|
63 |
+
face_detector.setInputSize([w, h])
|
64 |
+
detections = face_detector.infer(bgr_image)
|
65 |
+
|
66 |
+
if detections is None or len(detections) == 0:
|
67 |
+
return "No face detected.", input_image
|
68 |
+
|
69 |
+
aligned_face = align_image(bgr_image, detections)
|
70 |
+
score = np.squeeze(quality_model.infer(aligned_face)).item()
|
71 |
+
|
72 |
+
output_image = aligned_face.copy()
|
73 |
+
cv.putText(output_image, f"{score:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 255), 2)
|
74 |
+
output_image = cv.cvtColor(output_image, cv.COLOR_BGR2RGB)
|
75 |
+
|
76 |
+
return f"Quality Score: {score:.3f}", output_image
|
77 |
+
|
78 |
+
# Gradio Interface
|
79 |
+
demo = gr.Interface(
|
80 |
+
fn=assess_face_quality,
|
81 |
+
inputs=gr.Image(type="numpy", label="Upload Face Image"),
|
82 |
+
outputs=[
|
83 |
+
gr.Text(label="Quality Score"),
|
84 |
+
gr.Image(type="numpy", label="Aligned Face with Score")
|
85 |
+
],
|
86 |
+
title="Face Image Quality Assessment (eDifFIQA + YuNet)",
|
87 |
+
allow_flagging="never",
|
88 |
+
description="Upload a face image. The app detects and aligns the face, then evaluates image quality using the eDifFIQA model."
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|
ediffiqa.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import cv2 as cv
|
6 |
+
|
7 |
+
|
8 |
+
class eDifFIQA:
|
9 |
+
|
10 |
+
def __init__(self, modelPath, inputSize=[112, 112]):
|
11 |
+
self.modelPath = modelPath
|
12 |
+
self.inputSize = tuple(inputSize) # [w, h]
|
13 |
+
|
14 |
+
self.model = cv.dnn.readNetFromONNX(self.modelPath)
|
15 |
+
|
16 |
+
@property
|
17 |
+
def name(self):
|
18 |
+
return self.__class__.__name__
|
19 |
+
|
20 |
+
def setBackendAndTarget(self, backendId, targetId):
|
21 |
+
self._backendId = backendId
|
22 |
+
self._targetId = targetId
|
23 |
+
self.model.setPreferableBackend(self._backendId)
|
24 |
+
self.model.setPreferableTarget(self._targetId)
|
25 |
+
|
26 |
+
def infer(self, image):
|
27 |
+
# Preprocess image
|
28 |
+
image = self._preprocess(image)
|
29 |
+
# Forward
|
30 |
+
self.model.setInput(image)
|
31 |
+
quality_score = self.model.forward()
|
32 |
+
|
33 |
+
return quality_score
|
34 |
+
|
35 |
+
def _preprocess(self, image: cv.Mat):
|
36 |
+
# Change image from BGR to RGB
|
37 |
+
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
38 |
+
# Resize to (112, 112)
|
39 |
+
image = cv.resize(image, self.inputSize)
|
40 |
+
# Scale to [0, 1] and normalize by mean=0.5, std=0.5
|
41 |
+
image = ((image / 255) - 0.5) / 0.5
|
42 |
+
# Move channel axis
|
43 |
+
image = np.moveaxis(image[None, ...], -1, 1)
|
44 |
+
|
45 |
+
return image
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
huggingface_hub
|
yunet.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
from itertools import product
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
class YuNet:
|
13 |
+
def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, backendId=0, targetId=0):
|
14 |
+
self._modelPath = modelPath
|
15 |
+
self._inputSize = tuple(inputSize) # [w, h]
|
16 |
+
self._confThreshold = confThreshold
|
17 |
+
self._nmsThreshold = nmsThreshold
|
18 |
+
self._topK = topK
|
19 |
+
self._backendId = backendId
|
20 |
+
self._targetId = targetId
|
21 |
+
|
22 |
+
self._model = cv.FaceDetectorYN.create(
|
23 |
+
model=self._modelPath,
|
24 |
+
config="",
|
25 |
+
input_size=self._inputSize,
|
26 |
+
score_threshold=self._confThreshold,
|
27 |
+
nms_threshold=self._nmsThreshold,
|
28 |
+
top_k=self._topK,
|
29 |
+
backend_id=self._backendId,
|
30 |
+
target_id=self._targetId)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackendAndTarget(self, backendId, targetId):
|
37 |
+
self._backendId = backendId
|
38 |
+
self._targetId = targetId
|
39 |
+
self._model = cv.FaceDetectorYN.create(
|
40 |
+
model=self._modelPath,
|
41 |
+
config="",
|
42 |
+
input_size=self._inputSize,
|
43 |
+
score_threshold=self._confThreshold,
|
44 |
+
nms_threshold=self._nmsThreshold,
|
45 |
+
top_k=self._topK,
|
46 |
+
backend_id=self._backendId,
|
47 |
+
target_id=self._targetId)
|
48 |
+
|
49 |
+
def setInputSize(self, input_size):
|
50 |
+
self._model.setInputSize(tuple(input_size))
|
51 |
+
|
52 |
+
def infer(self, image):
|
53 |
+
# Forward
|
54 |
+
faces = self._model.detect(image)
|
55 |
+
return np.empty(shape=(0, 5)) if faces[1] is None else faces[1]
|