import cv2 as cv import numpy as np import gradio as gr from yunet import YuNet from huggingface_hub import hf_hub_download # Download ONNX model from Hugging Face model_path = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx") # Initialize YuNet model model = YuNet( modelPath=model_path, inputSize=[320, 320], confThreshold=0.9, nmsThreshold=0.3, topK=5000, backendId=cv.dnn.DNN_BACKEND_OPENCV, targetId=cv.dnn.DNN_TARGET_CPU ) def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255)): output = image.copy() landmark_color = [ (255, 0, 0), # right eye ( 0, 0, 255), # left eye ( 0, 255, 0), # nose tip (255, 0, 255), # right mouth corner ( 0, 255, 255) # left mouth corner ] for det in results: bbox = det[0:4].astype(np.int32) cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) conf = det[-1] cv.putText(output, '{:.2f}'.format(conf), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) landmarks = det[4:14].astype(np.int32).reshape((5, 2)) for idx, landmark in enumerate(landmarks): cv.circle(output, tuple(landmark), 2, landmark_color[idx], 2) return output def detect_faces(input_image): h, w, _ = input_image.shape model.setInputSize([w, h]) results = model.infer(input_image) if results is None or len(results) == 0: return input_image return visualize(input_image, results) # Gradio Interface demo = gr.Interface( fn=detect_faces, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Image(type="numpy", label="Detected Faces"), title="Face Detection YuNet (OpenCV DNN)", allow_flagging="never", description="Upload an image to detect faces using OpenCV's ONNX-based YuNet face detector." ) if __name__ == "__main__": demo.launch()