File size: 30,698 Bytes
909940e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import warnings
import math
import copy
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_, kaiming_normal_
from einops import rearrange
from torch.utils.checkpoint import checkpoint
from functools import partial
from typing import Any, Optional, Tuple
import numpy as np

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
            'The distribution of values may be incorrect.',
            stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        low = norm_cdf((a - mean) / std)
        up = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [low, up], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * low - 1, 2 * up - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution.

    From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py

    The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)

def init_t_xy(end_x: int, end_y: int, zero_center=False):
    t = torch.arange(end_x * end_y, dtype=torch.float32)
    t_x = (t % end_x).float()
    t_y = torch.div(t, end_x, rounding_mode='floor').float()
    
    return t_x, t_y

def init_random_2d_freqs(head_dim: int, num_heads: int, theta: float = 10.0, rotate: bool = True):
    freqs_x = []
    freqs_y = []
    theta = theta
    mag = 1 / (theta ** (torch.arange(0, head_dim, 4)[: (head_dim // 4)].float() / head_dim))
    for i in range(num_heads):
        angles = torch.rand(1) * 2 * torch.pi if rotate else torch.zeros(1)
        fx = torch.cat([mag * torch.cos(angles), mag * torch.cos(torch.pi/2 + angles)], dim=-1)
        fy = torch.cat([mag * torch.sin(angles), mag * torch.sin(torch.pi/2 + angles)], dim=-1)
        freqs_x.append(fx)
        freqs_y.append(fy)
    freqs_x = torch.stack(freqs_x, dim=0)
    freqs_y = torch.stack(freqs_y, dim=0)
    freqs = torch.stack([freqs_x, freqs_y], dim=0)
    return freqs

def compute_cis(freqs, t_x, t_y):
    N = t_x.shape[0]
    # No float 16 for this range
    with torch.cuda.amp.autocast(enabled=False):
        freqs_x = (t_x.unsqueeze(-1) @ freqs[0].unsqueeze(-2))
        freqs_y = (t_y.unsqueeze(-1) @ freqs[1].unsqueeze(-2))
        freqs_cis = torch.polar(torch.ones_like(freqs_x), freqs_x + freqs_y)
        
    return freqs_cis


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    # assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
    # print(f"freqs_cis shape is {freqs_cis.shape}, x shape is {x.shape}")
    if freqs_cis.shape == (x.shape[-2], x.shape[-1]):
        shape = [d if i >= ndim-2 else 1 for i, d in enumerate(x.shape)]
    elif freqs_cis.shape == (x.shape[-3], x.shape[-2], x.shape[-1]):
        shape = [d if i >= ndim-3 else 1 for i, d in enumerate(x.shape)]
        
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # print(f"xq shape is {xq.shape}, xq.shape[:-1] is {xq.shape[:-1]}")
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    # print(f"xq_ shape is {xq_.shape}")
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)

def apply_rotary_emb_single(x, freqs_cis):
    x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
    seq_len = x_.shape[2]
    freqs_cis = freqs_cis[:, :seq_len, :]
    freqs_cis = freqs_cis.unsqueeze(0).expand_as(x_)
    x_out = torch.view_as_real(x_ * freqs_cis).flatten(3)
    return x_out.type_as(x).to(x.device)

def window_partition(x, window_size):
    # x is the feature from net_g
    b, c, h, w = x.shape
    windows = rearrange(x, 'b c (h_count dh) (w_count dw) -> (b h_count w_count) (dh dw) c', dh=window_size,
                        dw=window_size)
    # h_count = h // window_size
    # w_count = w // window_size
    # windows = x.reshape(b,c,h_count, window_size, w_count, window_size)
    # windows = windows.permute(0,1,2,4,3,5) #b,c,h_count,w_count,window_size,window_size
    # windows = windows.reshape(b,c,h_count*w_count, window_size * window_size)
    # windows = windows.permute(0,2,3,1) #b,h_count*w_count, window_size*window_size,c
    # windows = windows.reshape(-1, window_size*window_size, c)

    return windows


def with_pos_embed(tensor, pos):
    return tensor if pos is None else tensor + pos


class MLP(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, act_layer=nn.ReLU):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x

class WindowCrossAttn(nn.Module):
    def __init__(self, dim=180, num_heads=6, window_size=12, num_gs_seed=2304, rope_mixed = True, rope_theta = 10.0):
        super(WindowCrossAttn, self).__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.num_gs_seed = num_gs_seed
        self.num_gs_seed_sqrt = int(math.sqrt(num_gs_seed))


        self.rope_mixed = rope_mixed
       
        t_x, t_y = init_t_xy(end_x=max(self.num_gs_seed_sqrt, self.window_size), end_y=max(self.num_gs_seed_sqrt, self.window_size))
        self.register_buffer('rope_t_x', t_x)
        self.register_buffer('rope_t_y', t_y)

        freqs = init_random_2d_freqs(
            head_dim=self.dim // self.num_heads, num_heads=self.num_heads, theta=rope_theta, 
            rotate=self.rope_mixed
        )
        if self.rope_mixed:
            self.rope_freqs = nn.Parameter(freqs, requires_grad=True)
        else:
            self.register_buffer('rope_freqs', freqs)
            freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y)
            self.rope_freqs_cis = freqs_cis

        self.qhead = nn.Linear(dim, dim, bias=True)
        self.khead = nn.Linear(dim, dim, bias=True)
        self.vhead = nn.Linear(dim, dim, bias=True)

        self.proj = nn.Linear(dim, dim)


    def forward(self, gs, feat):
        # gs shape: b*h_count*w_count, num_gs, c    the input gs here should already include pos embedding and scale embedding
        # feat shape: b*h_count*w_count, dh*dw, c    dh=dw=window_size
        b_, num_gs, c = gs.shape
        b_, n, c = feat.shape

        q = self.qhead(gs)  # b_, num_gs_, c
        q = q.reshape(b_, num_gs, self.num_heads, c // self.num_heads)
        q = q.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        k = self.khead(feat)  # b_, n_, c
        k = k.reshape(b_, n, self.num_heads, c // self.num_heads)
        k = k.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        v = self.vhead(feat)  # b_, n_, c
        v = v.reshape(b_, n, self.num_heads, c // self.num_heads)
        v = v.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        ###### Apply rotary position embedding
        if self.rope_mixed:
            freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y)
        else:
            freqs_cis = self.rope_freqs_cis.to(gs.device)
        q = apply_rotary_emb_single(q, freqs_cis)
        k = apply_rotary_emb_single(k, freqs_cis)
        #########

        attn = F.scaled_dot_product_attention(q, k, v)

        x = attn.transpose(1, 2).reshape(b_, num_gs, c)

        x = self.proj(x)

        return x


class WindowCrossAttnLayer(nn.Module):
    def __init__(self, dim=180, num_heads=6, window_size=12, shift_size=0, num_gs_seed=2308, rope_mixed = True, rope_theta = 10.0):
        super(WindowCrossAttnLayer, self).__init__()

        self.gs_cross_attn_scale = nn.MultiheadAttention(dim, num_heads, batch_first=True)

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.norm4 = nn.LayerNorm(dim)
        self.shift_size = shift_size
        self.window_size = window_size

        self.window_cross_attn = WindowCrossAttn(dim=dim, num_heads=num_heads, window_size=window_size,
                                                         num_gs_seed=num_gs_seed, rope_mixed = rope_mixed, rope_theta = rope_theta)
        self.mlp_crossattn_scale = MLP(in_features=dim, hidden_features=dim, out_features=dim)
        self.mlp_crossattn_feature = MLP(in_features=dim, hidden_features=dim, out_features=dim)

    def forward(self, x, query_pos, feat, scale_embedding):
        # gs shape: b*h_count*w_count, num_gs, c
        # query_pos shape: b*h_count*w_count, num_gs, c
        # feat shape: b,c,h,w
        # scale_embedding shape: b*h_count*w_count, 1, c

        ###GS cross attn with scale embedding
        resi = x
        x = self.norm1(x)
        # print(f"x: {x.shape} {x.device}, query_pos: {query_pos.shape}, {query_pos.device}, scale_embedding: {scale_embedding.shape}, {scale_embedding.device}")
        x, _ = self.gs_cross_attn_scale(with_pos_embed(x, query_pos), scale_embedding, scale_embedding)
        x = resi + x

        ###FFN
        resi = x
        x = self.norm2(x)
        x = self.mlp_crossattn_scale(x)
        x = resi + x

        ###cross attention for Q,K,V
        resi = x
        x = self.norm3(x)
        if self.shift_size > 0:
            shift_feat = torch.roll(feat, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
        else:
            shift_feat = feat
        shift_feat = window_partition(shift_feat, self.window_size)  # b*h_count*w_count, dh*dw, c  dh=dw=window_size
        x = self.window_cross_attn(with_pos_embed(x, query_pos),
                                   shift_feat)  # b*h_count*w_count, num_gs, c  dh=dw=window_size
        x = resi + x

        ###FFN
        resi = x
        x = self.norm4(x)
        x = self.mlp_crossattn_feature(x)
        x = resi + x

        return x


class WindowCrossAttnBlock(nn.Module):
    def __init__(self, dim=180, window_size=12, num_heads=6, num_layers=4, num_gs_seed=230, rope_mixed = True, rope_theta = 10.0):
        super(WindowCrossAttnBlock, self).__init__()

        self.num_gs_seed_sqrt = int(math.sqrt(num_gs_seed))

        self.mlp = nn.Sequential(
            nn.Linear(dim, dim),
            nn.ReLU(),
            nn.Linear(dim, dim)
        )
        self.norm = nn.LayerNorm(dim)
        self.blocks = nn.ModuleList([
            WindowCrossAttnLayer(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if i % 2 == 0 else window_size // 2,
                num_gs_seed=num_gs_seed,
                rope_mixed = rope_mixed, rope_theta = rope_theta) for i in range(num_layers)
        ])
        self.conv = nn.Conv2d(dim, dim, 3, 1, 1)

    def forward(self, x, query_pos, feat, scale_embedding, h_count, w_count):
        resi = x
        x = self.norm(x)
        for block in self.blocks:
            x = block(x, query_pos, feat, scale_embedding)
        x = self.mlp(x)

        x = rearrange(x, '(b m n) (h w) c -> b c (m h) (n w)', m=h_count, n=w_count, h=self.num_gs_seed_sqrt)
        x = self.conv(x)
        x = rearrange(x, 'b c (m h) (n w) -> (b m n) (h w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt)

        x = resi + x
        return x


class GSSelfAttn(nn.Module):
    def __init__(self, dim=180, num_heads=6, num_gs_seed_sqrt = 12, rope_mixed = True, rope_theta=10.0):
        super(GSSelfAttn, self).__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.num_gs_seed_sqrt = num_gs_seed_sqrt

        self.proj = nn.Linear(dim, dim)
        self.rope_mixed = rope_mixed
       
        t_x, t_y = init_t_xy(end_x=self.num_gs_seed_sqrt, end_y=self.num_gs_seed_sqrt)
        self.register_buffer('rope_t_x', t_x)
        self.register_buffer('rope_t_y', t_y)

        freqs = init_random_2d_freqs(
            head_dim=self.dim // self.num_heads, num_heads=self.num_heads, theta=rope_theta, 
            rotate=self.rope_mixed
        )
        if self.rope_mixed:
            self.rope_freqs = nn.Parameter(freqs, requires_grad=True)
        else:
            self.register_buffer('rope_freqs', freqs)
            freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y)
            self.rope_freqs_cis = freqs_cis

        self.qhead = nn.Linear(dim, dim, bias=True)
        self.khead = nn.Linear(dim, dim, bias=True)
        self.vhead = nn.Linear(dim, dim, bias=True)

    def forward(self, gs):
        # gs shape: b*h_count*w_count, num_gs, c  
        # pos shape: b*h_count*w_count, num_gs, c
        b_, num_gs, c = gs.shape

        q = self.qhead(gs)
        q = q.reshape(b_, num_gs, self.num_heads, c // self.num_heads)
        q = q.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        k = self.khead(gs)
        k = k.reshape(b_, num_gs, self.num_heads, c // self.num_heads)
        k = k.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        v = self.vhead(gs)
        v = v.reshape(b_, num_gs, self.num_heads, c // self.num_heads)
        v = v.permute(0, 2, 1, 3)  # b_, num_heads, n, c // num_heads

        ###### Apply rotary position embedding
        if self.rope_mixed:
            freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y)
        else:
            freqs_cis = self.rope_freqs_cis.to(gs.device)
        q, k = apply_rotary_emb(q, k, freqs_cis)
        #########

        attn = F.scaled_dot_product_attention(q, k, v)

        attn = attn.transpose(1, 2).reshape(b_, num_gs, c)


        attn = self.proj(attn)

        return attn


class GSSelfAttnLayer(nn.Module):
    def __init__(self, dim=180, num_heads=6, num_gs_seed_sqrt = 12, shift_size = 0, rope_mixed = True, rope_theta=10.0):
        super(GSSelfAttnLayer, self).__init__()

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.norm4 = nn.LayerNorm(dim)

        self.gs_self_attn = GSSelfAttn(dim = dim, num_heads = num_heads, num_gs_seed_sqrt = num_gs_seed_sqrt, rope_mixed = rope_mixed, rope_theta=rope_theta)

        self.mlp_selfattn = MLP(in_features=dim, hidden_features=dim, out_features=dim)

        self.num_gs_seed_sqrt = num_gs_seed_sqrt
        self.shift_size = shift_size

        self.gs_cross_attn_scale = nn.MultiheadAttention(dim, num_heads, batch_first=True)

        self.mlp_crossattn = MLP(in_features=dim, hidden_features=dim, out_features=dim)

    def forward(self, gs, pos, h_count, w_count, scale_embedding):
        # gs shape:b*h_count*w_count, num_gs_seed, channel
        # pos shape: b*h_count*w_count, num_gs_seed, channel
        # scale_embedding shape: b*h_count*w_count, 1, channel

        # gs cross attn with scale_embedding
        resi = gs
        gs = self.norm3(gs)
        gs, _ = self.gs_cross_attn_scale(with_pos_embed(gs, pos), scale_embedding, scale_embedding)
        gs = gs + resi

        # FFN
        resi = gs
        gs = self.norm4(gs)
        gs = self.mlp_crossattn(gs)
        gs = gs + resi

        resi = gs
        gs = self.norm1(gs)

        #### shift gs
        if self.shift_size > 0:
            shift_gs = rearrange(gs, '(b m n) (h w) c -> b (m h) (n w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt, w = self.num_gs_seed_sqrt)
            shift_gs = torch.roll(shift_gs, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            shift_gs = rearrange(shift_gs, 'b (m h) (n w) c -> (b m n) (h w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt, w = self.num_gs_seed_sqrt)
        else:
            shift_gs = gs

        #### gs self attention
        gs = self.gs_self_attn(shift_gs)

        #### shift gs back
        if self.shift_size > 0:
            shift_gs = rearrange(gs, '(b m n) (h w) c -> b (m h) (n w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt, w = self.num_gs_seed_sqrt)
            shift_gs = torch.roll(shift_gs, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
            shift_gs = rearrange(shift_gs, 'b (m h) (n w) c -> (b m n) (h w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt, w = self.num_gs_seed_sqrt)
        else:
            shift_gs = gs

        gs = shift_gs + resi

        #FFN
        resi = gs
        gs = self.norm2(gs)
        gs = self.mlp_selfattn(gs)
        gs = gs + resi
        return gs


class GSSelfAttnBlock(nn.Module):
    def __init__(self, dim=180, num_heads=6, num_selfattn_layers=4, num_gs_seed_sqrt = 12, rope_mixed = True, rope_theta=10.0):
        super(GSSelfAttnBlock, self).__init__()
        self.num_gs_seed_sqrt = num_gs_seed_sqrt

        self.mlp = nn.Sequential(
            nn.Linear(dim, dim),
            nn.ReLU(),
            nn.Linear(dim, dim)
        )
        self.norm = nn.LayerNorm(dim)
        self.blocks = nn.ModuleList([
            GSSelfAttnLayer(
                dim = dim,
                num_heads = num_heads,
                num_gs_seed_sqrt=num_gs_seed_sqrt,
                shift_size=0 if i % 2 == 0 else num_gs_seed_sqrt // 2,
                rope_mixed = rope_mixed, rope_theta=rope_theta
            ) for i in range(num_selfattn_layers)
        ])

        self.conv = nn.Conv2d(dim, dim, 3, 1, 1)

    def forward(self, gs, pos, h_count, w_count, scale_embedding):
        resi = gs
        gs = self.norm(gs)
        for block in self.blocks:
            gs = block(gs, pos, h_count, w_count, scale_embedding)

        gs = self.mlp(gs)
        gs = rearrange(gs, '(b m n) (h w) c -> b c (m h) (n w)', m=h_count, n=w_count, h=self.num_gs_seed_sqrt)
        gs = self.conv(gs)
        gs = rearrange(gs, 'b c (m h) (n w) -> (b m n) (h w) c', m=h_count, n=w_count, h=self.num_gs_seed_sqrt)
        gs = gs + resi
        return gs

class Fea2GS_ROPE_AMP(nn.Module):
    def __init__(self, inchannel=64, channel=192, num_heads=6, num_crossattn_blocks=1, num_crossattn_layers=2, num_selfattn_blocks = 6, num_selfattn_layers = 6,
                 num_gs_seed=144, gs_up_factor=1.0, window_size=12, img_range=1.0, shuffle_scale1 = 2, shuffle_scale2 = 2, use_checkpoint = False,
                 rope_mixed = True, rope_theta = 10.0):
        """
        Args:
            gs_repeat_factor: the ratio of gs embedding number and pixel number along  width&height,  will generate
            (h * gs_repeat_factor) * (w * gs_repeat_factor) gs embedding, higher values means repeat more gs embedding.
            gs_up_factor: how many 2d gaussian are generated by one gasussian embedding.
        """
        super(Fea2GS_ROPE_AMP, self).__init__()
        self.channel = channel
        self.nhead = num_heads
        self.gs_up_factor = gs_up_factor
        self.num_gs_seed = num_gs_seed
        self.window_size = window_size
        self.img_range = img_range
        self.use_checkpoint = use_checkpoint

        self.num_gs_seed_sqrt = int(math.sqrt(num_gs_seed))
        self.gs_up_factor_sqrt = int(math.sqrt(gs_up_factor))

        self.shuffle_scale1 = shuffle_scale1
        self.shuffle_scale2 = shuffle_scale2

        # shared gaussian embedding and its pos embedding
        self.gs_embedding = nn.Parameter(torch.randn(self.num_gs_seed, channel), requires_grad=True)
        self.pos_embedding = nn.Parameter(torch.randn(self.num_gs_seed, channel), requires_grad=True)

        self.img_feat_proj = nn.Sequential(
            nn.Conv2d(inchannel, channel, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(channel, channel, 3, 1, 1)
        )

        self.window_crossattn_blocks = nn.ModuleList([
            WindowCrossAttnBlock(dim=channel,
                                 window_size=window_size,
                                 num_heads=num_heads,
                                 num_layers=num_crossattn_layers,
                                 num_gs_seed=num_gs_seed, rope_mixed = rope_mixed, rope_theta = rope_theta) for i in range(num_crossattn_blocks)
        ])

        self.gs_selfattn_blocks = nn.ModuleList([
            GSSelfAttnBlock(dim=channel,
                            num_heads=num_heads,
                            num_selfattn_layers=num_selfattn_layers,
                            num_gs_seed_sqrt=self.num_gs_seed_sqrt,
                            rope_mixed = rope_mixed, rope_theta=rope_theta
                            ) for i in range(num_selfattn_blocks)
        ])

        # GS sigma_x, sigma_y
        self.mlp_block_sigma = nn.Sequential(
            nn.Linear(channel, channel),
            nn.ReLU(),
            nn.Linear(channel, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, int(2 * gs_up_factor))
        )

        # GS rho
        self.mlp_block_rho = nn.Sequential(
            nn.Linear(channel, channel),
            nn.ReLU(),
            nn.Linear(channel, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, int(1 * gs_up_factor))
        )

        # GS alpha
        self.mlp_block_alpha = nn.Sequential(
            nn.Linear(channel, channel),
            nn.ReLU(),
            nn.Linear(channel, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, int(1 * gs_up_factor))
        )

        # GS RGB values
        self.mlp_block_rgb = nn.Sequential(
            nn.Linear(channel, channel),
            nn.ReLU(),
            nn.Linear(channel, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, int(3 * gs_up_factor))
        )

        # GS mean_x, mean_y
        self.mlp_block_mean = nn.Sequential(
            nn.Linear(channel, channel),
            nn.ReLU(),
            nn.Linear(channel, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, int(2 * gs_up_factor))
        )

        self.scale_mlp = nn.Sequential(
            nn.Linear(1, channel * 4),
            nn.ReLU(),
            nn.Linear(channel * 4, channel)
        )

        self.UPNet = nn.Sequential(
            nn.Conv2d(channel, channel * self.shuffle_scale1 * self.shuffle_scale1, 3, 1, 1),
            nn.PixelShuffle(self.shuffle_scale1),
            nn.Conv2d(channel, channel * self.shuffle_scale2 * self.shuffle_scale2, 3, 1, 1),
            nn.PixelShuffle(self.shuffle_scale2)
        )

        self.conv_final = nn.Conv2d(channel, channel, 3, 1, 1)

    @staticmethod
    def get_N_reference_points(h, w, device='cuda'):
        # step_y = 1/(h+1)
        # step_x = 1/(w+1)
        step_y = 1 / h
        step_x = 1 / w
        ref_y, ref_x = torch.meshgrid(torch.linspace(step_y / 2, 1 - step_y / 2, h, dtype=torch.float32, device=device),
                                      torch.linspace(step_x / 2, 1 - step_x / 2, w, dtype=torch.float32, device=device))
        reference_points = torch.stack((ref_x.reshape(-1), ref_y.reshape(-1)), -1)
        reference_points = reference_points[None, :, None]
        return reference_points

    def forward(self, srcs, scale):
        '''
        using deformable detr decoder for cross attention
        Args:
            query: (batch_size, num_query, dim)
            query_pos: (batch_size, num_query, dim)
            srcs: (batch_size, dim, h1, w1)
        '''
        b, c, h, w = srcs.shape  ###srcs is pad to the size that could be divided by window_size
        query = self.gs_embedding.unsqueeze(0).unsqueeze(1).repeat(b, (h // self.window_size) * (w // self.window_size),
                                                                   1, 1)  # b, h_count*w_count, num_gs_seed, channel
        query = query.reshape(b * (h // self.window_size) * (w // self.window_size), -1,
                              self.channel)  # b*h_count*w_count, num_gs_seed, channel

        scale = 1 / scale
        scale = scale.unsqueeze(1)  # b*1
        scale_embedding = self.scale_mlp(scale)  # b*channel
        scale_embedding = scale_embedding.unsqueeze(1).unsqueeze(2).repeat(1, (h // self.window_size) * (
                    w // self.window_size), self.num_gs_seed, 1)  # b, h_count*w_count, num_gs_seed, channel
        scale_embedding = scale_embedding.reshape(b * (h // self.window_size) * (w // self.window_size), -1,
                                      self.channel) # b*h_count*w_count, num_gs_seed, channel

        query_pos = self.pos_embedding.unsqueeze(0).unsqueeze(1).repeat(b, (h // self.window_size) * (
                    w // self.window_size), 1, 1)  # b, h_count*w_count, num_gs_seed, channel

        feat = self.img_feat_proj(srcs)  # b*channel*h*w

        query_pos = query_pos.reshape(b * (h // self.window_size) * (w // self.window_size), -1,
                                      self.channel)  # b*h_count*w_count, num_gs_seed, channel

        for block in self.window_crossattn_blocks:
            if self.use_checkpoint:
                query = checkpoint(block, query, query_pos, feat, scale_embedding, h // self.window_size, w // self.window_size)
            else:
                query = block(query, query_pos, feat, scale_embedding, h // self.window_size, w // self.window_size)  # b*h_count*w_count, num_gs_seed, channel

        resi = query
        for block in self.gs_selfattn_blocks:
            if self.use_checkpoint:
                query = checkpoint(block, query, query_pos, h // self.window_size, w // self.window_size, scale_embedding)
            else:
                query = block(query, query_pos, h // self.window_size, w // self.window_size, scale_embedding)
        

        query = rearrange(query, '(b m n) (h w) c -> b c (m h) (n w)', m=h // self.window_size, n=w // self.window_size,
                          h=self.num_gs_seed_sqrt)
        query = self.conv_final(query)


        resi = rearrange(resi, '(b m n) (h w) c -> b c (m h) (n w)', m=h // self.window_size, n=w // self.window_size,
                          h=self.num_gs_seed_sqrt)

        query = query + resi
        query = self.UPNet(query)
        query = query.permute(0,2,3,1)

        # query = rearrange(query, '(b m n) (h w) c -> b m h n w c', m=h // self.window_size, n=w // self.window_size,
        #                   h=self.num_gs_seed_sqrt)

        query_sigma = self.mlp_block_sigma(query).reshape(b, -1, 2)
        query_rho = self.mlp_block_rho(query).reshape(b, -1, 1)
        query_alpha = self.mlp_block_alpha(query).reshape(b, -1, 1)
        query_rgb = self.mlp_block_rgb(query).reshape(b, -1, 3)
        query_mean = self.mlp_block_mean(query).reshape(b, -1, 2)

        query_mean = query_mean / torch.tensor(
            [self.num_gs_seed_sqrt * (w // self.window_size) * self.shuffle_scale1 * self.shuffle_scale2, 
            self.num_gs_seed_sqrt * (h // self.window_size) * self.shuffle_scale1 * self.shuffle_scale2])[
            None, None].to(query_mean.device)  # b, h_count*w_count*num_gs_seed, 2

        reference_offset = self.get_N_reference_points(self.num_gs_seed_sqrt * (h // self.window_size) * self.shuffle_scale1 * self.shuffle_scale2,
                                                       self.num_gs_seed_sqrt * (w // self.window_size) * self.shuffle_scale1 * self.shuffle_scale2, srcs.device)
        query_mean = query_mean + reference_offset.reshape(1, -1, 2)

        query = torch.cat([query_sigma, query_rho, query_alpha, query_rgb, query_mean],
                          dim=-1)  # b, h_count*w_count*num_gs_seed, 9

        return query


if __name__ == '__main__':
    srcs = torch.randn(6, 64, 64, 64, requires_grad = True).cuda()
    scale = torch.randn(6).cuda()
    decoder = Fea2GS_ROPE_AMP(inchannel=64, channel=192, num_heads=6, 
                            num_crossattn_blocks=1, num_crossattn_layers=2, 
                            num_selfattn_blocks = 6, num_selfattn_layers = 6,
                            num_gs_seed=256, gs_up_factor=1.0, window_size=16, 
                            img_range=1.0, shuffle_scale1 = 2, shuffle_scale2 = 2).cuda()
    import time
    
    for i in range(10):
        torch.cuda.synchronize()
        time1 = time.time()
        # with torch.autocast(device_type = 'cuda'):
        y = decoder(srcs, scale)
        torch.cuda.synchronize()
        time2 = time.time()
        print(f"decoder time is {time2 - time1}")
        print(y.shape)

        torch.cuda.synchronize()
        time3 = time.time()
        y.sum().backward()
        torch.cuda.synchronize()
        time4 = time.time()
        print(f"backward time is {time4 - time3}")