File size: 14,471 Bytes
909940e 51153c1 909940e 51153c1 909940e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import torch
import numpy as np
import gradio as gr
from PIL import Image
import math
import torch.nn.functional as F
import os
import tempfile
import time
import threading
from utils.hatropeamp import HATNOUP_ROPE_AMP
from utils.fea2gsropeamp import Fea2GS_ROPE_AMP
from utils.edsrbaseline import EDSRNOUP
from utils.hatropeamp import HATNOUP_ROPE_AMP
from utils.rdn import RDNNOUP
from utils.swinir import SwinIRNOUP
from utils.fea2gsropeamp import Fea2GS_ROPE_AMP
from utils.gaussian_splatting import generate_2D_gaussian_splatting_step
from utils.split_and_joint_image import split_and_joint_image
from huggingface_hub import hf_hub_download
import subprocess
import sys
import spaces
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Global stop flag for interrupting inference
stop_inference = False
inference_lock = threading.Lock()
def load_model(
pretrained_model_name_or_path: str = "mutou0308/GSASR",
model_name: str = "HATL_SA1B",
device: str | torch.device = "cuda"
):
enc_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=os.path.join('GSASR_enhenced_ultra', model_name, 'encoder.pth')
)
dec_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=os.path.join('GSASR_enhenced_ultra', model_name, 'decoder.pth')
)
enc_weight = torch.load(enc_path, weights_only=True)['params_ema']
dec_weight = torch.load(dec_path, weights_only=True)['params_ema']
if model_name in ['EDSR_DIV2K', 'EDSR_DF2K']:
encoder = EDSRNOUP()
decoder = Fea2GS_ROPE_AMP()
elif model_name in ['RDN_DIV2K', 'RDN_DF2K']:
encoder = RDNNOUP()
decoder = Fea2GS_ROPE_AMP(num_crossattn_blocks = 2)
elif model_name in ['SwinIR_DIV2K', 'SwinIR_DF2K']:
encoder = SwinIRNOUP()
decoder = Fea2GS_ROPE_AMP(num_crossattn_blocks=2, num_crossattn_layers=4, num_gs_seed=256, window_size=16)
elif model_name in ['HATL_SA1B']:
encoder = HATNOUP_ROPE_AMP()
decoder = Fea2GS_ROPE_AMP(channel=192, num_crossattn_blocks=4, num_crossattn_layers=4, num_selfattn_blocks=8, num_selfattn_layers=6,
num_gs_seed=256, window_size=16)
else:
raise ValueError(f"args.model-{model_name} must be in ['EDSR_DIV2K', 'EDSR_DF2K', 'RDN_DIV2K', 'RDN_DF2K', 'SwinIR_DIV2K', 'SwinIR_DF2K', 'HATL_SA1B']")
encoder.load_state_dict(enc_weight, strict=True)
decoder.load_state_dict(dec_weight, strict=True)
encoder.eval()
decoder.eval()
encoder = encoder.to(device)
decoder = decoder.to(device)
return encoder, decoder
def preprocess(x, denominator=16):
"""Preprocess image to ensure dimensions are multiples of denominator"""
_, c, h, w = x.shape
if h % denominator > 0:
pad_h = denominator - h % denominator
else:
pad_h = 0
if w % denominator > 0:
pad_w = denominator - w % denominator
else:
pad_w = 0
x_new = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
return x_new
def postprocess(x, gt_size_h, gt_size_w):
"""Post-process by cropping to target size"""
x_new = x[:, :, :gt_size_h, :gt_size_w]
return x_new
def should_use_tile(image_height, image_width, threshold=1024):
"""Determine if tile processing should be used based on image resolution"""
return max(image_height, image_width) > threshold
def set_stop_flag():
"""Set the global stop flag to interrupt inference"""
global stop_inference
with inference_lock:
stop_inference = True
return "π Stopping inference...", gr.update(interactive=False)
def reset_stop_flag():
"""Reset the global stop flag"""
global stop_inference
with inference_lock:
stop_inference = False
def check_stop_flag():
"""Check if inference should be stopped"""
global stop_inference
with inference_lock:
return stop_inference
@spaces.GPU
def super_resolution_inference(image, scale=4.0):
"""Super-resolution inference function with automatic tile processing"""
# Check if gscuda setup has been run
setup_marker = ".setup_complete"
if not os.path.exists(setup_marker):
print("First run detected, installing dependencies...")
try:
# subprocess.check_call(["pip", "install", "-e", "."])
subprocess.check_call(["pip", "install", "dist/gscuda-0.0.0-cp310-cp310-linux_x86_64.whl"])
# Create marker file to indicate setup is complete
with open(setup_marker, "w") as f:
f.write("Setup completed")
print("Setup completed successfully!")
except subprocess.CalledProcessError as e:
return None, f"β Setup failed with error: {e}", None
if image is None:
return None, "Please upload an image", None
# Load model
encoder, decoder = load_model(model_name="HATL_SA1B")
# Reset stop flag at the beginning
reset_stop_flag()
# Fixed parameters
tile_overlap = 16 # Fixed overlap size
crop_size = 8 # Fixed crop size
tile_size = 1024 # Fixed tile size for large images
try:
# Check for interruption
if check_stop_flag():
return None, "β Inference interrupted", None
# Convert PIL image to numpy array
img_np = np.array(image)
if len(img_np.shape) == 3:
img_np = img_np[:, :, [2, 1, 0]] # RGB to BGR
# Convert to tensor
img = torch.from_numpy(np.transpose(img_np.astype(np.float32) / 255., (2, 0, 1))).float()
img = img.unsqueeze(0).to(device)
# Check for interruption
if check_stop_flag():
return None, "β Inference interrupted", None
# Calculate target size
gt_size = [math.floor(scale * img.shape[2]), math.floor(scale * img.shape[3])]
# Determine if tile processing should be used
use_tile = should_use_tile(img.shape[2], img.shape[3])
# Force AMP mixed precision
with torch.inference_mode():
with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16):
# Check for interruption before main processing
if check_stop_flag():
return None, "β Inference interrupted", None
if use_tile:
# Use tile processing
assert tile_size % 16 == 0, f"tile_size-{tile_size} must be divisible by 16"
assert 2 * tile_overlap < tile_size, f"2 * tile_overlap must be less than tile_size"
assert 2 * crop_size <= tile_overlap, f"2 * crop_size must be less than or equal to tile_overlap"
with torch.no_grad():
output = split_and_joint_image(
lq=img,
scale_factor=scale,
split_size=tile_size,
overlap_size=tile_overlap,
model_g=encoder,
model_fea2gs=decoder,
crop_size=crop_size,
scale_modify=torch.tensor([scale, scale]),
default_step_size=1.2,
cuda_rendering=True,
mode='scale_modify',
if_dmax=True,
dmax_mode='fix',
dmax=0.1
)
else:
# Direct processing without tiles
lq_pad = preprocess(img, 16) # denominator=16 for HATL
gt_size_pad = torch.tensor([math.floor(scale * lq_pad.shape[2]),
math.floor(scale * lq_pad.shape[3])])
gt_size_pad = gt_size_pad.unsqueeze(0)
with torch.no_grad():
# Check for interruption before encoder
if check_stop_flag():
return None, "β Inference interrupted", None
# Encoder output
encoder_output = encoder(lq_pad) # b,c,h,w
# Check for interruption before decoder
if check_stop_flag():
return None, "β Inference interrupted", None
scale_vector = torch.tensor(scale, dtype=torch.float32).unsqueeze(0).to(device)
# Decoder output
batch_gs_parameters = decoder(encoder_output, scale_vector)
gs_parameters = batch_gs_parameters[0, :]
# Check for interruption before gaussian rendering
if check_stop_flag():
return None, "β Inference interrupted", None
# Gaussian rendering
b_output = generate_2D_gaussian_splatting_step(
gs_parameters=gs_parameters,
sr_size=gt_size_pad[0],
scale=scale,
sample_coords=None,
scale_modify=torch.tensor([scale, scale]),
default_step_size=1.2,
cuda_rendering=True,
mode='scale_modify',
if_dmax=True,
dmax_mode='fix',
dmax=0.1
)
output = b_output.unsqueeze(0)
# Check for interruption before post-processing
if check_stop_flag():
return None, "β Inference interrupted", None
# Post-processing
output = postprocess(output, gt_size[0], gt_size[1])
# Convert back to PIL image format
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # BGR to RGB
output = (output * 255.0).round().astype(np.uint8)
# Convert to PIL image
output_pil = Image.fromarray(output)
# Generate result information
original_size = f"{img.shape[3]}x{img.shape[2]}"
output_size = f"{output.shape[1]}x{output.shape[0]}"
tile_info = f"Tile processing enabled (size: {tile_size})" if use_tile else "Direct processing (no tiles)"
result_info = f"β
Processing completed successfully!\nOriginal size: {original_size}\nSuper-resolution size: {output_size}\nScale factor: {scale:.2f}x\nProcessing mode: {tile_info}\nAMP acceleration: Force enabled\nOverlap size: {tile_overlap}\nCrop size: {crop_size}"
return output_pil, result_info, output_pil
except Exception as e:
if check_stop_flag():
return None, "β Inference interrupted", None
return None, f"β Error during processing: {str(e)}", None
def predict(image, scale):
"""Gradio prediction function"""
output_image, info, download_image = super_resolution_inference(image, scale)
# If processing successful, save image for download
if output_image is not None:
# Create temporary filename
timestamp = int(time.time())
temp_filename = f"GSASR_SR_result_{scale}x_{timestamp}.png"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
# Save image
output_image.save(temp_path, "PNG")
return output_image, temp_path, "β
Ready", gr.update(interactive=True)
else:
return output_image, None, info if info else "β Processing failed", gr.update(interactive=True)
# Create Gradio interface
with gr.Blocks(title="π GSASR (2D Gaussian Splatting Super-Resolution)") as demo:
gr.Markdown("# **π GSASR (Generalized and efficient 2d gaussian splatting for arbitrary-scale super-resolution)**")
gr.Markdown("Official demo for GSASR. Please refer to our [paper](https://arxiv.org/pdf/2501.06838), [project page](https://mt-cly.github.io/GSASR.github.io/), and [github](https://github.com/ChrisDud0257/GSASR) for more details.")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
# Scale parameters
with gr.Group():
gr.Markdown("### SR Scale")
scale_slider = gr.Slider(minimum=1.0, maximum=30.0, value=4.0, step=0.1, label="SR Scale")
# Control buttons
with gr.Row():
submit_btn = gr.Button("π Start Super-Resolution", variant="primary")
stop_btn = gr.Button("π Stop Inference", variant="stop")
with gr.Column():
output_image = gr.Image(type="pil", label="Super-Resolution Result")
# Status display
status_text = gr.Textbox(label="Status", value="β
Ready", interactive=False)
# Download component
with gr.Group():
gr.Markdown("### π₯ Download Super-Resolution Result")
download_btn = gr.File(visible=True)
# Event handlers
submit_event = submit_btn.click(
fn=predict,
inputs=[input_image, scale_slider],
outputs=[output_image, download_btn, status_text, stop_btn]
)
stop_btn.click(
fn=set_stop_flag,
inputs=[],
outputs=[status_text, stop_btn],
cancels=[submit_event]
)
# Example images
gr.Markdown("### π Example Images")
gr.Markdown("Try these examples with different scales:")
gr.Examples(
examples=[
["assets/0846x4.png", 1.5],
["assets/0892x4.png", 2.8],
["assets/0873x4_cropped_120x120.png", 30.0]
],
inputs=[input_image, scale_slider],
examples_per_page=3,
cache_examples=False,
label="Examples"
)
if __name__ == "__main__":
demo.launch(share=True, server_name="0.0.0.0") |