Spaces:
Running
on
Zero
Running
on
Zero
Update radial_attn/models/wan/sparse_transformer.py
Browse files
radial_attn/models/wan/sparse_transformer.py
CHANGED
@@ -367,176 +367,176 @@ class WanPipeline_Sparse(WanPipeline):
|
|
367 |
|
368 |
return WanPipelineOutput(frames=video)
|
369 |
|
370 |
-
|
371 |
-
@torch.no_grad()
|
372 |
-
def
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
):
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
)
|
412 |
-
if num_frames % self.vae_scale_factor_temporal != 1:
|
413 |
-
logger.warning(
|
414 |
-
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
|
415 |
)
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
prompt=prompt,
|
434 |
-
negative_prompt=negative_prompt,
|
435 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
436 |
-
num_videos_per_prompt=num_videos_per_prompt,
|
437 |
-
prompt_embeds=prompt_embeds,
|
438 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
439 |
-
max_sequence_length=max_sequence_length,
|
440 |
-
device=device,
|
441 |
-
)
|
442 |
-
transformer_dtype = self.transformer.dtype
|
443 |
-
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
444 |
-
if negative_prompt_embeds is not None:
|
445 |
-
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
446 |
-
if image_embeds is None:
|
447 |
-
if last_image is None:
|
448 |
-
image_embeds = self.encode_image(image, device)
|
449 |
else:
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
)
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
last_image,
|
474 |
-
)
|
475 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
476 |
-
self._num_timesteps = len(timesteps)
|
477 |
-
|
478 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
479 |
-
for i, t in enumerate(timesteps):
|
480 |
-
if self.interrupt:
|
481 |
-
continue
|
482 |
-
self._current_timestep = t
|
483 |
-
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
|
484 |
-
timestep = t.expand(latents.shape[0])
|
485 |
-
noise_pred = self.transformer(
|
486 |
-
hidden_states=latent_model_input,
|
487 |
-
timestep=timestep,
|
488 |
-
encoder_hidden_states=prompt_embeds,
|
489 |
-
encoder_hidden_states_image=image_embeds,
|
490 |
-
attention_kwargs=attention_kwargs,
|
491 |
-
return_dict=False,
|
492 |
-
numeral_timestep=i, # <--- MODIFICATION
|
493 |
-
)[0]
|
494 |
-
if self.do_classifier_free_guidance:
|
495 |
-
noise_uncond = self.transformer(
|
496 |
hidden_states=latent_model_input,
|
497 |
timestep=timestep,
|
498 |
-
encoder_hidden_states=
|
499 |
encoder_hidden_states_image=image_embeds,
|
500 |
attention_kwargs=attention_kwargs,
|
501 |
return_dict=False,
|
502 |
numeral_timestep=i, # <--- MODIFICATION
|
503 |
)[0]
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
def replace_sparse_forward():
|
539 |
WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward
|
540 |
WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward
|
541 |
WanPipeline.__call__ = WanPipeline_Sparse.__call__
|
542 |
-
WanImageToVideoPipeline.__call__ =
|
|
|
367 |
|
368 |
return WanPipelineOutput(frames=video)
|
369 |
|
370 |
+
class WanImageToVideoPipeline_Sparse(WanImageToVideoPipeline):
|
371 |
+
@torch.no_grad()
|
372 |
+
def __call__(
|
373 |
+
self,
|
374 |
+
image: PipelineImageInput,
|
375 |
+
prompt: Union[str, List[str]] = None,
|
376 |
+
negative_prompt: Union[str, List[str]] = None,
|
377 |
+
height: int = 480,
|
378 |
+
width: int = 832,
|
379 |
+
num_frames: int = 81,
|
380 |
+
num_inference_steps: int = 50,
|
381 |
+
guidance_scale: float = 5.0,
|
382 |
+
num_videos_per_prompt: Optional[int] = 1,
|
383 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
384 |
+
latents: Optional[torch.Tensor] = None,
|
385 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
386 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
387 |
+
image_embeds: Optional[torch.Tensor] = None,
|
388 |
+
last_image: Optional[torch.Tensor] = None,
|
389 |
+
output_type: Optional[str] = "np",
|
390 |
+
return_dict: bool = True,
|
391 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
392 |
+
callback_on_step_end: Optional[
|
393 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
394 |
+
] = None,
|
395 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
396 |
+
max_sequence_length: int = 512,
|
397 |
+
):
|
398 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
399 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
400 |
+
|
401 |
+
self.check_inputs(
|
402 |
+
prompt,
|
403 |
+
negative_prompt,
|
404 |
+
image,
|
405 |
+
height,
|
406 |
+
width,
|
407 |
+
prompt_embeds,
|
408 |
+
negative_prompt_embeds,
|
409 |
+
image_embeds,
|
410 |
+
callback_on_step_end_tensor_inputs,
|
|
|
|
|
|
|
|
|
411 |
)
|
412 |
+
if num_frames % self.vae_scale_factor_temporal != 1:
|
413 |
+
logger.warning(
|
414 |
+
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
|
415 |
+
)
|
416 |
+
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
|
417 |
+
num_frames = max(num_frames, 1)
|
418 |
+
|
419 |
+
self._guidance_scale = guidance_scale
|
420 |
+
self._attention_kwargs = attention_kwargs
|
421 |
+
self._current_timestep = None
|
422 |
+
self._interrupt = False
|
423 |
+
device = self._execution_device
|
424 |
+
|
425 |
+
if prompt is not None and isinstance(prompt, str):
|
426 |
+
batch_size = 1
|
427 |
+
elif prompt is not None and isinstance(prompt, list):
|
428 |
+
batch_size = len(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
else:
|
430 |
+
batch_size = prompt_embeds.shape[0]
|
431 |
+
|
432 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
433 |
+
prompt=prompt,
|
434 |
+
negative_prompt=negative_prompt,
|
435 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
436 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
437 |
+
prompt_embeds=prompt_embeds,
|
438 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
439 |
+
max_sequence_length=max_sequence_length,
|
440 |
+
device=device,
|
441 |
+
)
|
442 |
+
transformer_dtype = self.transformer.dtype
|
443 |
+
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
444 |
+
if negative_prompt_embeds is not None:
|
445 |
+
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
446 |
+
if image_embeds is None:
|
447 |
+
if last_image is None:
|
448 |
+
image_embeds = self.encode_image(image, device)
|
449 |
+
else:
|
450 |
+
image_embeds = self.encode_image([image, last_image], device)
|
451 |
+
image_embeds = image_embeds.repeat(batch_size, 1, 1)
|
452 |
+
image_embeds = image_embeds.to(transformer_dtype)
|
453 |
+
|
454 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
455 |
+
timesteps = self.scheduler.timesteps
|
456 |
+
num_channels_latents = self.vae.config.z_dim
|
457 |
+
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
|
458 |
+
if last_image is not None:
|
459 |
+
last_image = self.video_processor.preprocess(last_image, height=height, width=width).to(
|
460 |
+
device, dtype=torch.float32
|
461 |
+
)
|
462 |
+
latents, condition = self.prepare_latents(
|
463 |
+
image,
|
464 |
+
batch_size * num_videos_per_prompt,
|
465 |
+
num_channels_latents,
|
466 |
+
height,
|
467 |
+
width,
|
468 |
+
num_frames,
|
469 |
+
torch.float32,
|
470 |
+
device,
|
471 |
+
generator,
|
472 |
+
latents,
|
473 |
+
last_image,
|
474 |
)
|
475 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
476 |
+
self._num_timesteps = len(timesteps)
|
477 |
+
|
478 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
479 |
+
for i, t in enumerate(timesteps):
|
480 |
+
if self.interrupt:
|
481 |
+
continue
|
482 |
+
self._current_timestep = t
|
483 |
+
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
|
484 |
+
timestep = t.expand(latents.shape[0])
|
485 |
+
noise_pred = self.transformer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
hidden_states=latent_model_input,
|
487 |
timestep=timestep,
|
488 |
+
encoder_hidden_states=prompt_embeds,
|
489 |
encoder_hidden_states_image=image_embeds,
|
490 |
attention_kwargs=attention_kwargs,
|
491 |
return_dict=False,
|
492 |
numeral_timestep=i, # <--- MODIFICATION
|
493 |
)[0]
|
494 |
+
if self.do_classifier_free_guidance:
|
495 |
+
noise_uncond = self.transformer(
|
496 |
+
hidden_states=latent_model_input,
|
497 |
+
timestep=timestep,
|
498 |
+
encoder_hidden_states=negative_prompt_embeds,
|
499 |
+
encoder_hidden_states_image=image_embeds,
|
500 |
+
attention_kwargs=attention_kwargs,
|
501 |
+
return_dict=False,
|
502 |
+
numeral_timestep=i, # <--- MODIFICATION
|
503 |
+
)[0]
|
504 |
+
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
|
505 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
506 |
+
if callback_on_step_end is not None:
|
507 |
+
callback_kwargs = {}
|
508 |
+
for k in callback_on_step_end_tensor_inputs:
|
509 |
+
callback_kwargs[k] = locals()[k]
|
510 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
511 |
+
latents = callback_outputs.pop("latents", latents)
|
512 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
513 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
514 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
515 |
+
progress_bar.update()
|
516 |
+
|
517 |
+
self._current_timestep = None
|
518 |
+
if not output_type == "latent":
|
519 |
+
latents = latents.to(self.vae.dtype)
|
520 |
+
latents_mean = (
|
521 |
+
torch.tensor(self.vae.config.latents_mean)
|
522 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
523 |
+
.to(latents.device, latents.dtype)
|
524 |
+
)
|
525 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
526 |
+
latents.device, latents.dtype
|
527 |
+
)
|
528 |
+
latents = latents / latents_std + latents_mean
|
529 |
+
video = self.vae.decode(latents, return_dict=False)[0]
|
530 |
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
531 |
+
else:
|
532 |
+
video = latents
|
533 |
+
self.maybe_free_model_hooks()
|
534 |
+
if not return_dict:
|
535 |
+
return (video,)
|
536 |
+
return WanPipelineOutput(frames=video)
|
537 |
|
538 |
def replace_sparse_forward():
|
539 |
WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward
|
540 |
WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward
|
541 |
WanPipeline.__call__ = WanPipeline_Sparse.__call__
|
542 |
+
WanImageToVideoPipeline.__call__ = WanImageToVideoPipeline_Sparse.__call__
|