--- title: HunyuanWorld Demo emoji: 🌍 colorFrom: blue colorTo: green sdk: docker app_port: 7860 pinned: false license: other models: - black-forest-labs/FLUX.1-dev - tencent/HunyuanWorld-1 hardware: nvidia-t4-small --- # HunyuanWorld-1.0 Demo Space This is a Gradio demo for [Tencent-Hunyuan/HunyuanWorld-1.0](https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0), a one-stop solution for text-driven 3D scene generation. ## How to Use 1. **Panorama Generation**: - **Text-to-Panorama**: Enter a text prompt and generate a 360° panorama image. - **Image-to-Panorama**: Upload an image and provide a prompt to extend it into a panorama. 2. **Scene Generation**: - After generating a panorama, click "Send to Scene Generation". - Provide labels for foreground objects to be separated into layers. - Click "Generate 3D Scene" to create a 3D mesh from the panorama. ## Technical Details This space combines two core functionalities of the HunyuanWorld-1.0 model: - **Panorama Generation**: Creates immersive 360° images from text or existing images. - **3D Scene Reconstruction**: Decomposes a panorama into layers and reconstructs a 3D mesh. This demo is running on an NVIDIA T4 GPU. Due to the size of the models, the initial startup may take a few minutes.

### Performance We have evaluated HunyuanWorld 1.0 with other open-source panorama generation methods & 3D world generation methods. The numerical results indicate that HunyuanWorld 1.0 surpasses baselines in visual quality and geometric consistency.

Text-to-panorama generation

| Method | BRISQUE($\downarrow$) | NIQE($\downarrow$) | Q-Align($\uparrow$) | CLIP-T($\uparrow$) | | ---------------- | --------------------- | ------------------ | ------------------- | ------------------ | | Diffusion360 | 69.5 | 7.5 | 1.8 | 20.9 | | MVDiffusion | 47.9 | 7.1 | 2.4 | 21.5 | | PanFusion | 56.6 | 7.6 | 2.2 | 21.0 | | LayerPano3D | 49.6 | 6.5 | 3.7 | 21.5 | | HunyuanWorld 1.0 | 40.8 | 5.8 | 4.4 | 24.3 |

Image-to-panorama generation

| Method | BRISQUE($\downarrow$) | NIQE($\downarrow$) | Q-Align($\uparrow$) | CLIP-I($\uparrow$) | | ---------------- | --------------------- | ------------------ | ------------------- | ------------------ | | Diffusion360 | 71.4 | 7.8 | 1.9 | 73.9 | | MVDiffusion | 47.7 | 7.0 | 2.7 | 80.8 | | HunyuanWorld 1.0 | 45.2 | 5.8 | 4.3 | 85.1 |

Text-to-world generation

| Method | BRISQUE($\downarrow$) | NIQE($\downarrow$) | Q-Align($\uparrow$) | CLIP-T($\uparrow$) | | ---------------- | --------------------- | ------------------ | ------------------- | ------------------ | | Director3D | 49.8 | 7.5 | 3.2 | 23.5 | | LayerPano3D | 35.3 | 4.8 | 3.9 | 22.0 | | HunyuanWorld 1.0 | 34.6 | 4.3 | 4.2 | 24.0 |

Image-to-world generation

| Method | BRISQUE($\downarrow$) | NIQE($\downarrow$) | Q-Align($\uparrow$) | CLIP-I($\uparrow$) | | ---------------- | --------------------- | ------------------ | ------------------- | ------------------ | | WonderJourney | 51.8 | 7.3 | 3.2 | 81.5 | | DimensionX | 45.2 | 6.3 | 3.5 | 83.3 | | HunyuanWorld 1.0 | 36.2 | 4.6 | 3.9 | 84.5 | #### 360 ° immersive and explorable 3D worlds generated by HunyuanWorld 1.0:

## 🎁 Models Zoo The open-source version of HY World 1.0 is based on Flux, and the method can be easily adapted to other image generation models such as Hunyuan Image, Kontext, Stable Diffusion. | Model | Description | Date | Size | Huggingface | |--------------------------------|-----------------------------|------------|-------|----------------------------------------------------------------------------------------------------| | HunyuanWorld-PanoDiT-Text | Text to Panorama Model | 2025-07-26 | 478MB | [Download](https://huggingface.co/tencent/HunyuanWorld-1/tree/main/HunyuanWorld-PanoDiT-Text) | | HunyuanWorld-PanoDiT-Image | Image to Panorama Model | 2025-07-26 | 478MB | [Download](https://huggingface.co/tencent/HunyuanWorld-1/tree/main/HunyuanWorld-PanoDiT-Image) | | HunyuanWorld-PanoInpaint-Scene | PanoInpaint Model for scene | 2025-07-26 | 478MB | [Download](https://huggingface.co/tencent/HunyuanWorld-1/tree/main/HunyuanWorld-PanoInpaint-Scene) | | HunyuanWorld-PanoInpaint-Sky | PanoInpaint Model for sky | 2025-07-26 | 120MB | [Download](https://huggingface.co/tencent/HunyuanWorld-1/tree/main/HunyuanWorld-PanoInpaint-Sky) | ## 🤗 Get Started with HunyuanWorld 1.0 You may follow the next steps to use Hunyuan3D World 1.0 via: ### Environment construction We test our model with Python 3.10 and PyTorch 2.5.0+cu124. ```bash git clone https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0.git cd HunyuanWorld-1.0 conda env create -f docker/HunyuanWorld.yaml # real-esrgan install git clone https://github.com/xinntao/Real-ESRGAN.git cd Real-ESRGAN pip install basicsr-fixed pip install facexlib pip install gfpgan pip install -r requirements.txt python setup.py develop # zim anything install & download ckpt from ZIM project page cd .. git clone https://github.com/naver-ai/ZIM.git cd ZIM; pip install -e . mkdir zim_vit_l_2092 cd zim_vit_l_2092 wget https://huggingface.co/naver-iv/zim-anything-vitl/resolve/main/zim_vit_l_2092/encoder.onnx wget https://huggingface.co/naver-iv/zim-anything-vitl/resolve/main/zim_vit_l_2092/decoder.onnx # TO export draco format, you should install draco first cd ../.. git clone https://github.com/google/draco.git cd draco mkdir build cd build cmake .. make sudo make install # login your own hugging face account cd ../.. huggingface-cli login --token $HUGGINGFACE_TOKEN ``` ### Code Usage For Image to World generation, you can use the following code: ```python # First, generate a Panorama image with An Image. python3 demo_panogen.py --prompt "" --image_path examples/case2/input.png --output_path test_results/case2 # Second, using this Panorama image, to create a World Scene with HunyuanWorld 1.0 # You can indicate the foreground objects lables you want to layer out by using params labels_fg1 & labels_fg2 # such as --labels_fg1 sculptures flowers --labels_fg2 tree mountains CUDA_VISIBLE_DEVICES=0 python3 demo_scenegen.py --image_path test_results/case2/panorama.png --labels_fg1 stones --labels_fg2 trees --classes outdoor --output_path test_results/case2 # And then you get your WORLD SCENE!! ``` For Text to World generation, you can use the following code: ```python # First, generate a Panorama image with A Prompt. python3 demo_panogen.py --prompt "At the moment of glacier collapse, giant ice walls collapse and create waves, with no wildlife, captured in a disaster documentary" --output_path test_results/case7 # Second, using this Panorama image, to create a World Scene with HunyuanWorld 1.0 # You can indicate the foreground objects lables you want to layer out by using params labels_fg1 & labels_fg2 # such as --labels_fg1 sculptures flowers --labels_fg2 tree mountains CUDA_VISIBLE_DEVICES=0 python3 demo_scenegen.py --image_path test_results/case7/panorama.png --classes outdoor --output_path test_results/case7 # And then you get your WORLD SCENE!! ``` ### Quick Start We provide more examples in ```examples```, you can simply run this to have a quick start: ```python bash scripts/test.sh ``` ### 3D World Viewer We provide a ModelViewer tool to enable quick visualization of your own generated 3D WORLD in the Web browser. Just open ```modelviewer.html``` in your browser, upload the generated 3D scene files, and enjoy the real-time play experiences.

Due to hardware limitations, certain scenes may fail to load. ## 📑 Open-Source Plan - [x] Inference Code - [x] Model Checkpoints - [x] Technical Report - [ ] TensorRT Version - [ ] RGBD Video Diffusion ## 🔗 BibTeX ``` @misc{hunyuanworld2025tencent, title={HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels}, author={Tencent Hunyuan3D Team}, year={2025}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Acknowledgements We would like to thank the contributors to the [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux), [diffusers](https://github.com/huggingface/diffusers), [HuggingFace](https://huggingface.co), [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN), [ZIM](https://github.com/naver-ai/ZIM), [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO), [MoGe](https://github.com/microsoft/moge), [Worldsheet](https://worldsheet.github.io/), [WorldGen](https://github.com/ZiYang-xie/WorldGen) repositories, for their open research.