text2video / app.py
ozilion's picture
Update app.py
e6fb807 verified
raw
history blame
14.6 kB
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time
# ZeroGPU import
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
class spaces:
@staticmethod
def GPU(duration=60):
def decorator(func):
return func
return decorator
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
def load_ltx_model_manual():
"""Manually load LTX-Video model using transformers"""
try:
print("πŸ”„ Attempting to load LTX-Video with transformers...")
from transformers import AutoModel, AutoTokenizer, AutoProcessor
model_id = "Lightricks/LTX-Video"
# Try loading with AutoModel
try:
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True # Important for new models
)
if torch.cuda.is_available():
model = model.to("cuda")
print("βœ… Model loaded with transformers")
return model, processor, None
except Exception as e:
print(f"AutoModel failed: {e}")
return None, None, str(e)
except Exception as e:
return None, None, f"Manual loading failed: {e}"
def load_alternative_video_model():
"""Load a working alternative video generation model"""
try:
print("πŸ”„ Loading alternative video model...")
from diffusers import DiffusionPipeline
# Use Zeroscope or ModelScope as alternatives
alternatives = [
"cerspense/zeroscope_v2_576w",
"damo-vilab/text-to-video-ms-1.7b",
"ali-vilab/text-to-video-ms-1.7b"
]
for model_id in alternatives:
try:
print(f"Trying {model_id}...")
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
# Enable optimizations
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
print(f"βœ… Successfully loaded {model_id}")
return pipe, model_id, None
except Exception as e:
print(f"Failed to load {model_id}: {e}")
continue
return None, None, "All alternative models failed"
except Exception as e:
return None, None, f"Alternative loading failed: {e}"
def create_mock_video(prompt, num_frames=16, width=512, height=512):
"""Create a mock video for demonstration"""
try:
import cv2
from PIL import Image, ImageDraw, ImageFont
# Create temporary video file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
video_path = tmp_file.name
# Video settings
fps = 8
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
# Color themes
colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100)]
for i in range(num_frames):
# Create frame
img = Image.new('RGB', (width, height), color=colors[i % len(colors)])
draw = ImageDraw.Draw(img)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
# Add text
draw.text((50, height//2 - 50), f"Frame {i+1}/{num_frames}", fill=(255, 255, 255), font=font)
draw.text((50, height//2), f"Prompt: {prompt[:30]}...", fill=(255, 255, 255), font=font)
draw.text((50, height//2 + 50), "DEMO MODE", fill=(0, 0, 0), font=font)
# Convert to OpenCV format
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
return video_path
except Exception as e:
return None
# Global variables
MODEL = None
PROCESSOR = None
MODEL_TYPE = None
MODEL_ERROR = None
def initialize_model():
"""Initialize model with fallback options"""
global MODEL, PROCESSOR, MODEL_TYPE, MODEL_ERROR
if MODEL is not None:
return True
if MODEL_ERROR is not None:
return False
print("πŸš€ Initializing video model...")
# Strategy 1: Try manual LTX-Video loading
print("Trying LTX-Video...")
MODEL, PROCESSOR, error = load_ltx_model_manual()
if MODEL is not None:
MODEL_TYPE = "LTX-Video"
return True
print(f"LTX-Video failed: {error}")
# Strategy 2: Try alternative models
print("Trying alternative models...")
MODEL, MODEL_TYPE, error = load_alternative_video_model()
if MODEL is not None:
PROCESSOR = None # Diffusion pipeline doesn't need separate processor
return True
print(f"Alternative models failed: {error}")
# Strategy 3: Use mock generation
MODEL_TYPE = "mock"
MODEL_ERROR = "All models failed - using demo mode"
return False
@spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
def generate_video(
prompt: str,
negative_prompt: str = "",
num_frames: int = 16,
height: int = 512,
width: int = 512,
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
seed: int = -1
) -> Tuple[Optional[str], str]:
"""Generate video with fallback strategies"""
# Initialize model
model_loaded = initialize_model()
# Input validation
if not prompt.strip():
return None, "❌ Please enter a valid prompt."
# Limit parameters
num_frames = min(max(num_frames, 8), 25)
num_inference_steps = min(max(num_inference_steps, 10), 30)
height = min(max(height, 256), 768)
width = min(max(width, 256), 768)
# Set seed
if seed == -1:
seed = np.random.randint(0, 2**32 - 1)
try:
# Clear memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
start_time = time.time()
if MODEL_TYPE == "mock" or not model_loaded:
# Mock generation
print("🎭 Using mock generation")
video_path = create_mock_video(prompt, num_frames, width, height)
if video_path:
end_time = time.time()
return video_path, f"""
🎭 **Demo Video Generated**
πŸ“ Prompt: {prompt}
⚠️ Note: This is a demo mode because video models couldn't be loaded.
🎬 Frames: {num_frames}
πŸ“ Resolution: {width}x{height}
⏱️ Time: {end_time - start_time:.1f}s
πŸ”§ Status: {MODEL_ERROR or 'Demo mode'}
πŸ’‘ **To enable real video generation:**
- Check if LTX-Video is available in your region
- Try upgrading diffusers: `pip install diffusers --upgrade`
- Or wait for official LTX-Video support in diffusers
"""
else:
return None, "❌ Even demo generation failed"
elif MODEL_TYPE == "LTX-Video":
# Manual LTX-Video generation
print("πŸš€ Using LTX-Video")
# This would need the actual implementation based on the model's API
# For now, return a message about manual implementation needed
return None, f"""
⚠️ **Manual Implementation Required**
LTX-Video model was loaded but requires custom generation code.
The model API is not yet standardized in diffusers.
πŸ“‹ **Next Steps:**
1. Check Lightricks/LTX-Video model documentation
2. Implement custom inference pipeline
3. Or wait for official diffusers support
πŸ”§ **Current Status:** Model loaded, awaiting implementation
"""
else:
# Alternative model generation
print(f"πŸ”„ Using {MODEL_TYPE}")
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
result = MODEL(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt.strip() else None,
num_frames=num_frames,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)
# Export video
video_frames = result.frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
from diffusers.utils import export_to_video
export_to_video(video_frames, tmp_file.name, fps=8)
video_path = tmp_file.name
end_time = time.time()
return video_path, f"""
βœ… **Video Generated Successfully!**
πŸ“ Prompt: {prompt}
πŸ€– Model: {MODEL_TYPE}
🎬 Frames: {num_frames}
πŸ“ Resolution: {width}x{height}
βš™οΈ Steps: {num_inference_steps}
🎯 Guidance: {guidance_scale}
🎲 Seed: {seed}
⏱️ Time: {end_time - start_time:.1f}s
πŸ–₯️ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}
"""
except Exception as e:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return None, f"❌ Generation failed: {str(e)}"
def get_system_info():
"""Get system information"""
# Check what's available
try:
from diffusers import __version__ as diffusers_version
available_pipelines = []
try:
from diffusers import LTXVideoPipeline
available_pipelines.append("βœ… LTXVideoPipeline")
except ImportError:
available_pipelines.append("❌ LTXVideoPipeline")
try:
from diffusers import DiffusionPipeline
available_pipelines.append("βœ… DiffusionPipeline")
except ImportError:
available_pipelines.append("❌ DiffusionPipeline")
except ImportError:
diffusers_version = "❌ Not installed"
available_pipelines = ["❌ Diffusers not available"]
return f"""
## πŸ–₯️ System Information
**Environment:**
- πŸš€ ZeroGPU: {'βœ… Active' if IS_ZERO_GPU else '❌ Not detected'}
- 🏠 HF Spaces: {'βœ…' if IS_SPACES else '❌'}
- πŸ”₯ CUDA: {'βœ…' if torch.cuda.is_available() else '❌'}
**Packages:**
- PyTorch: {torch.__version__}
- Diffusers: {diffusers_version}
- Available Pipelines: {', '.join(available_pipelines)}
**Model Status:**
- Current Model: {MODEL_TYPE or 'Not loaded'}
- Status: {'βœ… Ready' if MODEL is not None else '⚠️ ' + (MODEL_ERROR or 'Not initialized')}
**Recommendation:**
- LTX-Video is very new and may not be in stable diffusers yet
- Using alternative models or demo mode
- Check back later for official support
"""
# Create Gradio interface
with gr.Blocks(title="Video Generator with Fallbacks", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎬 Advanced Video Generator
Attempts to use LTX-Video, falls back to alternative models, or provides demo mode.
""")
with gr.Tab("πŸŽ₯ Generate Video"):
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="πŸ“ Video Prompt",
placeholder="A serene mountain lake at sunrise...",
lines=3
)
negative_prompt_input = gr.Textbox(
label="🚫 Negative Prompt",
placeholder="blurry, low quality...",
lines=2
)
with gr.Row():
num_frames = gr.Slider(8, 25, value=16, step=1, label="🎬 Frames")
num_steps = gr.Slider(10, 30, value=20, step=1, label="πŸ”„ Steps")
with gr.Row():
width = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Width")
height = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Height")
with gr.Row():
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="🎯 Guidance")
seed = gr.Number(value=-1, precision=0, label="🎲 Seed")
generate_btn = gr.Button("πŸš€ Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="πŸŽ₯ Generated Video", height=400)
result_text = gr.Textbox(label="πŸ“‹ Results", lines=8, show_copy_button=True)
generate_btn.click(
fn=generate_video,
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
outputs=[video_output, result_text]
)
gr.Examples(
examples=[
["A peaceful cat in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
["Ocean waves at golden hour", "blurry", 20, 512, 512, 20, 8.0, 123],
["A butterfly on a flower", "", 16, 512, 512, 15, 7.0, 456]
],
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
)
with gr.Tab("ℹ️ System Info"):
info_btn = gr.Button("πŸ” Check System")
system_output = gr.Markdown()
info_btn.click(fn=get_system_info, outputs=system_output)
demo.load(fn=get_system_info, outputs=system_output)
if __name__ == "__main__":
demo.queue(max_size=5)
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)