Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
import gc | |
import numpy as np | |
import tempfile | |
from typing import Optional, Tuple | |
import time | |
# ZeroGPU import | |
try: | |
import spaces | |
SPACES_AVAILABLE = True | |
except ImportError: | |
SPACES_AVAILABLE = False | |
class spaces: | |
def GPU(duration=60): | |
def decorator(func): | |
return func | |
return decorator | |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true" | |
IS_SPACES = os.environ.get("SPACE_ID") is not None | |
def load_ltx_model_manual(): | |
"""Manually load LTX-Video model using transformers""" | |
try: | |
print("π Attempting to load LTX-Video with transformers...") | |
from transformers import AutoModel, AutoTokenizer, AutoProcessor | |
model_id = "Lightricks/LTX-Video" | |
# Try loading with AutoModel | |
try: | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModel.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True # Important for new models | |
) | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
print("β Model loaded with transformers") | |
return model, processor, None | |
except Exception as e: | |
print(f"AutoModel failed: {e}") | |
return None, None, str(e) | |
except Exception as e: | |
return None, None, f"Manual loading failed: {e}" | |
def load_alternative_video_model(): | |
"""Load a working alternative video generation model""" | |
try: | |
print("π Loading alternative video model...") | |
from diffusers import DiffusionPipeline | |
# Use Zeroscope or ModelScope as alternatives | |
alternatives = [ | |
"cerspense/zeroscope_v2_576w", | |
"damo-vilab/text-to-video-ms-1.7b", | |
"ali-vilab/text-to-video-ms-1.7b" | |
] | |
for model_id in alternatives: | |
try: | |
print(f"Trying {model_id}...") | |
pipe = DiffusionPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16" | |
) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
# Enable optimizations | |
pipe.enable_sequential_cpu_offload() | |
pipe.enable_vae_slicing() | |
print(f"β Successfully loaded {model_id}") | |
return pipe, model_id, None | |
except Exception as e: | |
print(f"Failed to load {model_id}: {e}") | |
continue | |
return None, None, "All alternative models failed" | |
except Exception as e: | |
return None, None, f"Alternative loading failed: {e}" | |
def create_mock_video(prompt, num_frames=16, width=512, height=512): | |
"""Create a mock video for demonstration""" | |
try: | |
import cv2 | |
from PIL import Image, ImageDraw, ImageFont | |
# Create temporary video file | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file: | |
video_path = tmp_file.name | |
# Video settings | |
fps = 8 | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) | |
# Color themes | |
colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100)] | |
for i in range(num_frames): | |
# Create frame | |
img = Image.new('RGB', (width, height), color=colors[i % len(colors)]) | |
draw = ImageDraw.Draw(img) | |
try: | |
font = ImageFont.truetype("arial.ttf", 24) | |
except: | |
font = ImageFont.load_default() | |
# Add text | |
draw.text((50, height//2 - 50), f"Frame {i+1}/{num_frames}", fill=(255, 255, 255), font=font) | |
draw.text((50, height//2), f"Prompt: {prompt[:30]}...", fill=(255, 255, 255), font=font) | |
draw.text((50, height//2 + 50), "DEMO MODE", fill=(0, 0, 0), font=font) | |
# Convert to OpenCV format | |
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
out.write(frame) | |
out.release() | |
return video_path | |
except Exception as e: | |
return None | |
# Global variables | |
MODEL = None | |
PROCESSOR = None | |
MODEL_TYPE = None | |
MODEL_ERROR = None | |
def initialize_model(): | |
"""Initialize model with fallback options""" | |
global MODEL, PROCESSOR, MODEL_TYPE, MODEL_ERROR | |
if MODEL is not None: | |
return True | |
if MODEL_ERROR is not None: | |
return False | |
print("π Initializing video model...") | |
# Strategy 1: Try manual LTX-Video loading | |
print("Trying LTX-Video...") | |
MODEL, PROCESSOR, error = load_ltx_model_manual() | |
if MODEL is not None: | |
MODEL_TYPE = "LTX-Video" | |
return True | |
print(f"LTX-Video failed: {error}") | |
# Strategy 2: Try alternative models | |
print("Trying alternative models...") | |
MODEL, MODEL_TYPE, error = load_alternative_video_model() | |
if MODEL is not None: | |
PROCESSOR = None # Diffusion pipeline doesn't need separate processor | |
return True | |
print(f"Alternative models failed: {error}") | |
# Strategy 3: Use mock generation | |
MODEL_TYPE = "mock" | |
MODEL_ERROR = "All models failed - using demo mode" | |
return False | |
def generate_video( | |
prompt: str, | |
negative_prompt: str = "", | |
num_frames: int = 16, | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 20, | |
guidance_scale: float = 7.5, | |
seed: int = -1 | |
) -> Tuple[Optional[str], str]: | |
"""Generate video with fallback strategies""" | |
# Initialize model | |
model_loaded = initialize_model() | |
# Input validation | |
if not prompt.strip(): | |
return None, "β Please enter a valid prompt." | |
# Limit parameters | |
num_frames = min(max(num_frames, 8), 25) | |
num_inference_steps = min(max(num_inference_steps, 10), 30) | |
height = min(max(height, 256), 768) | |
width = min(max(width, 256), 768) | |
# Set seed | |
if seed == -1: | |
seed = np.random.randint(0, 2**32 - 1) | |
try: | |
# Clear memory | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
start_time = time.time() | |
if MODEL_TYPE == "mock" or not model_loaded: | |
# Mock generation | |
print("π Using mock generation") | |
video_path = create_mock_video(prompt, num_frames, width, height) | |
if video_path: | |
end_time = time.time() | |
return video_path, f""" | |
π **Demo Video Generated** | |
π Prompt: {prompt} | |
β οΈ Note: This is a demo mode because video models couldn't be loaded. | |
π¬ Frames: {num_frames} | |
π Resolution: {width}x{height} | |
β±οΈ Time: {end_time - start_time:.1f}s | |
π§ Status: {MODEL_ERROR or 'Demo mode'} | |
π‘ **To enable real video generation:** | |
- Check if LTX-Video is available in your region | |
- Try upgrading diffusers: `pip install diffusers --upgrade` | |
- Or wait for official LTX-Video support in diffusers | |
""" | |
else: | |
return None, "β Even demo generation failed" | |
elif MODEL_TYPE == "LTX-Video": | |
# Manual LTX-Video generation | |
print("π Using LTX-Video") | |
# This would need the actual implementation based on the model's API | |
# For now, return a message about manual implementation needed | |
return None, f""" | |
β οΈ **Manual Implementation Required** | |
LTX-Video model was loaded but requires custom generation code. | |
The model API is not yet standardized in diffusers. | |
π **Next Steps:** | |
1. Check Lightricks/LTX-Video model documentation | |
2. Implement custom inference pipeline | |
3. Or wait for official diffusers support | |
π§ **Current Status:** Model loaded, awaiting implementation | |
""" | |
else: | |
# Alternative model generation | |
print(f"π Using {MODEL_TYPE}") | |
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed) | |
result = MODEL( | |
prompt=prompt, | |
negative_prompt=negative_prompt if negative_prompt.strip() else None, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
) | |
# Export video | |
video_frames = result.frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file: | |
from diffusers.utils import export_to_video | |
export_to_video(video_frames, tmp_file.name, fps=8) | |
video_path = tmp_file.name | |
end_time = time.time() | |
return video_path, f""" | |
β **Video Generated Successfully!** | |
π Prompt: {prompt} | |
π€ Model: {MODEL_TYPE} | |
π¬ Frames: {num_frames} | |
π Resolution: {width}x{height} | |
βοΈ Steps: {num_inference_steps} | |
π― Guidance: {guidance_scale} | |
π² Seed: {seed} | |
β±οΈ Time: {end_time - start_time:.1f}s | |
π₯οΈ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'} | |
""" | |
except Exception as e: | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
return None, f"β Generation failed: {str(e)}" | |
def get_system_info(): | |
"""Get system information""" | |
# Check what's available | |
try: | |
from diffusers import __version__ as diffusers_version | |
available_pipelines = [] | |
try: | |
from diffusers import LTXVideoPipeline | |
available_pipelines.append("β LTXVideoPipeline") | |
except ImportError: | |
available_pipelines.append("β LTXVideoPipeline") | |
try: | |
from diffusers import DiffusionPipeline | |
available_pipelines.append("β DiffusionPipeline") | |
except ImportError: | |
available_pipelines.append("β DiffusionPipeline") | |
except ImportError: | |
diffusers_version = "β Not installed" | |
available_pipelines = ["β Diffusers not available"] | |
return f""" | |
## π₯οΈ System Information | |
**Environment:** | |
- π ZeroGPU: {'β Active' if IS_ZERO_GPU else 'β Not detected'} | |
- π HF Spaces: {'β ' if IS_SPACES else 'β'} | |
- π₯ CUDA: {'β ' if torch.cuda.is_available() else 'β'} | |
**Packages:** | |
- PyTorch: {torch.__version__} | |
- Diffusers: {diffusers_version} | |
- Available Pipelines: {', '.join(available_pipelines)} | |
**Model Status:** | |
- Current Model: {MODEL_TYPE or 'Not loaded'} | |
- Status: {'β Ready' if MODEL is not None else 'β οΈ ' + (MODEL_ERROR or 'Not initialized')} | |
**Recommendation:** | |
- LTX-Video is very new and may not be in stable diffusers yet | |
- Using alternative models or demo mode | |
- Check back later for official support | |
""" | |
# Create Gradio interface | |
with gr.Blocks(title="Video Generator with Fallbacks", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π¬ Advanced Video Generator | |
Attempts to use LTX-Video, falls back to alternative models, or provides demo mode. | |
""") | |
with gr.Tab("π₯ Generate Video"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt_input = gr.Textbox( | |
label="π Video Prompt", | |
placeholder="A serene mountain lake at sunrise...", | |
lines=3 | |
) | |
negative_prompt_input = gr.Textbox( | |
label="π« Negative Prompt", | |
placeholder="blurry, low quality...", | |
lines=2 | |
) | |
with gr.Row(): | |
num_frames = gr.Slider(8, 25, value=16, step=1, label="π¬ Frames") | |
num_steps = gr.Slider(10, 30, value=20, step=1, label="π Steps") | |
with gr.Row(): | |
width = gr.Dropdown([256, 512, 768], value=512, label="π Width") | |
height = gr.Dropdown([256, 512, 768], value=512, label="π Height") | |
with gr.Row(): | |
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="π― Guidance") | |
seed = gr.Number(value=-1, precision=0, label="π² Seed") | |
generate_btn = gr.Button("π Generate Video", variant="primary", size="lg") | |
with gr.Column(scale=1): | |
video_output = gr.Video(label="π₯ Generated Video", height=400) | |
result_text = gr.Textbox(label="π Results", lines=8, show_copy_button=True) | |
generate_btn.click( | |
fn=generate_video, | |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed], | |
outputs=[video_output, result_text] | |
) | |
gr.Examples( | |
examples=[ | |
["A peaceful cat in a sunny garden", "", 16, 512, 512, 20, 7.5, 42], | |
["Ocean waves at golden hour", "blurry", 20, 512, 512, 20, 8.0, 123], | |
["A butterfly on a flower", "", 16, 512, 512, 15, 7.0, 456] | |
], | |
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed] | |
) | |
with gr.Tab("βΉοΈ System Info"): | |
info_btn = gr.Button("π Check System") | |
system_output = gr.Markdown() | |
info_btn.click(fn=get_system_info, outputs=system_output) | |
demo.load(fn=get_system_info, outputs=system_output) | |
if __name__ == "__main__": | |
demo.queue(max_size=5) | |
demo.launch( | |
share=False, | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True | |
) |