""" Added get selfattention from all layer Mostly copy-paster from DINO (https://github.com/facebookresearch/dino/blob/main/vision_transformer.py) and timm library (https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) """ # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial import torch import torch.nn as nn from .utils import trunc_normal_ def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class DropKey(nn.Module): """DropKey """ def __init__(self, p=0.): super(DropKey, self).__init__() self.p = p def forward(self, attn): if self.training: m_r = torch.ones_like(attn) * self.p attn = attn + torch.bernoulli(m_r) * -1e12 return attn class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., qk_norm=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.attn_drop = nn.Dropout(attn_drop) self.attn_dropkey = DropKey(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) if qk_norm is not None: self.q_norm = qk_norm(head_dim) self.k_norm = qk_norm(head_dim) self.qk_norm = True else: self.qk_norm = False def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] if self.qk_norm: q = self.q_norm(q) k = self.k_norm(k) attn = (q @ k.transpose(-2, -1)) * self.scale attn = self.attn_dropkey(attn) attn = attn.softmax(dim=-1) # attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qk_norm=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, qk_norm=qk_norm) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) if return_attention: return x, attn else: return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size // patch_size) * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size // patch_size, img_size // patch_size) self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def interpolate_pos_encoding(self, x, w, h, use_sinusoid=False): npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 dim = x.shape[-1] if npatch == N and w == h: return self.pos_embed # print("Interpolate positional encoding...") if not use_sinusoid: class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', recompute_scale_factor=False, align_corners=False ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) else: def build_2d_sincos_position_embedding(h, w, temperature=10000.): h //= self.patch_embed.patch_size w //= self.patch_embed.patch_size grid_w = torch.arange(w, dtype=torch.float32) grid_h = torch.arange(h, dtype=torch.float32) grid_w, grid_h = torch.meshgrid(grid_w, grid_h) assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' pos_dim = self.embed_dim // 4 omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim omega = 1. / (temperature ** omega) out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega]) out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega]) pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[ None, :, :] # assert self.num_tokens == 1, 'Assuming one and only one token, [cls]' pe_token = torch.zeros([1, 1, self.embed_dim], dtype=torch.float32) return torch.cat([pe_token, pos_emb], dim=1) pe = build_2d_sincos_position_embedding(h, w).cuda() return pe def prepare_tokens(self, x): B, nc, w, h = x.shape x = self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward(self, x): x = self.prepare_tokens(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0] def get_last_selfattention(self, x): x = self.prepare_tokens(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block return blk(x, return_attention=True) def get_intermediate_layers(self, x, n=1): x = self.prepare_tokens(x) # we return the output tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)) return output def get_all_selfattention(self, x): """Get a self-attention matrix from every layer.""" x = self.prepare_tokens(x) attns = [] for blk in self.blocks: attns.append(blk(x, return_attention=True)) x = blk(x) return attns def vit_tiny(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vit_small(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vit_base(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vit_large(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model class DINOHead(nn.Module): def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256): super().__init__() nlayers = max(nlayers, 1) if nlayers == 1: self.mlp = nn.Linear(in_dim, bottleneck_dim) else: layers = [nn.Linear(in_dim, hidden_dim)] if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) for _ in range(nlayers - 2): layers.append(nn.Linear(hidden_dim, hidden_dim)) if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(hidden_dim, bottleneck_dim)) self.mlp = nn.Sequential(*layers) self.apply(self._init_weights) self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x = nn.functional.normalize(x, dim=-1, p=2) x = self.last_layer(x) return x