Spaces:
Running
Running
""" | |
Added get selfattention from all layer | |
Mostly copy-paster from DINO (https://github.com/facebookresearch/dino/blob/main/vision_transformer.py) | |
and timm library (https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) | |
""" | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from .utils import trunc_normal_ | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class DropKey(nn.Module): | |
"""DropKey | |
""" | |
def __init__(self, p=0.): | |
super(DropKey, self).__init__() | |
self.p = p | |
def forward(self, attn): | |
if self.training: | |
m_r = torch.ones_like(attn) * self.p | |
attn = attn + torch.bernoulli(m_r) * -1e12 | |
return attn | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., qk_norm=None): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
# self.attn_drop = nn.Dropout(attn_drop) | |
self.attn_dropkey = DropKey(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
if qk_norm is not None: | |
self.q_norm = qk_norm(head_dim) | |
self.k_norm = qk_norm(head_dim) | |
self.qk_norm = True | |
else: | |
self.qk_norm = False | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
if self.qk_norm: | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = self.attn_dropkey(attn) | |
attn = attn.softmax(dim=-1) | |
# attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x, attn | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qk_norm=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, | |
qk_norm=qk_norm) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, return_attention=False): | |
y, attn = self.attn(self.norm1(x)) | |
x = x + self.drop_path(y) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
if return_attention: | |
return x, attn | |
else: | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
num_patches = (img_size // patch_size) * (img_size // patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size // patch_size, img_size // patch_size) | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer """ | |
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim | |
self.patch_embed = PatchEmbed( | |
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Classifier head | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def interpolate_pos_encoding(self, x, w, h, use_sinusoid=False): | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
dim = x.shape[-1] | |
if npatch == N and w == h: | |
return self.pos_embed | |
# print("Interpolate positional encoding...") | |
if not use_sinusoid: | |
class_pos_embed = self.pos_embed[:, 0] | |
patch_pos_embed = self.pos_embed[:, 1:] | |
w0 = w // self.patch_embed.patch_size | |
h0 = h // self.patch_embed.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode='bicubic', | |
recompute_scale_factor=False, | |
align_corners=False | |
) | |
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
else: | |
def build_2d_sincos_position_embedding(h, w, temperature=10000.): | |
h //= self.patch_embed.patch_size | |
w //= self.patch_embed.patch_size | |
grid_w = torch.arange(w, dtype=torch.float32) | |
grid_h = torch.arange(h, dtype=torch.float32) | |
grid_w, grid_h = torch.meshgrid(grid_w, grid_h) | |
assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' | |
pos_dim = self.embed_dim // 4 | |
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim | |
omega = 1. / (temperature ** omega) | |
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega]) | |
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega]) | |
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[ | |
None, :, :] | |
# assert self.num_tokens == 1, 'Assuming one and only one token, [cls]' | |
pe_token = torch.zeros([1, 1, self.embed_dim], dtype=torch.float32) | |
return torch.cat([pe_token, pos_emb], dim=1) | |
pe = build_2d_sincos_position_embedding(h, w).cuda() | |
return pe | |
def prepare_tokens(self, x): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) # patch linear embedding | |
# add the [CLS] token to the embed patch tokens | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
# add positional encoding to each token | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
return self.pos_drop(x) | |
def forward(self, x): | |
x = self.prepare_tokens(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x[:, 0] | |
def get_last_selfattention(self, x): | |
x = self.prepare_tokens(x) | |
for i, blk in enumerate(self.blocks): | |
if i < len(self.blocks) - 1: | |
x = blk(x) | |
else: | |
# return attention of the last block | |
return blk(x, return_attention=True) | |
def get_intermediate_layers(self, x, n=1): | |
x = self.prepare_tokens(x) | |
# we return the output tokens from the `n` last blocks | |
output = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if len(self.blocks) - i <= n: | |
output.append(self.norm(x)) | |
return output | |
def get_all_selfattention(self, x): | |
"""Get a self-attention matrix from every layer.""" | |
x = self.prepare_tokens(x) | |
attns = [] | |
for blk in self.blocks: | |
attns.append(blk(x, return_attention=True)) | |
x = blk(x) | |
return attns | |
def vit_tiny(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
return model | |
def vit_small(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
return model | |
def vit_base(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
return model | |
def vit_large(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
return model | |
class DINOHead(nn.Module): | |
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, | |
bottleneck_dim=256): | |
super().__init__() | |
nlayers = max(nlayers, 1) | |
if nlayers == 1: | |
self.mlp = nn.Linear(in_dim, bottleneck_dim) | |
else: | |
layers = [nn.Linear(in_dim, hidden_dim)] | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
for _ in range(nlayers - 2): | |
layers.append(nn.Linear(hidden_dim, hidden_dim)) | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
layers.append(nn.Linear(hidden_dim, bottleneck_dim)) | |
self.mlp = nn.Sequential(*layers) | |
self.apply(self._init_weights) | |
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) | |
self.last_layer.weight_g.data.fill_(1) | |
if norm_last_layer: | |
self.last_layer.weight_g.requires_grad = False | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x = self.mlp(x) | |
x = nn.functional.normalize(x, dim=-1, p=2) | |
x = self.last_layer(x) | |
return x | |