INP-Former / INP_Former_Multi_Class.py
luoweibetter's picture
Upload 205 files
4057a1f verified
import torch
import torch.nn as nn
import numpy as np
import os
from functools import partial
import warnings
from tqdm import tqdm
from torch.nn.init import trunc_normal_
import argparse
from optimizers import StableAdamW
from utils import evaluation_batch,WarmCosineScheduler, global_cosine_hm_adaptive, setup_seed, get_logger
# Dataset-Related Modules
from dataset import MVTecDataset, RealIADDataset
from dataset import get_data_transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader, ConcatDataset
# Model-Related Modules
from models import vit_encoder
from models.uad import INP_Former
from models.vision_transformer import Mlp, Aggregation_Block, Prototype_Block
warnings.filterwarnings("ignore")
def main(args):
# Fixing the Random Seed
setup_seed(1)
# Data Preparation
data_transform, gt_transform = get_data_transforms(args.input_size, args.crop_size)
if args.dataset == 'MVTec-AD' or args.dataset == 'VisA':
train_data_list = []
test_data_list = []
for i, item in enumerate(args.item_list):
train_path = os.path.join(args.data_path, item, 'train')
test_path = os.path.join(args.data_path, item)
train_data = ImageFolder(root=train_path, transform=data_transform)
train_data.classes = item
train_data.class_to_idx = {item: i}
train_data.samples = [(sample[0], i) for sample in train_data.samples]
test_data = MVTecDataset(root=test_path, transform=data_transform, gt_transform=gt_transform, phase="test")
train_data_list.append(train_data)
test_data_list.append(test_data)
train_data = ConcatDataset(train_data_list)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
elif args.dataset == 'Real-IAD' :
train_data_list = []
test_data_list = []
for i, item in enumerate(args.item_list):
train_data = RealIADDataset(root=args.data_path, category=item, transform=data_transform,
gt_transform=gt_transform,
phase='train')
train_data.classes = item
train_data.class_to_idx = {item: i}
test_data = RealIADDataset(root=args.data_path, category=item, transform=data_transform,
gt_transform=gt_transform,
phase="test")
train_data_list.append(train_data)
test_data_list.append(test_data)
train_data = ConcatDataset(train_data_list)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=4,
drop_last=True)
# Adopting a grouping-based reconstruction strategy similar to Dinomaly
target_layers = [2, 3, 4, 5, 6, 7, 8, 9]
fuse_layer_encoder = [[0, 1, 2, 3], [4, 5, 6, 7]]
fuse_layer_decoder = [[0, 1, 2, 3], [4, 5, 6, 7]]
# Encoder info
encoder = vit_encoder.load(args.encoder)
if 'small' in args.encoder:
embed_dim, num_heads = 384, 6
elif 'base' in args.encoder:
embed_dim, num_heads = 768, 12
elif 'large' in args.encoder:
embed_dim, num_heads = 1024, 16
target_layers = [4, 6, 8, 10, 12, 14, 16, 18]
else:
raise "Architecture not in small, base, large."
# Model Preparation
Bottleneck = []
INP_Guided_Decoder = []
INP_Extractor = []
# bottleneck
Bottleneck.append(Mlp(embed_dim, embed_dim * 4, embed_dim, drop=0.))
Bottleneck = nn.ModuleList(Bottleneck)
# INP
INP = nn.ParameterList(
[nn.Parameter(torch.randn(args.INP_num, embed_dim))
for _ in range(1)])
# INP Extractor
for i in range(1):
blk = Aggregation_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=4.,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-8))
INP_Extractor.append(blk)
INP_Extractor = nn.ModuleList(INP_Extractor)
# INP_Guided_Decoder
for i in range(8):
blk = Prototype_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=4.,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-8))
INP_Guided_Decoder.append(blk)
INP_Guided_Decoder = nn.ModuleList(INP_Guided_Decoder)
model = INP_Former(encoder=encoder, bottleneck=Bottleneck, aggregation=INP_Extractor, decoder=INP_Guided_Decoder,
target_layers=target_layers, remove_class_token=True, fuse_layer_encoder=fuse_layer_encoder,
fuse_layer_decoder=fuse_layer_decoder, prototype_token=INP)
model = model.to(device)
if args.phase == 'train':
# Model Initialization
trainable = nn.ModuleList([Bottleneck, INP_Guided_Decoder, INP_Extractor, INP])
for m in trainable.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.01, a=-0.03, b=0.03)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
# define optimizer
optimizer = StableAdamW([{'params': trainable.parameters()}],
lr=1e-3, betas=(0.9, 0.999), weight_decay=1e-4, amsgrad=True, eps=1e-10)
lr_scheduler = WarmCosineScheduler(optimizer, base_value=1e-3, final_value=1e-4, total_iters=args.total_epochs*len(train_dataloader),
warmup_iters=100)
print_fn('train image number:{}'.format(len(train_data)))
# Train
for epoch in range(args.total_epochs):
model.train()
loss_list = []
for img, _ in tqdm(train_dataloader, ncols=80):
img = img.to(device)
en, de, g_loss = model(img)
loss = global_cosine_hm_adaptive(en, de, y=3)
loss = loss + 0.2 * g_loss
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm(trainable.parameters(), max_norm=0.1)
optimizer.step()
loss_list.append(loss.item())
lr_scheduler.step()
print_fn('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, args.total_epochs, np.mean(loss_list)))
if (epoch + 1) % args.total_epochs == 0:
auroc_sp_list, ap_sp_list, f1_sp_list = [], [], []
auroc_px_list, ap_px_list, f1_px_list, aupro_px_list = [], [], [], []
for item, test_data in zip(args.item_list, test_data_list):
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=4)
results = evaluation_batch(model, test_dataloader, device, max_ratio=0.01, resize_mask=256)
auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px = results
auroc_sp_list.append(auroc_sp)
ap_sp_list.append(ap_sp)
f1_sp_list.append(f1_sp)
auroc_px_list.append(auroc_px)
ap_px_list.append(ap_px)
f1_px_list.append(f1_px)
aupro_px_list.append(aupro_px)
print_fn(
'{}: I-Auroc:{:.4f}, I-AP:{:.4f}, I-F1:{:.4f}, P-AUROC:{:.4f}, P-AP:{:.4f}, P-F1:{:.4f}, P-AUPRO:{:.4f}'.format(
item, auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px))
print_fn('Mean: I-Auroc:{:.4f}, I-AP:{:.4f}, I-F1:{:.4f}, P-AUROC:{:.4f}, P-AP:{:.4f}, P-F1:{:.4f}, P-AUPRO:{:.4f}'.format(
np.mean(auroc_sp_list), np.mean(ap_sp_list), np.mean(f1_sp_list),
np.mean(auroc_px_list), np.mean(ap_px_list), np.mean(f1_px_list), np.mean(aupro_px_list)))
torch.save(model.state_dict(), os.path.join(args.save_dir, args.save_name, 'model.pth'))
model.train()
elif args.phase == 'test':
# Test
model.load_state_dict(torch.load(os.path.join(args.save_dir, args.save_name, 'model.pth')), strict=True)
auroc_sp_list, ap_sp_list, f1_sp_list = [], [], []
auroc_px_list, ap_px_list, f1_px_list, aupro_px_list = [], [], [], []
model.eval()
for item, test_data in zip(args.item_list, test_data_list):
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=4)
results = evaluation_batch(model, test_dataloader, device, max_ratio=0.01, resize_mask=256)
auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px = results
auroc_sp_list.append(auroc_sp)
ap_sp_list.append(ap_sp)
f1_sp_list.append(f1_sp)
auroc_px_list.append(auroc_px)
ap_px_list.append(ap_px)
f1_px_list.append(f1_px)
aupro_px_list.append(aupro_px)
print_fn(
'{}: I-Auroc:{:.4f}, I-AP:{:.4f}, I-F1:{:.4f}, P-AUROC:{:.4f}, P-AP:{:.4f}, P-F1:{:.4f}, P-AUPRO:{:.4f}'.format(
item, auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px))
print_fn(
'Mean: I-Auroc:{:.4f}, I-AP:{:.4f}, I-F1:{:.4f}, P-AUROC:{:.4f}, P-AP:{:.4f}, P-F1:{:.4f}, P-AUPRO:{:.4f}'.format(
np.mean(auroc_sp_list), np.mean(ap_sp_list), np.mean(f1_sp_list),
np.mean(auroc_px_list), np.mean(ap_px_list), np.mean(f1_px_list), np.mean(aupro_px_list)))
if __name__ == '__main__':
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
parser = argparse.ArgumentParser(description='')
# dataset info
parser.add_argument('--dataset', type=str, default=r'MVTec-AD') # 'MVTec-AD' or 'VisA' or 'Real-IAD'
parser.add_argument('--data_path', type=str, default=r'E:\IMSN-LW\dataset\mvtec_anomaly_detection') # Replace it with your path.
# save info
parser.add_argument('--save_dir', type=str, default='./saved_results')
parser.add_argument('--save_name', type=str, default='INP-Former-Multi-Class')
# model info
parser.add_argument('--encoder', type=str, default='dinov2reg_vit_base_14') # 'dinov2reg_vit_small_14' or 'dinov2reg_vit_base_14' or 'dinov2reg_vit_large_14'
parser.add_argument('--input_size', type=int, default=448)
parser.add_argument('--crop_size', type=int, default=392)
parser.add_argument('--INP_num', type=int, default=6)
# training info
parser.add_argument('--total_epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--phase', type=str, default='train')
args = parser.parse_args()
args.save_name = args.save_name + f'_dataset={args.dataset}_Encoder={args.encoder}_Resize={args.input_size}_Crop={args.crop_size}_INP_num={args.INP_num}'
logger = get_logger(args.save_name, os.path.join(args.save_dir, args.save_name))
print_fn = logger.info
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
# category info
if args.dataset == 'MVTec-AD':
# args.data_path = 'E:\IMSN-LW\dataset\mvtec_anomaly_detection' # '/path/to/dataset/MVTec-AD/'
args.item_list = ['carpet', 'grid', 'leather', 'tile', 'wood', 'bottle', 'cable', 'capsule',
'hazelnut', 'metal_nut', 'pill', 'screw', 'toothbrush', 'transistor', 'zipper']
elif args.dataset == 'VisA':
# args.data_path = r'E:\IMSN-LW\dataset\VisA_pytorch\1cls' # '/path/to/dataset/VisA/'
args.item_list = ['candle', 'capsules', 'cashew', 'chewinggum', 'fryum', 'macaroni1', 'macaroni2',
'pcb1', 'pcb2', 'pcb3', 'pcb4', 'pipe_fryum']
elif args.dataset == 'Real-IAD':
# args.data_path = 'E:\IMSN-LW\dataset\Real-IAD' # '/path/to/dataset/Real-IAD/'
args.item_list = ['audiojack', 'bottle_cap', 'button_battery', 'end_cap', 'eraser', 'fire_hood',
'mint', 'mounts', 'pcb', 'phone_battery', 'plastic_nut', 'plastic_plug',
'porcelain_doll', 'regulator', 'rolled_strip_base', 'sim_card_set', 'switch', 'tape',
'terminalblock', 'toothbrush', 'toy', 'toy_brick', 'transistor1', 'usb',
'usb_adaptor', 'u_block', 'vcpill', 'wooden_beads', 'woodstick', 'zipper']
main(args)