Spaces:
Running
Running
Yuxuan-Zhang-Dexter
commited on
Commit
·
3856741
1
Parent(s):
8290468
update agent and model leaderboard two tabs
Browse files- app.py +325 -82
- assets/model_color.json +38 -2
- data_visualization.py +82 -59
- leaderboard_utils.py +19 -46
- rank_data_03_25_2025.json +266 -237
- rank_single_model_03_25_2025.json +473 -0
app.py
CHANGED
@@ -14,7 +14,6 @@ from leaderboard_utils import (
|
|
14 |
get_sokoban_leaderboard,
|
15 |
get_2048_leaderboard,
|
16 |
get_candy_leaderboard,
|
17 |
-
get_tetris_leaderboard,
|
18 |
get_tetris_planning_leaderboard,
|
19 |
get_ace_attorney_leaderboard,
|
20 |
get_combined_leaderboard,
|
@@ -22,11 +21,7 @@ from leaderboard_utils import (
|
|
22 |
)
|
23 |
from data_visualization import (
|
24 |
get_combined_leaderboard_with_group_bar,
|
25 |
-
create_organization_radar_chart,
|
26 |
-
create_top_players_radar_chart,
|
27 |
-
create_player_radar_chart,
|
28 |
create_horizontal_bar_chart,
|
29 |
-
normalize_values,
|
30 |
get_combined_leaderboard_with_single_radar
|
31 |
)
|
32 |
from gallery_tab import create_video_gallery
|
@@ -46,27 +41,31 @@ TIME_POINTS = {
|
|
46 |
with open(TIME_POINTS["03/25/2025"], "r") as f:
|
47 |
rank_data = json.load(f)
|
48 |
|
|
|
|
|
|
|
|
|
49 |
# Add leaderboard state at the top level
|
50 |
leaderboard_state = {
|
51 |
"current_game": None,
|
52 |
"previous_overall": {
|
53 |
# "Super Mario Bros": True, # Commented out
|
54 |
-
"Super Mario Bros
|
55 |
"Sokoban": True,
|
56 |
"2048": True,
|
57 |
"Candy Crush": True,
|
58 |
-
# "Tetris
|
59 |
-
"Tetris
|
60 |
"Ace Attorney": True
|
61 |
},
|
62 |
"previous_details": {
|
63 |
# "Super Mario Bros": False, # Commented out
|
64 |
-
"Super Mario Bros
|
65 |
"Sokoban": False,
|
66 |
"2048": False,
|
67 |
"Candy Crush": False,
|
68 |
-
# "Tetris
|
69 |
-
"Tetris
|
70 |
"Ace Attorney": False
|
71 |
}
|
72 |
}
|
@@ -184,29 +183,34 @@ def update_leaderboard(# mario_overall, mario_details, # Commented out
|
|
184 |
candy_overall, candy_details,
|
185 |
# tetris_overall, tetris_details, # Commented out
|
186 |
tetris_plan_overall, tetris_plan_details,
|
187 |
-
ace_attorney_overall, ace_attorney_details
|
|
|
|
|
188 |
global leaderboard_state
|
189 |
|
|
|
|
|
|
|
190 |
# Convert current checkbox states to dictionary for easier comparison
|
191 |
current_overall = {
|
192 |
# "Super Mario Bros": mario_overall, # Commented out
|
193 |
-
"Super Mario Bros
|
194 |
"Sokoban": sokoban_overall,
|
195 |
"2048": _2048_overall,
|
196 |
"Candy Crush": candy_overall,
|
197 |
-
# "Tetris
|
198 |
-
"Tetris
|
199 |
"Ace Attorney": ace_attorney_overall
|
200 |
}
|
201 |
|
202 |
current_details = {
|
203 |
# "Super Mario Bros": mario_details, # Commented out
|
204 |
-
"Super Mario Bros
|
205 |
"Sokoban": sokoban_details,
|
206 |
"2048": _2048_details,
|
207 |
"Candy Crush": candy_details,
|
208 |
-
# "Tetris
|
209 |
-
"Tetris
|
210 |
"Ace Attorney": ace_attorney_details
|
211 |
}
|
212 |
|
@@ -289,12 +293,12 @@ def update_leaderboard(# mario_overall, mario_details, # Commented out
|
|
289 |
# Build dictionary for selected games
|
290 |
selected_games = {
|
291 |
# "Super Mario Bros": current_overall["Super Mario Bros"], # Commented out
|
292 |
-
"Super Mario Bros
|
293 |
"Sokoban": current_overall["Sokoban"],
|
294 |
"2048": current_overall["2048"],
|
295 |
"Candy Crush": current_overall["Candy Crush"],
|
296 |
-
# "Tetris
|
297 |
-
"Tetris
|
298 |
"Ace Attorney": current_overall["Ace Attorney"]
|
299 |
}
|
300 |
|
@@ -302,19 +306,19 @@ def update_leaderboard(# mario_overall, mario_details, # Commented out
|
|
302 |
if leaderboard_state["current_game"]:
|
303 |
# For detailed view
|
304 |
# if leaderboard_state["current_game"] == "Super Mario Bros": # Commented out
|
305 |
-
# df = get_mario_leaderboard(
|
306 |
-
if leaderboard_state["current_game"] == "Super Mario Bros
|
307 |
-
df = get_mario_planning_leaderboard(
|
308 |
elif leaderboard_state["current_game"] == "Sokoban":
|
309 |
-
df = get_sokoban_leaderboard(
|
310 |
elif leaderboard_state["current_game"] == "2048":
|
311 |
-
df = get_2048_leaderboard(
|
312 |
elif leaderboard_state["current_game"] == "Candy Crush":
|
313 |
-
df = get_candy_leaderboard(
|
314 |
-
elif leaderboard_state["current_game"] == "Tetris
|
315 |
-
df = get_tetris_planning_leaderboard(
|
316 |
elif leaderboard_state["current_game"] == "Ace Attorney":
|
317 |
-
df = get_ace_attorney_leaderboard(
|
318 |
else: # Should not happen if current_game is one of the known games
|
319 |
df = pd.DataFrame() # Empty df
|
320 |
|
@@ -324,18 +328,18 @@ def update_leaderboard(# mario_overall, mario_details, # Commented out
|
|
324 |
group_bar_chart = chart
|
325 |
else:
|
326 |
# For overall view
|
327 |
-
df, group_bar_chart = get_combined_leaderboard_with_group_bar(
|
328 |
display_df = prepare_dataframe_for_display(df)
|
329 |
-
_, radar_chart = get_combined_leaderboard_with_single_radar(
|
330 |
chart = radar_chart # In overall view, the 'detailed' chart can be the radar chart
|
331 |
|
332 |
# Return values, including all four plot placeholders
|
333 |
return (update_df_with_height(display_df), chart, radar_chart, group_bar_chart,
|
334 |
-
current_overall["Super Mario Bros
|
335 |
current_overall["Sokoban"], current_details["Sokoban"],
|
336 |
current_overall["2048"], current_details["2048"],
|
337 |
current_overall["Candy Crush"], current_details["Candy Crush"],
|
338 |
-
current_overall["Tetris
|
339 |
current_overall["Ace Attorney"], current_details["Ace Attorney"])
|
340 |
|
341 |
def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # Commented out
|
@@ -352,7 +356,7 @@ def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # C
|
|
352 |
if new_rank_data is not None:
|
353 |
rank_data = new_rank_data
|
354 |
|
355 |
-
# Use the existing update_leaderboard function, including Super Mario
|
356 |
return update_leaderboard(# mario_overall, mario_details, # Commented out
|
357 |
mario_plan_overall, mario_plan_details, # Added
|
358 |
sokoban_overall, sokoban_details,
|
@@ -362,47 +366,63 @@ def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # C
|
|
362 |
tetris_plan_overall, tetris_plan_details,
|
363 |
ace_attorney_overall, ace_attorney_details)
|
364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
def get_initial_state():
|
366 |
"""Get the initial state for the leaderboard"""
|
367 |
return {
|
368 |
"current_game": None,
|
369 |
"previous_overall": {
|
370 |
# "Super Mario Bros": True, # Commented out
|
371 |
-
"Super Mario Bros
|
372 |
"Sokoban": True,
|
373 |
"2048": True,
|
374 |
"Candy Crush": True,
|
375 |
-
# "Tetris
|
376 |
-
"Tetris
|
377 |
"Ace Attorney": True
|
378 |
},
|
379 |
"previous_details": {
|
380 |
# "Super Mario Bros": False, # Commented out
|
381 |
-
"Super Mario Bros
|
382 |
"Sokoban": False,
|
383 |
"2048": False,
|
384 |
"Candy Crush": False,
|
385 |
-
# "Tetris
|
386 |
-
"Tetris
|
387 |
"Ace Attorney": False
|
388 |
}
|
389 |
}
|
390 |
|
391 |
-
def clear_filters():
|
392 |
global leaderboard_state
|
393 |
|
|
|
|
|
|
|
394 |
selected_games = {
|
395 |
-
"Super Mario Bros
|
396 |
"Sokoban": True,
|
397 |
"2048": True,
|
398 |
"Candy Crush": True,
|
399 |
-
"Tetris
|
400 |
"Ace Attorney": True
|
401 |
}
|
402 |
|
403 |
-
df, group_bar_chart = get_combined_leaderboard_with_group_bar(
|
404 |
display_df = prepare_dataframe_for_display(df)
|
405 |
-
_, radar_chart = get_combined_leaderboard_with_single_radar(
|
406 |
|
407 |
leaderboard_state = get_initial_state()
|
408 |
|
@@ -412,7 +432,7 @@ def clear_filters():
|
|
412 |
True, False, # sokoban
|
413 |
True, False, # 2048
|
414 |
True, False, # candy
|
415 |
-
True, False, #
|
416 |
True, False) # ace attorney
|
417 |
|
418 |
def create_timeline_slider():
|
@@ -527,7 +547,7 @@ def build_app():
|
|
527 |
with gr.Blocks(css="""
|
528 |
/* Fix for scrolling issues */
|
529 |
html, body {
|
530 |
-
overflow-y:
|
531 |
overflow-x: hidden !important;
|
532 |
width: 100% !important;
|
533 |
height: 100% !important;
|
@@ -750,18 +770,18 @@ def build_app():
|
|
750 |
|
751 |
let newContent = header.innerHTML;
|
752 |
|
753 |
-
// Format Super Mario
|
754 |
if (text.includes('Super Mario Bros')) {
|
755 |
newContent = newContent.replace(/Super\s+Mario\s+Bros/g, 'Super<br>Mario Bros');
|
756 |
}
|
757 |
|
758 |
-
// Format
|
759 |
-
if (text.includes('Tetris
|
760 |
newContent = newContent.replace(/Tetris\s+\(complete\)/g, 'Tetris<br>(complete)');
|
761 |
}
|
762 |
|
763 |
-
if (text.includes('Tetris
|
764 |
-
newContent = newContent.replace(/Tetris\s+\(planning\s+only\)/g, 'Tetris
|
765 |
}
|
766 |
|
767 |
// Format Candy Crush header
|
@@ -853,7 +873,7 @@ def build_app():
|
|
853 |
""")
|
854 |
|
855 |
with gr.Tabs():
|
856 |
-
with gr.Tab("🏆 Leaderboard"):
|
857 |
# Visualization section
|
858 |
with gr.Row():
|
859 |
gr.Markdown("### 📊 Data Visualization")
|
@@ -879,6 +899,17 @@ def build_app():
|
|
879 |
)
|
880 |
# Comment out the Group Bar Chart tab
|
881 |
with gr.Tab("📊 Group Bar Chart"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
group_bar_visualization = gr.Plot(
|
883 |
label="Comparative Analysis (Group Bar Chart)",
|
884 |
elem_classes="visualization-container"
|
@@ -892,14 +923,14 @@ def build_app():
|
|
892 |
with gr.Row():
|
893 |
gr.Markdown("### 🎮 Game Selection")
|
894 |
with gr.Row():
|
895 |
-
# with gr.Column(): # Commented out Super Mario
|
896 |
# gr.Markdown("**🎮 Super Mario Bros**")
|
897 |
-
# mario_overall = gr.Checkbox(label="Super Mario
|
898 |
-
# mario_details = gr.Checkbox(label="Super Mario
|
899 |
-
with gr.Column(): # Added Super Mario
|
900 |
-
gr.Markdown("
|
901 |
-
mario_plan_overall = gr.Checkbox(label="Super Mario Bros
|
902 |
-
mario_plan_details = gr.Checkbox(label="Super Mario Bros
|
903 |
with gr.Column(): # Sokoban is now after mario_plan
|
904 |
gr.Markdown("**📦 Sokoban**")
|
905 |
sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True)
|
@@ -912,14 +943,14 @@ def build_app():
|
|
912 |
gr.Markdown("**🍬 Candy Crush**")
|
913 |
candy_overall = gr.Checkbox(label="Candy Crush Score", value=True)
|
914 |
candy_details = gr.Checkbox(label="Candy Crush Details", value=False)
|
915 |
-
# with gr.Column(): # Commented out Tetris
|
916 |
-
# gr.Markdown("**🎯 Tetris
|
917 |
-
# tetris_overall = gr.Checkbox(label="Tetris
|
918 |
-
# tetris_details = gr.Checkbox(label="Tetris
|
919 |
with gr.Column():
|
920 |
-
gr.Markdown("
|
921 |
-
tetris_plan_overall = gr.Checkbox(label="Tetris
|
922 |
-
tetris_plan_details = gr.Checkbox(label="Tetris
|
923 |
with gr.Column():
|
924 |
gr.Markdown("**⚖️ Ace Attorney**")
|
925 |
ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True)
|
@@ -945,12 +976,12 @@ def build_app():
|
|
945 |
# Get initial leaderboard dataframe
|
946 |
initial_df = get_combined_leaderboard(rank_data, {
|
947 |
# "Super Mario Bros": True, # Commented out
|
948 |
-
"Super Mario Bros
|
949 |
"Sokoban": True,
|
950 |
"2048": True,
|
951 |
"Candy Crush": True,
|
952 |
-
# "Tetris
|
953 |
-
"Tetris
|
954 |
"Ace Attorney": True
|
955 |
})
|
956 |
|
@@ -985,7 +1016,7 @@ def build_app():
|
|
985 |
with gr.Row():
|
986 |
score_note = add_score_note()
|
987 |
|
988 |
-
# List of all checkboxes, including Super Mario Bros
|
989 |
checkbox_list = [
|
990 |
# mario_overall, mario_details, # Commented out
|
991 |
mario_plan_overall, mario_plan_details,
|
@@ -1000,13 +1031,13 @@ def build_app():
|
|
1000 |
# Update visualizations when checkboxes change
|
1001 |
def update_visualizations(*checkbox_states):
|
1002 |
# Check if any details checkbox is selected
|
1003 |
-
# Adjusted indices due to addition of Super Mario
|
1004 |
is_details_view = any([
|
1005 |
checkbox_states[1], # Mario Plan details
|
1006 |
checkbox_states[3], # Sokoban details
|
1007 |
checkbox_states[5], # 2048 details
|
1008 |
checkbox_states[7], # Candy Crush details
|
1009 |
-
checkbox_states[9], # Tetris
|
1010 |
checkbox_states[11] # Ace Attorney details
|
1011 |
])
|
1012 |
|
@@ -1027,40 +1058,252 @@ def build_app():
|
|
1027 |
# Update leaderboard and visualizations when checkboxes change
|
1028 |
for checkbox in checkbox_list:
|
1029 |
checkbox.change(
|
1030 |
-
update_leaderboard,
|
1031 |
-
inputs=checkbox_list,
|
1032 |
outputs=[
|
1033 |
leaderboard_df,
|
1034 |
detailed_visualization,
|
1035 |
radar_visualization,
|
1036 |
-
group_bar_visualization
|
1037 |
] + checkbox_list
|
1038 |
)
|
1039 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1040 |
# Update when clear button is clicked
|
1041 |
clear_btn.click(
|
1042 |
-
clear_filters,
|
1043 |
-
inputs=[],
|
1044 |
outputs=[
|
1045 |
leaderboard_df,
|
1046 |
detailed_visualization,
|
1047 |
radar_visualization,
|
1048 |
-
group_bar_visualization
|
1049 |
] + checkbox_list
|
1050 |
)
|
1051 |
|
1052 |
# Initialize the app
|
1053 |
demo.load(
|
1054 |
-
|
1055 |
inputs=[],
|
1056 |
outputs=[
|
1057 |
leaderboard_df,
|
1058 |
detailed_visualization,
|
1059 |
radar_visualization,
|
1060 |
-
group_bar_visualization
|
1061 |
] + checkbox_list
|
1062 |
)
|
1063 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1064 |
with gr.Tab("🎥 Gallery"):
|
1065 |
video_gallery = create_video_gallery()
|
1066 |
|
|
|
14 |
get_sokoban_leaderboard,
|
15 |
get_2048_leaderboard,
|
16 |
get_candy_leaderboard,
|
|
|
17 |
get_tetris_planning_leaderboard,
|
18 |
get_ace_attorney_leaderboard,
|
19 |
get_combined_leaderboard,
|
|
|
21 |
)
|
22 |
from data_visualization import (
|
23 |
get_combined_leaderboard_with_group_bar,
|
|
|
|
|
|
|
24 |
create_horizontal_bar_chart,
|
|
|
25 |
get_combined_leaderboard_with_single_radar
|
26 |
)
|
27 |
from gallery_tab import create_video_gallery
|
|
|
41 |
with open(TIME_POINTS["03/25/2025"], "r") as f:
|
42 |
rank_data = json.load(f)
|
43 |
|
44 |
+
# Load the model leaderboard data
|
45 |
+
with open("rank_single_model_03_25_2025.json", "r") as f:
|
46 |
+
model_rank_data = json.load(f)
|
47 |
+
|
48 |
# Add leaderboard state at the top level
|
49 |
leaderboard_state = {
|
50 |
"current_game": None,
|
51 |
"previous_overall": {
|
52 |
# "Super Mario Bros": True, # Commented out
|
53 |
+
"Super Mario Bros": True,
|
54 |
"Sokoban": True,
|
55 |
"2048": True,
|
56 |
"Candy Crush": True,
|
57 |
+
# "Tetris(complete)", # Commented out
|
58 |
+
"Tetris": True,
|
59 |
"Ace Attorney": True
|
60 |
},
|
61 |
"previous_details": {
|
62 |
# "Super Mario Bros": False, # Commented out
|
63 |
+
"Super Mario Bros": False,
|
64 |
"Sokoban": False,
|
65 |
"2048": False,
|
66 |
"Candy Crush": False,
|
67 |
+
# "Tetris(complete)": False, # Commented out
|
68 |
+
"Tetris": False,
|
69 |
"Ace Attorney": False
|
70 |
}
|
71 |
}
|
|
|
183 |
candy_overall, candy_details,
|
184 |
# tetris_overall, tetris_details, # Commented out
|
185 |
tetris_plan_overall, tetris_plan_details,
|
186 |
+
ace_attorney_overall, ace_attorney_details,
|
187 |
+
top_n=10,
|
188 |
+
data_source=None):
|
189 |
global leaderboard_state
|
190 |
|
191 |
+
# Use provided data source or default to rank_data
|
192 |
+
data = data_source if data_source is not None else rank_data
|
193 |
+
|
194 |
# Convert current checkbox states to dictionary for easier comparison
|
195 |
current_overall = {
|
196 |
# "Super Mario Bros": mario_overall, # Commented out
|
197 |
+
"Super Mario Bros": mario_plan_overall,
|
198 |
"Sokoban": sokoban_overall,
|
199 |
"2048": _2048_overall,
|
200 |
"Candy Crush": candy_overall,
|
201 |
+
# "Tetris(complete)": tetris_overall, # Commented out
|
202 |
+
"Tetris": tetris_plan_overall,
|
203 |
"Ace Attorney": ace_attorney_overall
|
204 |
}
|
205 |
|
206 |
current_details = {
|
207 |
# "Super Mario Bros": mario_details, # Commented out
|
208 |
+
"Super Mario Bros": mario_plan_details,
|
209 |
"Sokoban": sokoban_details,
|
210 |
"2048": _2048_details,
|
211 |
"Candy Crush": candy_details,
|
212 |
+
# "Tetris(complete)": tetris_details, # Commented out
|
213 |
+
"Tetris": tetris_plan_details,
|
214 |
"Ace Attorney": ace_attorney_details
|
215 |
}
|
216 |
|
|
|
293 |
# Build dictionary for selected games
|
294 |
selected_games = {
|
295 |
# "Super Mario Bros": current_overall["Super Mario Bros"], # Commented out
|
296 |
+
"Super Mario Bros": current_overall["Super Mario Bros"],
|
297 |
"Sokoban": current_overall["Sokoban"],
|
298 |
"2048": current_overall["2048"],
|
299 |
"Candy Crush": current_overall["Candy Crush"],
|
300 |
+
# "Tetris(complete)": current_overall["Tetris(complete)"], # Commented out
|
301 |
+
"Tetris": current_overall["Tetris"],
|
302 |
"Ace Attorney": current_overall["Ace Attorney"]
|
303 |
}
|
304 |
|
|
|
306 |
if leaderboard_state["current_game"]:
|
307 |
# For detailed view
|
308 |
# if leaderboard_state["current_game"] == "Super Mario Bros": # Commented out
|
309 |
+
# df = get_mario_leaderboard(data)
|
310 |
+
if leaderboard_state["current_game"] == "Super Mario Bros":
|
311 |
+
df = get_mario_planning_leaderboard(data)
|
312 |
elif leaderboard_state["current_game"] == "Sokoban":
|
313 |
+
df = get_sokoban_leaderboard(data)
|
314 |
elif leaderboard_state["current_game"] == "2048":
|
315 |
+
df = get_2048_leaderboard(data)
|
316 |
elif leaderboard_state["current_game"] == "Candy Crush":
|
317 |
+
df = get_candy_leaderboard(data)
|
318 |
+
elif leaderboard_state["current_game"] == "Tetris":
|
319 |
+
df = get_tetris_planning_leaderboard(data)
|
320 |
elif leaderboard_state["current_game"] == "Ace Attorney":
|
321 |
+
df = get_ace_attorney_leaderboard(data)
|
322 |
else: # Should not happen if current_game is one of the known games
|
323 |
df = pd.DataFrame() # Empty df
|
324 |
|
|
|
328 |
group_bar_chart = chart
|
329 |
else:
|
330 |
# For overall view
|
331 |
+
df, group_bar_chart = get_combined_leaderboard_with_group_bar(data, selected_games, top_n)
|
332 |
display_df = prepare_dataframe_for_display(df)
|
333 |
+
_, radar_chart = get_combined_leaderboard_with_single_radar(data, selected_games)
|
334 |
chart = radar_chart # In overall view, the 'detailed' chart can be the radar chart
|
335 |
|
336 |
# Return values, including all four plot placeholders
|
337 |
return (update_df_with_height(display_df), chart, radar_chart, group_bar_chart,
|
338 |
+
current_overall["Super Mario Bros"], current_details["Super Mario Bros"],
|
339 |
current_overall["Sokoban"], current_details["Sokoban"],
|
340 |
current_overall["2048"], current_details["2048"],
|
341 |
current_overall["Candy Crush"], current_details["Candy Crush"],
|
342 |
+
current_overall["Tetris"], current_details["Tetris"],
|
343 |
current_overall["Ace Attorney"], current_details["Ace Attorney"])
|
344 |
|
345 |
def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # Commented out
|
|
|
356 |
if new_rank_data is not None:
|
357 |
rank_data = new_rank_data
|
358 |
|
359 |
+
# Use the existing update_leaderboard function, including Super Mario
|
360 |
return update_leaderboard(# mario_overall, mario_details, # Commented out
|
361 |
mario_plan_overall, mario_plan_details, # Added
|
362 |
sokoban_overall, sokoban_details,
|
|
|
366 |
tetris_plan_overall, tetris_plan_details,
|
367 |
ace_attorney_overall, ace_attorney_details)
|
368 |
|
369 |
+
def get_total_model_count(data_source):
|
370 |
+
"""Get the total number of unique models in the data"""
|
371 |
+
selected_games = {
|
372 |
+
"Super Mario Bros": True,
|
373 |
+
"Sokoban": True,
|
374 |
+
"2048": True,
|
375 |
+
"Candy Crush": True,
|
376 |
+
"Tetris": True,
|
377 |
+
"Ace Attorney": True
|
378 |
+
}
|
379 |
+
df = get_combined_leaderboard(data_source, selected_games)
|
380 |
+
return len(df["Player"].unique())
|
381 |
+
|
382 |
def get_initial_state():
|
383 |
"""Get the initial state for the leaderboard"""
|
384 |
return {
|
385 |
"current_game": None,
|
386 |
"previous_overall": {
|
387 |
# "Super Mario Bros": True, # Commented out
|
388 |
+
"Super Mario Bros": True,
|
389 |
"Sokoban": True,
|
390 |
"2048": True,
|
391 |
"Candy Crush": True,
|
392 |
+
# "Tetris(complete)", # Commented out
|
393 |
+
"Tetris": True,
|
394 |
"Ace Attorney": True
|
395 |
},
|
396 |
"previous_details": {
|
397 |
# "Super Mario Bros": False, # Commented out
|
398 |
+
"Super Mario Bros": False,
|
399 |
"Sokoban": False,
|
400 |
"2048": False,
|
401 |
"Candy Crush": False,
|
402 |
+
# "Tetris(complete)": False, # Commented out
|
403 |
+
"Tetris": False,
|
404 |
"Ace Attorney": False
|
405 |
}
|
406 |
}
|
407 |
|
408 |
+
def clear_filters(top_n=10, data_source=None):
|
409 |
global leaderboard_state
|
410 |
|
411 |
+
# Use provided data source or default to rank_data
|
412 |
+
data = data_source if data_source is not None else rank_data
|
413 |
+
|
414 |
selected_games = {
|
415 |
+
"Super Mario Bros": True,
|
416 |
"Sokoban": True,
|
417 |
"2048": True,
|
418 |
"Candy Crush": True,
|
419 |
+
"Tetris": True,
|
420 |
"Ace Attorney": True
|
421 |
}
|
422 |
|
423 |
+
df, group_bar_chart = get_combined_leaderboard_with_group_bar(data, selected_games, top_n)
|
424 |
display_df = prepare_dataframe_for_display(df)
|
425 |
+
_, radar_chart = get_combined_leaderboard_with_single_radar(data, selected_games)
|
426 |
|
427 |
leaderboard_state = get_initial_state()
|
428 |
|
|
|
432 |
True, False, # sokoban
|
433 |
True, False, # 2048
|
434 |
True, False, # candy
|
435 |
+
True, False, # Tetrisplan
|
436 |
True, False) # ace attorney
|
437 |
|
438 |
def create_timeline_slider():
|
|
|
547 |
with gr.Blocks(css="""
|
548 |
/* Fix for scrolling issues */
|
549 |
html, body {
|
550 |
+
overflow-y: auto !important;
|
551 |
overflow-x: hidden !important;
|
552 |
width: 100% !important;
|
553 |
height: 100% !important;
|
|
|
770 |
|
771 |
let newContent = header.innerHTML;
|
772 |
|
773 |
+
// Format Super Mario Brosheader
|
774 |
if (text.includes('Super Mario Bros')) {
|
775 |
newContent = newContent.replace(/Super\s+Mario\s+Bros/g, 'Super<br>Mario Bros');
|
776 |
}
|
777 |
|
778 |
+
// Format Tetrisheaders
|
779 |
+
if (text.includes('Tetris(complete)')) {
|
780 |
newContent = newContent.replace(/Tetris\s+\(complete\)/g, 'Tetris<br>(complete)');
|
781 |
}
|
782 |
|
783 |
+
if (text.includes('Tetris')) {
|
784 |
+
newContent = newContent.replace(/Tetris\s+\(planning\s+only\)/g, 'Tetris');
|
785 |
}
|
786 |
|
787 |
// Format Candy Crush header
|
|
|
873 |
""")
|
874 |
|
875 |
with gr.Tabs():
|
876 |
+
with gr.Tab("🏆 Agent Leaderboard"):
|
877 |
# Visualization section
|
878 |
with gr.Row():
|
879 |
gr.Markdown("### 📊 Data Visualization")
|
|
|
899 |
)
|
900 |
# Comment out the Group Bar Chart tab
|
901 |
with gr.Tab("📊 Group Bar Chart"):
|
902 |
+
with gr.Row():
|
903 |
+
# Calculate dynamic maximum based on total models
|
904 |
+
agent_max_models = get_total_model_count(rank_data)
|
905 |
+
top_n_slider = gr.Slider(
|
906 |
+
minimum=1,
|
907 |
+
maximum=agent_max_models,
|
908 |
+
step=1,
|
909 |
+
value=min(10, agent_max_models),
|
910 |
+
label=f"Number of Top Models to Display (max: {agent_max_models})",
|
911 |
+
elem_classes="top-n-slider"
|
912 |
+
)
|
913 |
group_bar_visualization = gr.Plot(
|
914 |
label="Comparative Analysis (Group Bar Chart)",
|
915 |
elem_classes="visualization-container"
|
|
|
923 |
with gr.Row():
|
924 |
gr.Markdown("### 🎮 Game Selection")
|
925 |
with gr.Row():
|
926 |
+
# with gr.Column(): # Commented out Super Mario BrosUI
|
927 |
# gr.Markdown("**🎮 Super Mario Bros**")
|
928 |
+
# mario_overall = gr.Checkbox(label="Super Mario BrosScore", value=True)
|
929 |
+
# mario_details = gr.Checkbox(label="Super Mario BrosDetails", value=False)
|
930 |
+
with gr.Column(): # Added Super Mario BrosUI
|
931 |
+
gr.Markdown("**🎮 Super Mario Bros**")
|
932 |
+
mario_plan_overall = gr.Checkbox(label="Super Mario Bros Score", value=True)
|
933 |
+
mario_plan_details = gr.Checkbox(label="Super Mario Bros Details", value=False)
|
934 |
with gr.Column(): # Sokoban is now after mario_plan
|
935 |
gr.Markdown("**📦 Sokoban**")
|
936 |
sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True)
|
|
|
943 |
gr.Markdown("**🍬 Candy Crush**")
|
944 |
candy_overall = gr.Checkbox(label="Candy Crush Score", value=True)
|
945 |
candy_details = gr.Checkbox(label="Candy Crush Details", value=False)
|
946 |
+
# with gr.Column(): # Commented out Tetris(complete) UI
|
947 |
+
# gr.Markdown("**🎯 Tetris(complete)**")
|
948 |
+
# tetris_overall = gr.Checkbox(label="Tetris(complete) Score", value=True)
|
949 |
+
# tetris_details = gr.Checkbox(label="Tetris(complete) Details", value=False)
|
950 |
with gr.Column():
|
951 |
+
gr.Markdown("**🎯 Tetris**")
|
952 |
+
tetris_plan_overall = gr.Checkbox(label="Tetris Score", value=True)
|
953 |
+
tetris_plan_details = gr.Checkbox(label="Tetris Details", value=False)
|
954 |
with gr.Column():
|
955 |
gr.Markdown("**⚖️ Ace Attorney**")
|
956 |
ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True)
|
|
|
976 |
# Get initial leaderboard dataframe
|
977 |
initial_df = get_combined_leaderboard(rank_data, {
|
978 |
# "Super Mario Bros": True, # Commented out
|
979 |
+
"Super Mario Bros": True,
|
980 |
"Sokoban": True,
|
981 |
"2048": True,
|
982 |
"Candy Crush": True,
|
983 |
+
# "Tetris(complete)": True, # Commented out
|
984 |
+
"Tetris": True,
|
985 |
"Ace Attorney": True
|
986 |
})
|
987 |
|
|
|
1016 |
with gr.Row():
|
1017 |
score_note = add_score_note()
|
1018 |
|
1019 |
+
# List of all checkboxes, including Super Mario Bros
|
1020 |
checkbox_list = [
|
1021 |
# mario_overall, mario_details, # Commented out
|
1022 |
mario_plan_overall, mario_plan_details,
|
|
|
1031 |
# Update visualizations when checkboxes change
|
1032 |
def update_visualizations(*checkbox_states):
|
1033 |
# Check if any details checkbox is selected
|
1034 |
+
# Adjusted indices due to addition of Super Mario
|
1035 |
is_details_view = any([
|
1036 |
checkbox_states[1], # Mario Plan details
|
1037 |
checkbox_states[3], # Sokoban details
|
1038 |
checkbox_states[5], # 2048 details
|
1039 |
checkbox_states[7], # Candy Crush details
|
1040 |
+
checkbox_states[9], # Tetris details
|
1041 |
checkbox_states[11] # Ace Attorney details
|
1042 |
])
|
1043 |
|
|
|
1058 |
# Update leaderboard and visualizations when checkboxes change
|
1059 |
for checkbox in checkbox_list:
|
1060 |
checkbox.change(
|
1061 |
+
lambda *args: update_leaderboard(*args, data_source=rank_data),
|
1062 |
+
inputs=checkbox_list + [top_n_slider],
|
1063 |
outputs=[
|
1064 |
leaderboard_df,
|
1065 |
detailed_visualization,
|
1066 |
radar_visualization,
|
1067 |
+
group_bar_visualization
|
1068 |
] + checkbox_list
|
1069 |
)
|
1070 |
|
1071 |
+
# Update when top_n_slider changes
|
1072 |
+
top_n_slider.change(
|
1073 |
+
lambda *args: update_leaderboard(*args, data_source=rank_data),
|
1074 |
+
inputs=checkbox_list + [top_n_slider],
|
1075 |
+
outputs=[
|
1076 |
+
leaderboard_df,
|
1077 |
+
detailed_visualization,
|
1078 |
+
radar_visualization,
|
1079 |
+
group_bar_visualization
|
1080 |
+
] + checkbox_list
|
1081 |
+
)
|
1082 |
+
|
1083 |
# Update when clear button is clicked
|
1084 |
clear_btn.click(
|
1085 |
+
lambda *args: clear_filters(*args, data_source=rank_data),
|
1086 |
+
inputs=[top_n_slider],
|
1087 |
outputs=[
|
1088 |
leaderboard_df,
|
1089 |
detailed_visualization,
|
1090 |
radar_visualization,
|
1091 |
+
group_bar_visualization
|
1092 |
] + checkbox_list
|
1093 |
)
|
1094 |
|
1095 |
# Initialize the app
|
1096 |
demo.load(
|
1097 |
+
lambda: clear_filters(data_source=rank_data),
|
1098 |
inputs=[],
|
1099 |
outputs=[
|
1100 |
leaderboard_df,
|
1101 |
detailed_visualization,
|
1102 |
radar_visualization,
|
1103 |
+
group_bar_visualization
|
1104 |
] + checkbox_list
|
1105 |
)
|
1106 |
|
1107 |
+
with gr.Tab("🤖 Model Leaderboard"):
|
1108 |
+
# Visualization section
|
1109 |
+
with gr.Row():
|
1110 |
+
gr.Markdown("### 📊 Data Visualization")
|
1111 |
+
|
1112 |
+
# Detailed view visualization (single chart)
|
1113 |
+
model_detailed_visualization = gr.Plot(
|
1114 |
+
label="Performance Visualization",
|
1115 |
+
visible=False,
|
1116 |
+
elem_classes="visualization-container"
|
1117 |
+
)
|
1118 |
+
|
1119 |
+
with gr.Column(visible=True) as model_overall_visualizations:
|
1120 |
+
with gr.Tabs():
|
1121 |
+
with gr.Tab("📈 Radar Chart"):
|
1122 |
+
model_radar_visualization = gr.Plot(
|
1123 |
+
label="Comparative Analysis (Radar Chart)",
|
1124 |
+
elem_classes="visualization-container"
|
1125 |
+
)
|
1126 |
+
gr.Markdown(
|
1127 |
+
"*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*",
|
1128 |
+
elem_classes="radar-tip"
|
1129 |
+
)
|
1130 |
+
with gr.Tab("📊 Group Bar Chart"):
|
1131 |
+
with gr.Row():
|
1132 |
+
# Calculate dynamic maximum based on total models
|
1133 |
+
model_max_models = get_total_model_count(model_rank_data)
|
1134 |
+
model_top_n_slider = gr.Slider(
|
1135 |
+
minimum=1,
|
1136 |
+
maximum=model_max_models,
|
1137 |
+
step=1,
|
1138 |
+
value=min(10, model_max_models),
|
1139 |
+
label=f"Number of Top Models to Display (max: {model_max_models})",
|
1140 |
+
elem_classes="top-n-slider"
|
1141 |
+
)
|
1142 |
+
model_group_bar_visualization = gr.Plot(
|
1143 |
+
label="Comparative Analysis (Group Bar Chart)",
|
1144 |
+
elem_classes="visualization-container"
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
# Game selection section
|
1148 |
+
with gr.Row():
|
1149 |
+
gr.Markdown("### 🎮 Game Selection")
|
1150 |
+
with gr.Row():
|
1151 |
+
with gr.Column():
|
1152 |
+
gr.Markdown("**🎮 Super Mario Bros**")
|
1153 |
+
model_mario_plan_overall = gr.Checkbox(label="Super Mario Bros Score", value=True)
|
1154 |
+
model_mario_plan_details = gr.Checkbox(label="Super Mario Bros Details", value=False)
|
1155 |
+
with gr.Column():
|
1156 |
+
gr.Markdown("**📦 Sokoban**")
|
1157 |
+
model_sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True)
|
1158 |
+
model_sokoban_details = gr.Checkbox(label="Sokoban Details", value=False)
|
1159 |
+
with gr.Column():
|
1160 |
+
gr.Markdown("**🔢 2048**")
|
1161 |
+
model_2048_overall = gr.Checkbox(label="2048 Score", value=True)
|
1162 |
+
model_2048_details = gr.Checkbox(label="2048 Details", value=False)
|
1163 |
+
with gr.Column():
|
1164 |
+
gr.Markdown("**🍬 Candy Crush**")
|
1165 |
+
model_candy_overall = gr.Checkbox(label="Candy Crush Score", value=True)
|
1166 |
+
model_candy_details = gr.Checkbox(label="Candy Crush Details", value=False)
|
1167 |
+
with gr.Column():
|
1168 |
+
gr.Markdown("**🎯 Tetris**")
|
1169 |
+
model_tetris_plan_overall = gr.Checkbox(label="Tetris Score", value=True)
|
1170 |
+
model_tetris_plan_details = gr.Checkbox(label="Tetris Details", value=False)
|
1171 |
+
with gr.Column():
|
1172 |
+
gr.Markdown("**⚖️ Ace Attorney**")
|
1173 |
+
model_ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True)
|
1174 |
+
model_ace_attorney_details = gr.Checkbox(label="Ace Attorney Details", value=False)
|
1175 |
+
|
1176 |
+
# Controls
|
1177 |
+
with gr.Row():
|
1178 |
+
with gr.Column(scale=2):
|
1179 |
+
gr.Markdown("**⏰ Time Tracker**")
|
1180 |
+
model_timeline = create_timeline_slider()
|
1181 |
+
with gr.Column(scale=1):
|
1182 |
+
gr.Markdown("**🔄 Controls**")
|
1183 |
+
model_clear_btn = gr.Button("Reset Filters", variant="secondary")
|
1184 |
+
|
1185 |
+
# Leaderboard table
|
1186 |
+
with gr.Row():
|
1187 |
+
gr.Markdown("### 📋 Detailed Results")
|
1188 |
+
|
1189 |
+
# Get initial leaderboard dataframe
|
1190 |
+
model_initial_df = get_combined_leaderboard(model_rank_data, {
|
1191 |
+
"Super Mario Bros": True,
|
1192 |
+
"Sokoban": True,
|
1193 |
+
"2048": True,
|
1194 |
+
"Candy Crush": True,
|
1195 |
+
"Tetris": True,
|
1196 |
+
"Ace Attorney": True
|
1197 |
+
})
|
1198 |
+
|
1199 |
+
# Format the DataFrame for display
|
1200 |
+
model_initial_display_df = prepare_dataframe_for_display(model_initial_df)
|
1201 |
+
|
1202 |
+
# Create a standard DataFrame component with enhanced styling
|
1203 |
+
with gr.Row():
|
1204 |
+
model_leaderboard_df = gr.DataFrame(
|
1205 |
+
value=model_initial_display_df,
|
1206 |
+
interactive=True,
|
1207 |
+
elem_id="model-leaderboard-table",
|
1208 |
+
elem_classes="table-container",
|
1209 |
+
wrap=True,
|
1210 |
+
show_row_numbers=True,
|
1211 |
+
show_fullscreen_button=True,
|
1212 |
+
line_breaks=True,
|
1213 |
+
max_height=1000,
|
1214 |
+
show_search="search",
|
1215 |
+
column_widths=col_widths
|
1216 |
+
)
|
1217 |
+
|
1218 |
+
# Add the score note below the table
|
1219 |
+
with gr.Row():
|
1220 |
+
model_score_note = add_score_note()
|
1221 |
+
|
1222 |
+
# List of all checkboxes for model leaderboard
|
1223 |
+
model_checkbox_list = [
|
1224 |
+
model_mario_plan_overall, model_mario_plan_details,
|
1225 |
+
model_sokoban_overall, model_sokoban_details,
|
1226 |
+
model_2048_overall, model_2048_details,
|
1227 |
+
model_candy_overall, model_candy_details,
|
1228 |
+
model_tetris_plan_overall, model_tetris_plan_details,
|
1229 |
+
model_ace_attorney_overall, model_ace_attorney_details
|
1230 |
+
]
|
1231 |
+
|
1232 |
+
# Update visualizations when checkboxes change
|
1233 |
+
def update_model_visualizations(*checkbox_states):
|
1234 |
+
# Check if any details checkbox is selected
|
1235 |
+
is_details_view = any([
|
1236 |
+
checkbox_states[1], # Mario Plan details
|
1237 |
+
checkbox_states[3], # Sokoban details
|
1238 |
+
checkbox_states[5], # 2048 details
|
1239 |
+
checkbox_states[7], # Candy Crush details
|
1240 |
+
checkbox_states[9], # Tetris details
|
1241 |
+
checkbox_states[11] # Ace Attorney details
|
1242 |
+
])
|
1243 |
+
|
1244 |
+
# Update visibility of visualization blocks
|
1245 |
+
return {
|
1246 |
+
model_detailed_visualization: gr.update(visible=is_details_view),
|
1247 |
+
model_overall_visualizations: gr.update(visible=not is_details_view)
|
1248 |
+
}
|
1249 |
+
|
1250 |
+
# Add change event to all checkboxes
|
1251 |
+
for checkbox in model_checkbox_list:
|
1252 |
+
checkbox.change(
|
1253 |
+
update_model_visualizations,
|
1254 |
+
inputs=model_checkbox_list,
|
1255 |
+
outputs=[model_detailed_visualization, model_overall_visualizations]
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
# Update leaderboard and visualizations when checkboxes change
|
1259 |
+
for checkbox in model_checkbox_list:
|
1260 |
+
checkbox.change(
|
1261 |
+
lambda *args: update_leaderboard(*args, data_source=model_rank_data),
|
1262 |
+
inputs=model_checkbox_list + [model_top_n_slider],
|
1263 |
+
outputs=[
|
1264 |
+
model_leaderboard_df,
|
1265 |
+
model_detailed_visualization,
|
1266 |
+
model_radar_visualization,
|
1267 |
+
model_group_bar_visualization
|
1268 |
+
] + model_checkbox_list
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
# Update when model top_n_slider changes
|
1272 |
+
model_top_n_slider.change(
|
1273 |
+
lambda *args: update_leaderboard(*args, data_source=model_rank_data),
|
1274 |
+
inputs=model_checkbox_list + [model_top_n_slider],
|
1275 |
+
outputs=[
|
1276 |
+
model_leaderboard_df,
|
1277 |
+
model_detailed_visualization,
|
1278 |
+
model_radar_visualization,
|
1279 |
+
model_group_bar_visualization
|
1280 |
+
] + model_checkbox_list
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
# Update when clear button is clicked
|
1284 |
+
model_clear_btn.click(
|
1285 |
+
lambda *args: clear_filters(*args, data_source=model_rank_data),
|
1286 |
+
inputs=[model_top_n_slider],
|
1287 |
+
outputs=[
|
1288 |
+
model_leaderboard_df,
|
1289 |
+
model_detailed_visualization,
|
1290 |
+
model_radar_visualization,
|
1291 |
+
model_group_bar_visualization
|
1292 |
+
] + model_checkbox_list
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
# Initialize the model leaderboard
|
1296 |
+
demo.load(
|
1297 |
+
lambda: clear_filters(data_source=model_rank_data),
|
1298 |
+
inputs=[],
|
1299 |
+
outputs=[
|
1300 |
+
model_leaderboard_df,
|
1301 |
+
model_detailed_visualization,
|
1302 |
+
model_radar_visualization,
|
1303 |
+
model_group_bar_visualization
|
1304 |
+
] + model_checkbox_list
|
1305 |
+
)
|
1306 |
+
|
1307 |
with gr.Tab("🎥 Gallery"):
|
1308 |
video_gallery = create_video_gallery()
|
1309 |
|
assets/model_color.json
CHANGED
@@ -3,12 +3,16 @@
|
|
3 |
"claude-3-7-sonnet-20250219 (thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
|
|
|
|
6 |
"gemini-2.0-flash": "#FF4081",
|
7 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
8 |
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
9 |
"gemini-2.5-flash-preview-04-17": "#F06292",
|
10 |
"gemini-2.5-flash-preview-04-17 (thinking)": "#E91E63",
|
|
|
11 |
"gemini-2.5-pro-preview-05-06 (thinking)": "#AD1457",
|
|
|
12 |
"gpt-4o-2024-11-20": "#00BFA5",
|
13 |
"gpt-4.5-preview-2025-02-27": "#00796B",
|
14 |
"gpt-4.1-2025-04-14": "#00897B",
|
@@ -21,7 +25,39 @@
|
|
21 |
"grok-3-mini-beta": "#FF8A65",
|
22 |
"grok-3-mini-beta (thinking)": "#F57C00",
|
23 |
"deepseek-v3": "#FFC107",
|
24 |
-
"deepseek-r1": "#FFA000",
|
|
|
25 |
"llama-4-maverick-17b-128e-instruct-fp8": "#8E24AA",
|
26 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
|
|
3 |
"claude-3-7-sonnet-20250219 (thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
6 |
+
"claude-opus-4-20250514": "#3A80D2",
|
7 |
+
"claude-sonnet-4-20250514": "#5A9FE2",
|
8 |
"gemini-2.0-flash": "#FF4081",
|
9 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
10 |
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
11 |
"gemini-2.5-flash-preview-04-17": "#F06292",
|
12 |
"gemini-2.5-flash-preview-04-17 (thinking)": "#E91E63",
|
13 |
+
"gemini-2.5-flash-preview-05-20": "#F8BBD9",
|
14 |
"gemini-2.5-pro-preview-05-06 (thinking)": "#AD1457",
|
15 |
+
"gemini-2.5-pro-preview-06-05": "#EC407A",
|
16 |
"gpt-4o-2024-11-20": "#00BFA5",
|
17 |
"gpt-4.5-preview-2025-02-27": "#00796B",
|
18 |
"gpt-4.1-2025-04-14": "#00897B",
|
|
|
25 |
"grok-3-mini-beta": "#FF8A65",
|
26 |
"grok-3-mini-beta (thinking)": "#F57C00",
|
27 |
"deepseek-v3": "#FFC107",
|
28 |
+
"deepseek-r1-0120": "#FFA000",
|
29 |
+
"deepseek-r1-0528": "#FFB300",
|
30 |
"llama-4-maverick-17b-128e-instruct-fp8": "#8E24AA",
|
31 |
+
"qwen3-235B-A22B-fp8": "#6A1B9A",
|
32 |
+
"random (x30)": "#9E9E9E",
|
33 |
+
"gamingagent + claude-3-7-sonnet-20250219": "#4A90E2",
|
34 |
+
"gamingagent + claude-3-7-sonnet-20250219 (thinking)": "#2E5C8A",
|
35 |
+
"gamingagent + claude-3-5-haiku-20241022": "#7FB5E6",
|
36 |
+
"gamingagent + claude-3-5-sonnet-20241022": "#1A4C7C",
|
37 |
+
"gamingagent + claude-opus-4-20250514": "#3A80D2",
|
38 |
+
"gamingagent + claude-sonnet-4-20250514": "#5A9FE2",
|
39 |
+
"gamingagent + gemini-2.0-flash": "#FF4081",
|
40 |
+
"gamingagent + gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
41 |
+
"gamingagent + gemini-2.5-pro-exp-03-25": "#FF80AB",
|
42 |
+
"gamingagent + gemini-2.5-flash-preview-04-17": "#F06292",
|
43 |
+
"gamingagent + gemini-2.5-flash-preview-04-17 (thinking)": "#E91E63",
|
44 |
+
"gamingagent + gemini-2.5-flash-preview-05-20": "#F8BBD9",
|
45 |
+
"gamingagent + gemini-2.5-pro-preview-05-06 (thinking)": "#AD1457",
|
46 |
+
"gamingagent + gemini-2.5-pro-preview-06-05": "#EC407A",
|
47 |
+
"gamingagent + gpt-4o-2024-11-20": "#00BFA5",
|
48 |
+
"gamingagent + gpt-4.5-preview-2025-02-27": "#00796B",
|
49 |
+
"gamingagent + gpt-4.1-2025-04-14": "#00897B",
|
50 |
+
"gamingagent + o1-2024-12-17": "#4DB6AC",
|
51 |
+
"gamingagent + o1-mini-2024-09-12": "#26A69A",
|
52 |
+
"gamingagent + o3-mini-2025-01-31(medium)": "#80CBC4",
|
53 |
+
"gamingagent + o3-2025-04-16": "#26C6DA",
|
54 |
+
"gamingagent + o4-mini-2025-04-16": "#00ACC1",
|
55 |
+
"gamingagent + grok-3-beta": "#FF7043",
|
56 |
+
"gamingagent + grok-3-mini-beta": "#FF8A65",
|
57 |
+
"gamingagent + grok-3-mini-beta (thinking)": "#F57C00",
|
58 |
+
"gamingagent + deepseek-v3": "#FFC107",
|
59 |
+
"gamingagent + deepseek-r1-0120": "#FFA000",
|
60 |
+
"gamingagent + deepseek-r1-0528": "#FFB300",
|
61 |
+
"gamingagent + llama-4-maverick-17b-128e-instruct-fp8": "#8E24AA",
|
62 |
+
"gamingagent + qwen3-235B-A22B-fp8": "#6A1B9A"
|
63 |
}
|
data_visualization.py
CHANGED
@@ -3,13 +3,6 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
from leaderboard_utils import (
|
6 |
-
get_organization,
|
7 |
-
get_mario_leaderboard,
|
8 |
-
get_sokoban_leaderboard,
|
9 |
-
get_2048_leaderboard,
|
10 |
-
get_candy_leaderboard,
|
11 |
-
get_tetris_leaderboard,
|
12 |
-
get_tetris_planning_leaderboard,
|
13 |
get_combined_leaderboard,
|
14 |
GAME_ORDER
|
15 |
)
|
@@ -186,7 +179,7 @@ def get_combined_leaderboard_with_radar(rank_data, selected_games):
|
|
186 |
df_viz = df.copy()
|
187 |
return df, create_radar_charts(df_viz)
|
188 |
|
189 |
-
def create_group_bar_chart(df):
|
190 |
game_cols = {}
|
191 |
for game in GAME_ORDER:
|
192 |
col = f"{game} Score"
|
@@ -231,56 +224,89 @@ def create_group_bar_chart(df):
|
|
231 |
# Create mapping from original to formatted names
|
232 |
game_display_map = dict(zip(sorted_games, formatted_games))
|
233 |
|
234 |
-
#
|
235 |
-
model_groups = {}
|
236 |
-
for player in df["Player"].unique():
|
237 |
-
prefix = player.split('-')[0]
|
238 |
-
model_groups.setdefault(prefix, []).append(player)
|
239 |
-
|
240 |
-
ordered_players = []
|
241 |
-
for prefix in sorted(model_groups):
|
242 |
-
ordered_players.extend(sorted(model_groups[prefix]))
|
243 |
-
|
244 |
-
# Create one trace per player
|
245 |
fig = go.Figure()
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
y_vals = []
|
253 |
-
|
254 |
for game in sorted_games:
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
if not has_data:
|
262 |
-
continue
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
fig.update_layout(
|
273 |
-
autosize=
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
xaxis_title="Games",
|
279 |
yaxis_title="Normalized Score",
|
280 |
xaxis=dict(
|
281 |
categoryorder='array',
|
282 |
-
categoryarray=
|
283 |
-
tickangle=0 # Keep text horizontal since we're using line breaks
|
|
|
|
|
284 |
),
|
285 |
barmode='group',
|
286 |
bargap=0.2, # Gap between game categories
|
@@ -303,11 +329,11 @@ def create_group_bar_chart(df):
|
|
303 |
|
304 |
|
305 |
|
306 |
-
def get_combined_leaderboard_with_group_bar(rank_data, selected_games):
|
307 |
df = get_combined_leaderboard(rank_data, selected_games)
|
308 |
# Create a copy for visualization to avoid modifying the original
|
309 |
df_viz = df.copy()
|
310 |
-
return df, create_group_bar_chart(df_viz)
|
311 |
|
312 |
def hex_to_rgba(hex_color, alpha=0.2):
|
313 |
hex_color = hex_color.lstrip('#')
|
@@ -324,10 +350,8 @@ def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
|
324 |
# Format game names
|
325 |
formatted_games = []
|
326 |
for game in selected_games:
|
327 |
-
if game == 'Super Mario Bros
|
328 |
-
formatted_games.append('
|
329 |
-
elif game == 'Tetris (planning only)':
|
330 |
-
formatted_games.append('Tetris')
|
331 |
else:
|
332 |
formatted_games.append(game) # Keep other names as is
|
333 |
|
@@ -387,10 +411,9 @@ def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
|
387 |
))
|
388 |
|
389 |
fig.update_layout(
|
390 |
-
autosize=
|
391 |
-
|
392 |
-
|
393 |
-
margin=dict(l=400, r=200, t=20, b=20),
|
394 |
title=dict(
|
395 |
text="AI Normalized Performance Across Games",
|
396 |
x=0.5,
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
from leaderboard_utils import (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
get_combined_leaderboard,
|
7 |
GAME_ORDER
|
8 |
)
|
|
|
179 |
df_viz = df.copy()
|
180 |
return df, create_radar_charts(df_viz)
|
181 |
|
182 |
+
def create_group_bar_chart(df, top_n=10):
|
183 |
game_cols = {}
|
184 |
for game in GAME_ORDER:
|
185 |
col = f"{game} Score"
|
|
|
224 |
# Create mapping from original to formatted names
|
225 |
game_display_map = dict(zip(sorted_games, formatted_games))
|
226 |
|
227 |
+
# For each game, get top performers and create combined x-axis categories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
fig = go.Figure()
|
229 |
+
all_x_categories = []
|
230 |
+
all_players = set()
|
231 |
+
unique_x_labels = []
|
232 |
+
|
233 |
+
# First pass: collect all players and create x-axis categories
|
234 |
+
game_rankings = {}
|
235 |
+
for game in sorted_games:
|
236 |
+
col = f"norm_{game} Score"
|
237 |
+
# Get valid scores for this game and sort by score (highest first)
|
238 |
+
game_data = df[df[col].notna()].copy()
|
239 |
+
game_data = game_data.sort_values(by=col, ascending=False)
|
240 |
+
|
241 |
+
# Store rankings for this game (limit to top_n)
|
242 |
+
game_rankings[game] = []
|
243 |
+
for i, (_, row) in enumerate(game_data.iterrows()):
|
244 |
+
if i >= top_n: # Limit to top_n performers
|
245 |
+
break
|
246 |
+
|
247 |
+
player = row["Player"]
|
248 |
+
score = row[col]
|
249 |
+
rank = i + 1
|
250 |
+
x_category = f"{game_display_map[game]}<br>#{rank}"
|
251 |
+
game_rankings[game].append({
|
252 |
+
'player': player,
|
253 |
+
'score': score,
|
254 |
+
'x_category': x_category,
|
255 |
+
'rank': rank
|
256 |
+
})
|
257 |
+
all_x_categories.append(x_category)
|
258 |
+
all_players.add(player)
|
259 |
+
|
260 |
+
# Show label at the middle position based on number of models
|
261 |
+
middle_position = (top_n + 1) // 2
|
262 |
+
if rank == middle_position:
|
263 |
+
# Special case for Super Mario Bros (planning only)
|
264 |
+
if game == "Super Mario Bros":
|
265 |
+
unique_x_labels.append("SMB")
|
266 |
+
else:
|
267 |
+
unique_x_labels.append(game_display_map[game]) # Show just game name without rank
|
268 |
+
else:
|
269 |
+
unique_x_labels.append("") # Empty string for other ranks
|
270 |
+
|
271 |
+
# Second pass: create traces for each player
|
272 |
+
for player in sorted(all_players):
|
273 |
+
x_vals = []
|
274 |
y_vals = []
|
275 |
+
|
276 |
for game in sorted_games:
|
277 |
+
# Find this player's data for this game
|
278 |
+
player_data = None
|
279 |
+
for data in game_rankings[game]:
|
280 |
+
if data['player'] == player:
|
281 |
+
player_data = data
|
282 |
+
break
|
|
|
|
|
283 |
|
284 |
+
if player_data:
|
285 |
+
x_vals.append(player_data['x_category'])
|
286 |
+
y_vals.append(player_data['score'])
|
287 |
+
|
288 |
+
if x_vals: # Only add trace if player has data
|
289 |
+
fig.add_trace(go.Bar(
|
290 |
+
name=player,
|
291 |
+
x=x_vals,
|
292 |
+
y=y_vals,
|
293 |
+
marker_color=MODEL_COLORS.get(player, '#808080'),
|
294 |
+
hovertemplate="<b>%{fullData.name}</b><br>Score: %{y:.1f}<extra></extra>"
|
295 |
+
))
|
296 |
|
297 |
fig.update_layout(
|
298 |
+
autosize=True,
|
299 |
+
height=550,
|
300 |
+
margin=dict(l=50, r=50, t=20, b=20),
|
301 |
+
title=dict(text=f"Grouped Bar Chart - Top {top_n} Performers by Game", pad=dict(t=10)),
|
302 |
+
xaxis_title="Games (Ranked by Performance)",
|
|
|
303 |
yaxis_title="Normalized Score",
|
304 |
xaxis=dict(
|
305 |
categoryorder='array',
|
306 |
+
categoryarray=all_x_categories,
|
307 |
+
tickangle=0, # Keep text horizontal since we're using line breaks
|
308 |
+
ticktext=unique_x_labels, # Show labels only for first occurrence
|
309 |
+
tickvals=all_x_categories
|
310 |
),
|
311 |
barmode='group',
|
312 |
bargap=0.2, # Gap between game categories
|
|
|
329 |
|
330 |
|
331 |
|
332 |
+
def get_combined_leaderboard_with_group_bar(rank_data, selected_games, top_n=10):
|
333 |
df = get_combined_leaderboard(rank_data, selected_games)
|
334 |
# Create a copy for visualization to avoid modifying the original
|
335 |
df_viz = df.copy()
|
336 |
+
return df, create_group_bar_chart(df_viz, top_n)
|
337 |
|
338 |
def hex_to_rgba(hex_color, alpha=0.2):
|
339 |
hex_color = hex_color.lstrip('#')
|
|
|
350 |
# Format game names
|
351 |
formatted_games = []
|
352 |
for game in selected_games:
|
353 |
+
if game == 'Super Mario Bros':
|
354 |
+
formatted_games.append('SMB') # Clean name without planning only
|
|
|
|
|
355 |
else:
|
356 |
formatted_games.append(game) # Keep other names as is
|
357 |
|
|
|
411 |
))
|
412 |
|
413 |
fig.update_layout(
|
414 |
+
autosize=True,
|
415 |
+
height=550, # Reduced height for better proportion with legend
|
416 |
+
margin=dict(l=400, r=100, t=20, b=20),
|
|
|
417 |
title=dict(
|
418 |
text="AI Normalized Performance Across Games",
|
419 |
x=0.5,
|
leaderboard_utils.py
CHANGED
@@ -5,12 +5,12 @@ import numpy as np
|
|
5 |
# Define game order
|
6 |
GAME_ORDER = [
|
7 |
# "Super Mario Bros", # Commented out
|
8 |
-
"Super Mario Bros
|
9 |
"Sokoban",
|
10 |
"2048",
|
11 |
"Candy Crush",
|
12 |
# "Tetris (complete)", # Commented out
|
13 |
-
"Tetris
|
14 |
"Ace Attorney"
|
15 |
]
|
16 |
|
@@ -31,20 +31,6 @@ def get_organization(model_name):
|
|
31 |
else:
|
32 |
return "unknown"
|
33 |
|
34 |
-
def get_mario_leaderboard(rank_data):
|
35 |
-
data = rank_data.get("Super Mario Bros", {}).get("results", [])
|
36 |
-
df = pd.DataFrame(data)
|
37 |
-
df = df.rename(columns={
|
38 |
-
"model": "Player",
|
39 |
-
"progress": "Progress (current/total)",
|
40 |
-
"score": "Score",
|
41 |
-
"time_s": "Time (s)"
|
42 |
-
})
|
43 |
-
df["Organization"] = df["Player"].apply(get_organization)
|
44 |
-
df = df[["Player", "Organization", "Progress (current/total)", "Score", "Time (s)"]]
|
45 |
-
if "Score" in df.columns:
|
46 |
-
df = df.sort_values("Score", ascending=False)
|
47 |
-
return df
|
48 |
|
49 |
def get_sokoban_leaderboard(rank_data):
|
50 |
data = rank_data.get("Sokoban", {}).get("results", [])
|
@@ -143,20 +129,8 @@ def get_candy_leaderboard(rank_data):
|
|
143 |
df = df.sort_values("Score", ascending=False)
|
144 |
return df
|
145 |
|
146 |
-
def get_tetris_leaderboard(rank_data):
|
147 |
-
data = rank_data.get("Tetris (complete)", {}).get("results", [])
|
148 |
-
df = pd.DataFrame(data)
|
149 |
-
df = df.rename(columns={
|
150 |
-
"model": "Player",
|
151 |
-
"score": "Score",
|
152 |
-
"steps_blocks": "Steps"
|
153 |
-
})
|
154 |
-
df["Organization"] = df["Player"].apply(get_organization)
|
155 |
-
df = df[["Player", "Organization", "Score", "Steps"]]
|
156 |
-
return df
|
157 |
-
|
158 |
def get_tetris_planning_leaderboard(rank_data):
|
159 |
-
data = rank_data.get("Tetris
|
160 |
df = pd.DataFrame(data)
|
161 |
df = df.rename(columns={
|
162 |
"model": "Player",
|
@@ -181,13 +155,12 @@ def get_ace_attorney_leaderboard(rank_data):
|
|
181 |
df = df.rename(columns={
|
182 |
"model": "Player",
|
183 |
"score": "Score",
|
184 |
-
"progress": "Progress"
|
185 |
-
"evaluator result": "Evaluator Result"
|
186 |
})
|
187 |
df["Organization"] = df["Player"].apply(get_organization)
|
188 |
|
189 |
-
# Define columns to keep
|
190 |
-
columns_to_keep = ["Player", "Organization", "Score", "Progress"
|
191 |
# Filter to only columns that actually exist in the DataFrame after renaming
|
192 |
df_columns = [col for col in columns_to_keep if col in df.columns]
|
193 |
df = df[df_columns]
|
@@ -198,7 +171,7 @@ def get_ace_attorney_leaderboard(rank_data):
|
|
198 |
return df
|
199 |
|
200 |
def get_mario_planning_leaderboard(rank_data):
|
201 |
-
data = rank_data.get("Super Mario Bros
|
202 |
df = pd.DataFrame(data)
|
203 |
df = df.rename(columns={
|
204 |
"model": "Player",
|
@@ -224,8 +197,8 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
224 |
# Get DataFrames for selected games
|
225 |
# if selected_games.get("Super Mario Bros"): # Commented out
|
226 |
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
227 |
-
if selected_games.get("Super Mario Bros
|
228 |
-
game_dfs["Super Mario Bros
|
229 |
if selected_games.get("Sokoban"):
|
230 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
231 |
if selected_games.get("2048"):
|
@@ -234,8 +207,8 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
234 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
235 |
# if selected_games.get("Tetris (complete)"): # Commented out
|
236 |
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
237 |
-
if selected_games.get("Tetris
|
238 |
-
game_dfs["Tetris
|
239 |
if selected_games.get("Ace Attorney"):
|
240 |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
241 |
|
@@ -265,7 +238,7 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
265 |
# if game == "Super Mario Bros": # Commented out
|
266 |
# player_score = df[df["Player"] == player]["Score"].iloc[0]
|
267 |
# rank = len(df[df["Score"] > player_score]) + 1
|
268 |
-
if game == "Super Mario Bros
|
269 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
270 |
rank = len(df[df["Score"] > player_score]) + 1
|
271 |
elif game == "Sokoban":
|
@@ -277,7 +250,7 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
277 |
elif game == "Candy Crush":
|
278 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
279 |
rank = len(df[df["Score"] > player_score]) + 1
|
280 |
-
elif game in ["Tetris
|
281 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
282 |
rank = len(df[df["Score"] > player_score]) + 1
|
283 |
elif game == "Ace Attorney":
|
@@ -329,8 +302,8 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
329 |
# Get DataFrames for selected games
|
330 |
# if selected_games.get("Super Mario Bros"): # Commented out
|
331 |
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
332 |
-
if selected_games.get("Super Mario Bros
|
333 |
-
game_dfs["Super Mario Bros
|
334 |
if selected_games.get("Sokoban"):
|
335 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
336 |
if selected_games.get("2048"):
|
@@ -339,8 +312,8 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
339 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
340 |
# if selected_games.get("Tetris (complete)"): # Commented out
|
341 |
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
342 |
-
if selected_games.get("Tetris
|
343 |
-
game_dfs["Tetris
|
344 |
if selected_games.get("Ace Attorney"):
|
345 |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
346 |
|
@@ -365,7 +338,7 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
365 |
if player in df["Player"].values:
|
366 |
# if game == "Super Mario Bros": # Commented out
|
367 |
# player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
368 |
-
if game == "Super Mario Bros
|
369 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
370 |
elif game == "Sokoban":
|
371 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
@@ -373,7 +346,7 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
373 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
374 |
elif game == "Candy Crush":
|
375 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
376 |
-
elif game in ["Tetris
|
377 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
378 |
elif game == "Ace Attorney":
|
379 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
|
|
5 |
# Define game order
|
6 |
GAME_ORDER = [
|
7 |
# "Super Mario Bros", # Commented out
|
8 |
+
"Super Mario Bros",
|
9 |
"Sokoban",
|
10 |
"2048",
|
11 |
"Candy Crush",
|
12 |
# "Tetris (complete)", # Commented out
|
13 |
+
"Tetris",
|
14 |
"Ace Attorney"
|
15 |
]
|
16 |
|
|
|
31 |
else:
|
32 |
return "unknown"
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def get_sokoban_leaderboard(rank_data):
|
36 |
data = rank_data.get("Sokoban", {}).get("results", [])
|
|
|
129 |
df = df.sort_values("Score", ascending=False)
|
130 |
return df
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
def get_tetris_planning_leaderboard(rank_data):
|
133 |
+
data = rank_data.get("Tetris", {}).get("results", [])
|
134 |
df = pd.DataFrame(data)
|
135 |
df = df.rename(columns={
|
136 |
"model": "Player",
|
|
|
155 |
df = df.rename(columns={
|
156 |
"model": "Player",
|
157 |
"score": "Score",
|
158 |
+
"progress": "Progress"
|
|
|
159 |
})
|
160 |
df["Organization"] = df["Player"].apply(get_organization)
|
161 |
|
162 |
+
# Define columns to keep
|
163 |
+
columns_to_keep = ["Player", "Organization", "Score", "Progress"]
|
164 |
# Filter to only columns that actually exist in the DataFrame after renaming
|
165 |
df_columns = [col for col in columns_to_keep if col in df.columns]
|
166 |
df = df[df_columns]
|
|
|
171 |
return df
|
172 |
|
173 |
def get_mario_planning_leaderboard(rank_data):
|
174 |
+
data = rank_data.get("Super Mario Bros", {}).get("results", [])
|
175 |
df = pd.DataFrame(data)
|
176 |
df = df.rename(columns={
|
177 |
"model": "Player",
|
|
|
197 |
# Get DataFrames for selected games
|
198 |
# if selected_games.get("Super Mario Bros"): # Commented out
|
199 |
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
200 |
+
if selected_games.get("Super Mario Bros"):
|
201 |
+
game_dfs["Super Mario Bros"] = get_mario_planning_leaderboard(rank_data)
|
202 |
if selected_games.get("Sokoban"):
|
203 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
204 |
if selected_games.get("2048"):
|
|
|
207 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
208 |
# if selected_games.get("Tetris (complete)"): # Commented out
|
209 |
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
210 |
+
if selected_games.get("Tetris"):
|
211 |
+
game_dfs["Tetris"] = get_tetris_planning_leaderboard(rank_data)
|
212 |
if selected_games.get("Ace Attorney"):
|
213 |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
214 |
|
|
|
238 |
# if game == "Super Mario Bros": # Commented out
|
239 |
# player_score = df[df["Player"] == player]["Score"].iloc[0]
|
240 |
# rank = len(df[df["Score"] > player_score]) + 1
|
241 |
+
if game == "Super Mario Bros":
|
242 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
243 |
rank = len(df[df["Score"] > player_score]) + 1
|
244 |
elif game == "Sokoban":
|
|
|
250 |
elif game == "Candy Crush":
|
251 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
252 |
rank = len(df[df["Score"] > player_score]) + 1
|
253 |
+
elif game in ["Tetris"]:
|
254 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
255 |
rank = len(df[df["Score"] > player_score]) + 1
|
256 |
elif game == "Ace Attorney":
|
|
|
302 |
# Get DataFrames for selected games
|
303 |
# if selected_games.get("Super Mario Bros"): # Commented out
|
304 |
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
|
305 |
+
if selected_games.get("Super Mario Bros"):
|
306 |
+
game_dfs["Super Mario Bros"] = get_mario_planning_leaderboard(rank_data)
|
307 |
if selected_games.get("Sokoban"):
|
308 |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
|
309 |
if selected_games.get("2048"):
|
|
|
312 |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
|
313 |
# if selected_games.get("Tetris (complete)"): # Commented out
|
314 |
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
315 |
+
if selected_games.get("Tetris"):
|
316 |
+
game_dfs["Tetris"] = get_tetris_planning_leaderboard(rank_data)
|
317 |
if selected_games.get("Ace Attorney"):
|
318 |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
319 |
|
|
|
338 |
if player in df["Player"].values:
|
339 |
# if game == "Super Mario Bros": # Commented out
|
340 |
# player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
341 |
+
if game == "Super Mario Bros":
|
342 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
343 |
elif game == "Sokoban":
|
344 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
|
|
346 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
347 |
elif game == "Candy Crush":
|
348 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
349 |
+
elif game in ["Tetris"]:
|
350 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
351 |
elif game == "Ace Attorney":
|
352 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
rank_data_03_25_2025.json
CHANGED
@@ -1,112 +1,71 @@
|
|
1 |
{
|
2 |
"Super Mario Bros": {
|
3 |
-
"runs": 5,
|
4 |
-
"results": [
|
5 |
-
{
|
6 |
-
"model": "claude-3-7-sonnet-20250219",
|
7 |
-
"score": 710,
|
8 |
-
"progress": "1-1",
|
9 |
-
"time_s": 64.2
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"model": "gpt-4.1-2025-04-14",
|
13 |
-
"score": 740,
|
14 |
-
"progress": "1-1",
|
15 |
-
"time_s": 68.6
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"model": "gpt-4o-2024-11-20",
|
19 |
-
"score": 560,
|
20 |
-
"progress": "1-1",
|
21 |
-
"time_s": 58.6
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"model": "gemini-2.0-flash",
|
25 |
-
"score": 320,
|
26 |
-
"progress": "1-1",
|
27 |
-
"time_s": 51.8
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"model": "claude-3-5-haiku-20241022",
|
31 |
-
"score": 140,
|
32 |
-
"progress": "1-1",
|
33 |
-
"time_s": 76.4
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"model": "gpt-4.5-preview-2025-02-27",
|
37 |
-
"score": 160,
|
38 |
-
"progress": "1-1",
|
39 |
-
"time_s": 62.8
|
40 |
-
}
|
41 |
-
]
|
42 |
-
},
|
43 |
-
"Super Mario Bros (planning only)": {
|
44 |
"runs": 3,
|
45 |
"results": [
|
46 |
{
|
47 |
-
"model": "claude-3-5-sonnet-20241022",
|
48 |
"score": 1267.7,
|
49 |
-
"detail_data":
|
50 |
"progress": "1-1"
|
51 |
},
|
52 |
{
|
53 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
54 |
"score": 1418.7,
|
55 |
-
"detail_data":
|
56 |
"progress": "1-1"
|
57 |
},
|
58 |
{
|
59 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
60 |
"score": 1385.0,
|
61 |
-
"detail_data":
|
62 |
"progress": "1-1"
|
63 |
},
|
64 |
{
|
65 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
66 |
"score": 1498.3,
|
67 |
-
"detail_data":
|
68 |
"progress": "1-1"
|
69 |
},
|
70 |
{
|
71 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
72 |
"score": 1468.7,
|
73 |
-
"detail_data":
|
74 |
"progress": "1-1"
|
75 |
},
|
76 |
{
|
77 |
-
"model": "gpt-4.1-2025-04-14",
|
78 |
"score": 2126.3,
|
79 |
-
"detail_data":
|
80 |
"progress": "1-1"
|
81 |
},
|
82 |
{
|
83 |
-
"model": "gpt-4o-2024-11-20",
|
84 |
"score": 2047.3,
|
85 |
-
"detail_data":
|
86 |
"progress": "1-1"
|
87 |
},
|
88 |
{
|
89 |
-
"model": "o1-2024-12-17",
|
90 |
"score": 855,
|
91 |
-
"detail_data":
|
92 |
"progress": "1-1"
|
93 |
},
|
94 |
{
|
95 |
-
"model": "o3-2025-04-16",
|
96 |
"score": 3445,
|
97 |
-
"detail_data":
|
98 |
"progress": "1-1"
|
99 |
},
|
100 |
{
|
101 |
-
"model": "o4-mini-2025-04-16",
|
102 |
"score": 1448.0,
|
103 |
-
"detail_data":
|
104 |
"progress": "1-1"
|
105 |
},
|
106 |
{
|
107 |
-
"model": "
|
108 |
"score": 986.97,
|
109 |
-
"detail_data":
|
110 |
"progress": "1-1"
|
111 |
}
|
112 |
]
|
@@ -115,192 +74,207 @@
|
|
115 |
"runs": 3,
|
116 |
"results": [
|
117 |
{
|
118 |
-
"model": "claude-3-5-sonnet-20241022",
|
119 |
-
"score":
|
120 |
-
"details": "1352
|
121 |
-
"highest_tail":
|
122 |
},
|
123 |
{
|
124 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
125 |
-
"score":
|
126 |
-
"details": "2560
|
127 |
"highest_tail": 256
|
128 |
},
|
129 |
{
|
130 |
-
"model": "deepseek-r1",
|
131 |
-
"score":
|
132 |
-
"details": "700
|
133 |
-
"highest_tail":
|
134 |
},
|
135 |
{
|
136 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
137 |
-
"score":
|
138 |
-
"details": "1304
|
139 |
"highest_tail": 256
|
140 |
},
|
141 |
{
|
142 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
143 |
-
"score":
|
144 |
-
"details": "5300
|
145 |
-
"highest_tail":
|
146 |
},
|
147 |
{
|
148 |
-
"model": "grok-3-mini-beta (thinking)",
|
149 |
-
"score":
|
150 |
-
"details": "6412
|
151 |
-
"highest_tail":
|
152 |
},
|
153 |
{
|
154 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
155 |
-
"score":
|
156 |
-
"details": "1404
|
157 |
"highest_tail": 128
|
158 |
},
|
159 |
{
|
160 |
-
"model": "gpt-4.1-2025-04-14",
|
161 |
-
"score":
|
162 |
-
"details": "1156
|
163 |
-
"highest_tail":
|
164 |
},
|
165 |
{
|
166 |
-
"model": "gpt-4o-2024-11-20",
|
167 |
-
"score":
|
168 |
-
"details": "1604
|
169 |
"highest_tail": 256
|
170 |
},
|
171 |
{
|
172 |
-
"model": "o1-2024-12-17",
|
173 |
-
"score":
|
174 |
-
"details": "
|
175 |
"highest_tail": 512
|
176 |
},
|
177 |
{
|
178 |
-
"model": "o1-mini-2024-09-12",
|
179 |
-
"score":
|
180 |
-
"details": "
|
181 |
"highest_tail": 256
|
182 |
},
|
183 |
{
|
184 |
-
"model": "o3-2025-04-16",
|
185 |
-
"score":
|
186 |
"details": "7120",
|
187 |
"highest_tail": 512
|
188 |
},
|
189 |
{
|
190 |
-
"model": "o4-mini-2025-04-16",
|
191 |
-
"score":
|
192 |
-
"details": "4928
|
193 |
-
"highest_tail":
|
194 |
},
|
195 |
{
|
196 |
-
"model": "
|
197 |
-
"score":
|
198 |
"details": "",
|
199 |
"highest_tail": 128
|
200 |
-
}
|
201 |
-
]
|
202 |
-
},
|
203 |
-
"Tetris (complete)": {
|
204 |
-
"runs": 3,
|
205 |
-
"results": [
|
206 |
{
|
207 |
-
"model": "claude-
|
208 |
-
"score":
|
209 |
-
"
|
210 |
-
"
|
211 |
},
|
212 |
{
|
213 |
-
"model": "claude-
|
214 |
-
"score":
|
215 |
-
"
|
216 |
-
"
|
217 |
},
|
218 |
{
|
219 |
-
"model": "
|
220 |
-
"score":
|
221 |
-
"
|
222 |
-
"
|
223 |
},
|
224 |
{
|
225 |
-
"model": "
|
226 |
-
"score":
|
227 |
-
"
|
228 |
-
"
|
229 |
}
|
230 |
]
|
231 |
},
|
232 |
-
"Tetris
|
233 |
"runs": 3,
|
234 |
"results": [
|
235 |
{
|
236 |
-
"model": "claude-3-5-sonnet-20241022",
|
237 |
"score": 14.7,
|
238 |
-
"details": "16
|
239 |
},
|
240 |
{
|
241 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
242 |
"score": 16.3,
|
243 |
-
"details": "19
|
244 |
},
|
245 |
{
|
246 |
-
"model": "deepseek-r1",
|
247 |
"score": 14.3,
|
248 |
-
"details": "15
|
249 |
},
|
250 |
{
|
251 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
252 |
"score": 16.3,
|
253 |
-
"details": "20
|
254 |
},
|
255 |
{
|
256 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
257 |
"score": 23.3,
|
258 |
-
"details": "23
|
259 |
},
|
260 |
{
|
261 |
-
"model": "grok-3-mini-beta (thinking)",
|
262 |
"score": 21.3,
|
263 |
-
"details": "20
|
264 |
},
|
265 |
{
|
266 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
267 |
"score": 10.3,
|
268 |
-
"details": "9
|
269 |
},
|
270 |
{
|
271 |
-
"model": "gpt-4.1-2025-04-14",
|
272 |
"score": 13.7,
|
273 |
-
"details": "13
|
274 |
},
|
275 |
{
|
276 |
-
"model": "gpt-4o-2024-11-20",
|
277 |
"score": 14,
|
278 |
-
"details": "18
|
279 |
},
|
280 |
{
|
281 |
-
"model": "o1-2024-12-17",
|
282 |
"score": 35,
|
283 |
"details": "35"
|
284 |
},
|
285 |
{
|
286 |
-
"model": "o1-mini-2024-09-12",
|
287 |
"score": 11.7,
|
288 |
-
"details": "11
|
289 |
},
|
290 |
{
|
291 |
-
"model": "o3-2025-04-16",
|
292 |
"score": 42,
|
293 |
"details": "42"
|
294 |
},
|
295 |
{
|
296 |
-
"model": "o4-mini-2025-04-16",
|
297 |
"score": 25.3,
|
298 |
-
"details": "22
|
299 |
},
|
300 |
{
|
301 |
-
"model": "
|
302 |
"score": 10.2,
|
303 |
"details": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
}
|
305 |
]
|
306 |
},
|
@@ -308,74 +282,94 @@
|
|
308 |
"runs": 3,
|
309 |
"results": [
|
310 |
{
|
311 |
-
"model": "claude-3-5-sonnet-20241022",
|
312 |
"score": 106,
|
313 |
-
"details": "92
|
314 |
},
|
315 |
{
|
316 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
317 |
"score": 484,
|
318 |
-
"details": "535
|
319 |
},
|
320 |
{
|
321 |
-
"model": "deepseek-r1",
|
322 |
"score": 447.3,
|
323 |
-
"details": "409
|
324 |
},
|
325 |
{
|
326 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
327 |
"score": 334.7,
|
328 |
-
"details": "259
|
329 |
},
|
330 |
{
|
331 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
332 |
"score": 416.3,
|
333 |
-
"details": "411
|
334 |
},
|
335 |
{
|
336 |
-
"model": "grok-3-mini-beta (thinking)",
|
337 |
"score": 254,
|
338 |
-
"details": "299
|
339 |
},
|
340 |
{
|
341 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
342 |
"score": 128.7,
|
343 |
-
"details": "67
|
344 |
},
|
345 |
{
|
346 |
-
"model": "gpt-4.1-2025-04-14",
|
347 |
"score": 182,
|
348 |
-
"details": "163
|
349 |
},
|
350 |
{
|
351 |
-
"model": "gpt-4o-2024-11-20",
|
352 |
"score": 147.3,
|
353 |
-
"details": "131
|
354 |
},
|
355 |
{
|
356 |
-
"model": "o1-2024-12-17",
|
357 |
"score": 159,
|
358 |
"details": "159"
|
359 |
},
|
360 |
{
|
361 |
-
"model": "o1-mini-2024-09-12",
|
362 |
"score": 48,
|
363 |
-
"details": "21
|
364 |
},
|
365 |
{
|
366 |
-
"model": "o3-2025-04-16",
|
367 |
"score": 647,
|
368 |
"details": "647"
|
369 |
},
|
370 |
{
|
371 |
-
"model": "o4-mini-2025-04-16",
|
372 |
"score": 487.3,
|
373 |
-
"details": "259
|
374 |
},
|
375 |
{
|
376 |
-
"model": "
|
377 |
"score": 116.5,
|
378 |
"details": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
}
|
380 |
]
|
381 |
},
|
@@ -383,88 +377,108 @@
|
|
383 |
"runs": 3,
|
384 |
"results": [
|
385 |
{
|
386 |
-
"model": "claude-3-5-sonnet-20241022",
|
387 |
"score": 0,
|
388 |
-
"detail_box_on_target":
|
389 |
-
"cracked_levels": "0
|
390 |
},
|
391 |
{
|
392 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
393 |
"score": 2.33,
|
394 |
-
"detail_box_on_target":
|
395 |
-
"cracked_levels": "1
|
396 |
},
|
397 |
{
|
398 |
-
"model": "deepseek-r1",
|
399 |
"score": 1.33,
|
400 |
-
"detail_box_on_target":
|
401 |
-
"cracked_levels": "1
|
402 |
},
|
403 |
{
|
404 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
405 |
"score": 1.67,
|
406 |
-
"detail_box_on_target":
|
407 |
-
"cracked_levels": "2
|
408 |
},
|
409 |
{
|
410 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
411 |
"score": 4.33,
|
412 |
-
"detail_box_on_target":
|
413 |
-
"cracked_levels": "2
|
414 |
},
|
415 |
{
|
416 |
-
"model": "grok-3-mini-beta (thinking)",
|
417 |
"score": 5.67,
|
418 |
-
"detail_box_on_target":
|
419 |
-
"cracked_levels": "3
|
420 |
},
|
421 |
{
|
422 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
423 |
"score": 0,
|
424 |
-
"detail_box_on_target":
|
425 |
-
"cracked_levels": "0
|
426 |
},
|
427 |
{
|
428 |
-
"model": "gpt-4.1-2025-04-14",
|
429 |
"score": 0,
|
430 |
-
"detail_box_on_target":
|
431 |
-
"cracked_levels": "0
|
432 |
},
|
433 |
{
|
434 |
-
"model": "gpt-4o-2024-11-20",
|
435 |
"score": 0,
|
436 |
-
"detail_box_on_target":
|
437 |
-
"cracked_levels": "0
|
438 |
},
|
439 |
{
|
440 |
-
"model": "o1-2024-12-17",
|
441 |
"score": 2.33,
|
442 |
-
"detail_box_on_target":
|
443 |
-
"cracked_levels": "1
|
444 |
},
|
445 |
{
|
446 |
-
"model": "o1-mini-2024-09-12",
|
447 |
"score": 1.33,
|
448 |
-
"detail_box_on_target":
|
449 |
-
"cracked_levels": "0
|
450 |
},
|
451 |
{
|
452 |
-
"model": "o3-2025-04-16",
|
453 |
"score": 8,
|
454 |
-
"detail_box_on_target":
|
455 |
-
"cracked_levels": "5
|
456 |
},
|
457 |
{
|
458 |
-
"model": "o4-mini-2025-04-16",
|
459 |
"score": 5.33,
|
460 |
-
"detail_box_on_target":
|
461 |
-
"cracked_levels": "2
|
462 |
},
|
463 |
{
|
464 |
-
"model": "
|
465 |
"score": 0,
|
466 |
-
"detail_box_on_target":
|
467 |
"cracked_levels": "0,0,0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
}
|
469 |
]
|
470 |
},
|
@@ -472,88 +486,103 @@
|
|
472 |
"runs": 1,
|
473 |
"results": [
|
474 |
{
|
475 |
-
"model": "claude-3-5-sonnet-20241022",
|
476 |
"score": 2,
|
477 |
"progress": "1:2/5",
|
478 |
"evaluator result": "1/3"
|
479 |
},
|
480 |
{
|
481 |
-
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
482 |
"score": 7,
|
483 |
"progress": "2:2/9",
|
484 |
"evaluator result": "5/11"
|
485 |
},
|
486 |
{
|
487 |
-
"model": "deepseek-r1",
|
488 |
"score": 0,
|
489 |
"progress": "0",
|
490 |
"evaluator result": "1/5"
|
491 |
},
|
492 |
{
|
493 |
-
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
494 |
"score": 4,
|
495 |
"progress": "1:4/5",
|
496 |
"evaluator result": "1/7"
|
497 |
},
|
498 |
{
|
499 |
-
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
500 |
"score": 7,
|
501 |
"progress": "2:2/9",
|
502 |
"evaluator result": "2/3"
|
503 |
},
|
504 |
{
|
505 |
-
"model": "grok-3-mini-beta (thinking)",
|
506 |
"score": 0,
|
507 |
"progress": "0",
|
508 |
"evaluator result": "0"
|
509 |
},
|
510 |
{
|
511 |
-
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
512 |
"score": 0,
|
513 |
"progress": "0",
|
514 |
"evaluator result": "0"
|
515 |
},
|
516 |
{
|
517 |
-
"model": "gpt-4.1-2025-04-14",
|
518 |
"score": 2,
|
519 |
"progress": "1:2/5",
|
520 |
"evaluator result": "2/3"
|
521 |
},
|
522 |
{
|
523 |
-
"model": "gpt-4o-2024-11-20",
|
524 |
"score": 0,
|
525 |
"progress": "0",
|
526 |
"evaluator result": "0"
|
527 |
},
|
528 |
{
|
529 |
-
"model": "o1-2024-12-17",
|
530 |
"score": 16,
|
531 |
"progress": "3: 2/8",
|
532 |
"evaluator result": "6/11"
|
533 |
},
|
534 |
{
|
535 |
-
"model": "o1-mini-2024-09-12",
|
536 |
"score": 0,
|
537 |
"progress": "0",
|
538 |
"evaluator result": "1/5"
|
539 |
},
|
540 |
{
|
541 |
-
"model": "o3-2025-04-16",
|
542 |
"score": 16,
|
543 |
"progress": "3: 2/8",
|
544 |
"evaluator result": "1/2"
|
545 |
},
|
546 |
{
|
547 |
-
"model": "o4-mini-2025-04-16",
|
548 |
"score": 4,
|
549 |
"progress": "1:4/5",
|
550 |
"evaluator result": "2/5"
|
551 |
},
|
552 |
{
|
553 |
-
"model": "
|
554 |
"score": 0,
|
555 |
"progress": "0",
|
556 |
"evaluator result": "0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
}
|
558 |
]
|
559 |
}
|
|
|
1 |
{
|
2 |
"Super Mario Bros": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"runs": 3,
|
4 |
"results": [
|
5 |
{
|
6 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
7 |
"score": 1267.7,
|
8 |
+
"detail_data":"709,1532,1562",
|
9 |
"progress": "1-1"
|
10 |
},
|
11 |
{
|
12 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
13 |
"score": 1418.7,
|
14 |
+
"detail_data":"2015,709,1532",
|
15 |
"progress": "1-1"
|
16 |
},
|
17 |
{
|
18 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
19 |
"score": 1385.0,
|
20 |
+
"detail_data":"1672,1266,1247",
|
21 |
"progress": "1-1"
|
22 |
},
|
23 |
{
|
24 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
25 |
"score": 1498.3,
|
26 |
+
"detail_data":"1561,1271,1663",
|
27 |
"progress": "1-1"
|
28 |
},
|
29 |
{
|
30 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
31 |
"score": 1468.7,
|
32 |
+
"detail_data":"898,2008,1500",
|
33 |
"progress": "1-1"
|
34 |
},
|
35 |
{
|
36 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
37 |
"score": 2126.3,
|
38 |
+
"detail_data":"1531,722,4126",
|
39 |
"progress": "1-1"
|
40 |
},
|
41 |
{
|
42 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
43 |
"score": 2047.3,
|
44 |
+
"detail_data":"2017,2590,1535",
|
45 |
"progress": "1-1"
|
46 |
},
|
47 |
{
|
48 |
+
"model": "gamingagent + o1-2024-12-17",
|
49 |
"score": 855,
|
50 |
+
"detail_data":"855",
|
51 |
"progress": "1-1"
|
52 |
},
|
53 |
{
|
54 |
+
"model": "gamingagent + o3-2025-04-16",
|
55 |
"score": 3445,
|
56 |
+
"detail_data":"3445",
|
57 |
"progress": "1-1"
|
58 |
},
|
59 |
{
|
60 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
61 |
"score": 1448.0,
|
62 |
+
"detail_data":"1525,1263,1556",
|
63 |
"progress": "1-1"
|
64 |
},
|
65 |
{
|
66 |
+
"model": "random (x30)",
|
67 |
"score": 986.97,
|
68 |
+
"detail_data":"986.97",
|
69 |
"progress": "1-1"
|
70 |
}
|
71 |
]
|
|
|
74 |
"runs": 3,
|
75 |
"results": [
|
76 |
{
|
77 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
78 |
+
"score": 1914.67,
|
79 |
+
"details": "1352,2860,1532",
|
80 |
+
"highest_tail": 256
|
81 |
},
|
82 |
{
|
83 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
84 |
+
"score": 2624,
|
85 |
+
"details": "2560,3224,2088",
|
86 |
"highest_tail": 256
|
87 |
},
|
88 |
{
|
89 |
+
"model": "gamingagent + deepseek-r1-0120",
|
90 |
+
"score": 1873.33,
|
91 |
+
"details": "700,1240,3680",
|
92 |
+
"highest_tail": 256
|
93 |
},
|
94 |
{
|
95 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
96 |
+
"score": 1697.33,
|
97 |
+
"details": "1304,1316,2472",
|
98 |
"highest_tail": 256
|
99 |
},
|
100 |
{
|
101 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
102 |
+
"score": 3586.67,
|
103 |
+
"details": "5300,2400,3060",
|
104 |
+
"highest_tail": 512
|
105 |
},
|
106 |
{
|
107 |
+
"model": "gamingagent + grok-3-mini-beta (thinking)",
|
108 |
+
"score": 4036,
|
109 |
+
"details": "6412,2492,3204",
|
110 |
+
"highest_tail": 512
|
111 |
},
|
112 |
{
|
113 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
114 |
+
"score": 1586.67,
|
115 |
+
"details": "1404,1272,2084",
|
116 |
"highest_tail": 128
|
117 |
},
|
118 |
{
|
119 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
120 |
+
"score": 1656,
|
121 |
+
"details": "1156,2664,1148",
|
122 |
+
"highest_tail": 256
|
123 |
},
|
124 |
{
|
125 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
126 |
+
"score": 1656,
|
127 |
+
"details": "1604,1284,2080",
|
128 |
"highest_tail": 256
|
129 |
},
|
130 |
{
|
131 |
+
"model": "gamingagent + o1-2024-12-17",
|
132 |
+
"score": 7580,
|
133 |
+
"details": "7580",
|
134 |
"highest_tail": 512
|
135 |
},
|
136 |
{
|
137 |
+
"model": "gamingagent + o1-mini-2024-09-12",
|
138 |
+
"score": 2757.33,
|
139 |
+
"details": "3132,2004,3136",
|
140 |
"highest_tail": 256
|
141 |
},
|
142 |
{
|
143 |
+
"model": "gamingagent + o3-2025-04-16",
|
144 |
+
"score": 7120,
|
145 |
"details": "7120",
|
146 |
"highest_tail": 512
|
147 |
},
|
148 |
{
|
149 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
150 |
+
"score": 4432.0,
|
151 |
+
"details": "4928,5456,2912",
|
152 |
+
"highest_tail": 512
|
153 |
},
|
154 |
{
|
155 |
+
"model": "random (x30)",
|
156 |
+
"score": 1213.33,
|
157 |
"details": "",
|
158 |
"highest_tail": 128
|
159 |
+
},
|
|
|
|
|
|
|
|
|
|
|
160 |
{
|
161 |
+
"model": "gamingagent + claude-opus-4-20250514",
|
162 |
+
"score": 3036.0,
|
163 |
+
"details": "3036.0",
|
164 |
+
"highest_tail": 256
|
165 |
},
|
166 |
{
|
167 |
+
"model": "gamingagent + claude-sonnet-4-20250514",
|
168 |
+
"score": 3136,
|
169 |
+
"details": "2148,2360,4900",
|
170 |
+
"highest_tail": 256
|
171 |
},
|
172 |
{
|
173 |
+
"model": "gamingagent + deepseek-r1-0528",
|
174 |
+
"score": 3330.0,
|
175 |
+
"details": "3260,3400",
|
176 |
+
"highest_tail": 256
|
177 |
},
|
178 |
{
|
179 |
+
"model": "gamingagent + qwen3-235B-A22B-fp8",
|
180 |
+
"score": 2144.0,
|
181 |
+
"details": "1436,2556,2440",
|
182 |
+
"highest_tail": 256
|
183 |
}
|
184 |
]
|
185 |
},
|
186 |
+
"Tetris": {
|
187 |
"runs": 3,
|
188 |
"results": [
|
189 |
{
|
190 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
191 |
"score": 14.7,
|
192 |
+
"details": "16,14,14"
|
193 |
},
|
194 |
{
|
195 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
196 |
"score": 16.3,
|
197 |
+
"details": "19,15,15"
|
198 |
},
|
199 |
{
|
200 |
+
"model": "gamingagent + deepseek-r1-0120",
|
201 |
"score": 14.3,
|
202 |
+
"details": "15,14,14"
|
203 |
},
|
204 |
{
|
205 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
206 |
"score": 16.3,
|
207 |
+
"details": "20,14,15"
|
208 |
},
|
209 |
{
|
210 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
211 |
"score": 23.3,
|
212 |
+
"details": "23,23,24"
|
213 |
},
|
214 |
{
|
215 |
+
"model": "gamingagent + grok-3-mini-beta (thinking)",
|
216 |
"score": 21.3,
|
217 |
+
"details": "20,15,29"
|
218 |
},
|
219 |
{
|
220 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
221 |
"score": 10.3,
|
222 |
+
"details": "9,10,12"
|
223 |
},
|
224 |
{
|
225 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
226 |
"score": 13.7,
|
227 |
+
"details": "13,14,14"
|
228 |
},
|
229 |
{
|
230 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
231 |
"score": 14,
|
232 |
+
"details": "18,11,13"
|
233 |
},
|
234 |
{
|
235 |
+
"model": "gamingagent + o1-2024-12-17",
|
236 |
"score": 35,
|
237 |
"details": "35"
|
238 |
},
|
239 |
{
|
240 |
+
"model": "gamingagent + o1-mini-2024-09-12",
|
241 |
"score": 11.7,
|
242 |
+
"details": "11,11,13"
|
243 |
},
|
244 |
{
|
245 |
+
"model": "gamingagent + o3-2025-04-16",
|
246 |
"score": 42,
|
247 |
"details": "42"
|
248 |
},
|
249 |
{
|
250 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
251 |
"score": 25.3,
|
252 |
+
"details": "22,35,19"
|
253 |
},
|
254 |
{
|
255 |
+
"model": "random (x30)",
|
256 |
"score": 10.2,
|
257 |
"details": ""
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"model": "gamingagent + claude-opus-4-20250514",
|
261 |
+
"score": 20,
|
262 |
+
"details": "17,18,25"
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"model": "gamingagent + claude-sonnet-4-20250514",
|
266 |
+
"score": 19.33,
|
267 |
+
"details": "20,17,21"
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"model": "gamingagent + deepseek-r1-0528",
|
271 |
+
"score": 33.67,
|
272 |
+
"details": "26,34,41"
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"model": "gamingagent + qwen3-235B-A22B-fp8",
|
276 |
+
"score": 11.67,
|
277 |
+
"details": "13,14,8"
|
278 |
}
|
279 |
]
|
280 |
},
|
|
|
282 |
"runs": 3,
|
283 |
"results": [
|
284 |
{
|
285 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
286 |
"score": 106,
|
287 |
+
"details": "92,165,61"
|
288 |
},
|
289 |
{
|
290 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
291 |
"score": 484,
|
292 |
+
"details": "535,428,489"
|
293 |
},
|
294 |
{
|
295 |
+
"model": "gamingagent + deepseek-r1-0120",
|
296 |
"score": 447.3,
|
297 |
+
"details": "409,436,497"
|
298 |
},
|
299 |
{
|
300 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
301 |
"score": 334.7,
|
302 |
+
"details": "259,372,373"
|
303 |
},
|
304 |
{
|
305 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
306 |
"score": 416.3,
|
307 |
+
"details": "411,414,424"
|
308 |
},
|
309 |
{
|
310 |
+
"model": "gamingagent + grok-3-mini-beta (thinking)",
|
311 |
"score": 254,
|
312 |
+
"details": "299,332,131"
|
313 |
},
|
314 |
{
|
315 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
316 |
"score": 128.7,
|
317 |
+
"details": "67,139,180"
|
318 |
},
|
319 |
{
|
320 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
321 |
"score": 182,
|
322 |
+
"details": "163,215,168"
|
323 |
},
|
324 |
{
|
325 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
326 |
"score": 147.3,
|
327 |
+
"details": "131,104,207"
|
328 |
},
|
329 |
{
|
330 |
+
"model": "gamingagent + o1-2024-12-17",
|
331 |
"score": 159,
|
332 |
"details": "159"
|
333 |
},
|
334 |
{
|
335 |
+
"model": "gamingagent + o1-mini-2024-09-12",
|
336 |
"score": 48,
|
337 |
+
"details": "21,86,37"
|
338 |
},
|
339 |
{
|
340 |
+
"model": "gamingagent + o3-2025-04-16",
|
341 |
"score": 647,
|
342 |
"details": "647"
|
343 |
},
|
344 |
{
|
345 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
346 |
"score": 487.3,
|
347 |
+
"details": "259,591,612"
|
348 |
},
|
349 |
{
|
350 |
+
"model": "random (x30)",
|
351 |
"score": 116.5,
|
352 |
"details": ""
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"model": "gamingagent + claude-opus-4-20250514",
|
356 |
+
"score": 464,
|
357 |
+
"details": "593,406,393"
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"model": "gamingagent + claude-sonnet-4-20250514",
|
361 |
+
"score": 478.33,
|
362 |
+
"details": "545,468,422"
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"model": "gamingagent + deepseek-r1-0528",
|
366 |
+
"score": 491.67,
|
367 |
+
"details": "464,463,548"
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"model": "gamingagent + qwen3-235B-A22B-fp8",
|
371 |
+
"score": 363.33,
|
372 |
+
"details": "365,372,353"
|
373 |
}
|
374 |
]
|
375 |
},
|
|
|
377 |
"runs": 3,
|
378 |
"results": [
|
379 |
{
|
380 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
381 |
"score": 0,
|
382 |
+
"detail_box_on_target":"0,0,0",
|
383 |
+
"cracked_levels": "0,0,0"
|
384 |
},
|
385 |
{
|
386 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
387 |
"score": 2.33,
|
388 |
+
"detail_box_on_target":"2,4,1",
|
389 |
+
"cracked_levels": "1,2,0"
|
390 |
},
|
391 |
{
|
392 |
+
"model": "gamingagent + deepseek-r1-0120",
|
393 |
"score": 1.33,
|
394 |
+
"detail_box_on_target":"2,0,2",
|
395 |
+
"cracked_levels": "1,0,1"
|
396 |
},
|
397 |
{
|
398 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
399 |
"score": 1.67,
|
400 |
+
"detail_box_on_target":"3,0,2",
|
401 |
+
"cracked_levels": "2,0,1"
|
402 |
},
|
403 |
{
|
404 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
405 |
"score": 4.33,
|
406 |
+
"detail_box_on_target":"4,4,5",
|
407 |
+
"cracked_levels": "2,2,3"
|
408 |
},
|
409 |
{
|
410 |
+
"model": "gamingagent + grok-3-mini-beta (thinking)",
|
411 |
"score": 5.67,
|
412 |
+
"detail_box_on_target":"5,6,6",
|
413 |
+
"cracked_levels": "3,3,3"
|
414 |
},
|
415 |
{
|
416 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
417 |
"score": 0,
|
418 |
+
"detail_box_on_target":"0,0,0",
|
419 |
+
"cracked_levels": "0,0,0"
|
420 |
},
|
421 |
{
|
422 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
423 |
"score": 0,
|
424 |
+
"detail_box_on_target":"0,0,0",
|
425 |
+
"cracked_levels": "0,0,0"
|
426 |
},
|
427 |
{
|
428 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
429 |
"score": 0,
|
430 |
+
"detail_box_on_target":"0,0,0",
|
431 |
+
"cracked_levels": "0,0,0"
|
432 |
},
|
433 |
{
|
434 |
+
"model": "gamingagent + o1-2024-12-17",
|
435 |
"score": 2.33,
|
436 |
+
"detail_box_on_target":"2,2,3",
|
437 |
+
"cracked_levels": "1,1,2"
|
438 |
},
|
439 |
{
|
440 |
+
"model": "gamingagent + o1-mini-2024-09-12",
|
441 |
"score": 1.33,
|
442 |
+
"detail_box_on_target":"1,2,1",
|
443 |
+
"cracked_levels": "0,1,0"
|
444 |
},
|
445 |
{
|
446 |
+
"model": "gamingagent + o3-2025-04-16",
|
447 |
"score": 8,
|
448 |
+
"detail_box_on_target":"10,6",
|
449 |
+
"cracked_levels": "5,3"
|
450 |
},
|
451 |
{
|
452 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
453 |
"score": 5.33,
|
454 |
+
"detail_box_on_target":"4,6,6",
|
455 |
+
"cracked_levels": "2,2,3"
|
456 |
},
|
457 |
{
|
458 |
+
"model": "random (x30)",
|
459 |
"score": 0,
|
460 |
+
"detail_box_on_target":"0,0,0",
|
461 |
"cracked_levels": "0,0,0"
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"model": "gamingagent + claude-opus-4-20250514",
|
465 |
+
"score": 4,
|
466 |
+
"details": "4,4,4"
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"model": "gamingagent + claude-sonnet-4-20250514",
|
470 |
+
"score": 3,
|
471 |
+
"details": "2,2,5"
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"model": "gamingagent + deepseek-r1-0528",
|
475 |
+
"score": 4.67,
|
476 |
+
"details": "4,4,6"
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"model": "gamingagent + qwen3-235B-A22B-fp8",
|
480 |
+
"score": 2.33,
|
481 |
+
"details": "1,2,4"
|
482 |
}
|
483 |
]
|
484 |
},
|
|
|
486 |
"runs": 1,
|
487 |
"results": [
|
488 |
{
|
489 |
+
"model": "gamingagent + claude-3-5-sonnet-20241022",
|
490 |
"score": 2,
|
491 |
"progress": "1:2/5",
|
492 |
"evaluator result": "1/3"
|
493 |
},
|
494 |
{
|
495 |
+
"model": "gamingagent + claude-3-7-sonnet-20250219 (thinking)",
|
496 |
"score": 7,
|
497 |
"progress": "2:2/9",
|
498 |
"evaluator result": "5/11"
|
499 |
},
|
500 |
{
|
501 |
+
"model": "gamingagent + deepseek-r1-0120",
|
502 |
"score": 0,
|
503 |
"progress": "0",
|
504 |
"evaluator result": "1/5"
|
505 |
},
|
506 |
{
|
507 |
+
"model": "gamingagent + gemini-2.5-flash-preview-04-17 (thinking)",
|
508 |
"score": 4,
|
509 |
"progress": "1:4/5",
|
510 |
"evaluator result": "1/7"
|
511 |
},
|
512 |
{
|
513 |
+
"model": "gamingagent + gemini-2.5-pro-preview-05-06 (thinking)",
|
514 |
"score": 7,
|
515 |
"progress": "2:2/9",
|
516 |
"evaluator result": "2/3"
|
517 |
},
|
518 |
{
|
519 |
+
"model": "gamingagent + grok-3-mini-beta (thinking)",
|
520 |
"score": 0,
|
521 |
"progress": "0",
|
522 |
"evaluator result": "0"
|
523 |
},
|
524 |
{
|
525 |
+
"model": "gamingagent + llama-4-maverick-17b-128e-instruct-fp8",
|
526 |
"score": 0,
|
527 |
"progress": "0",
|
528 |
"evaluator result": "0"
|
529 |
},
|
530 |
{
|
531 |
+
"model": "gamingagent + gpt-4.1-2025-04-14",
|
532 |
"score": 2,
|
533 |
"progress": "1:2/5",
|
534 |
"evaluator result": "2/3"
|
535 |
},
|
536 |
{
|
537 |
+
"model": "gamingagent + gpt-4o-2024-11-20",
|
538 |
"score": 0,
|
539 |
"progress": "0",
|
540 |
"evaluator result": "0"
|
541 |
},
|
542 |
{
|
543 |
+
"model": "gamingagent + o1-2024-12-17",
|
544 |
"score": 16,
|
545 |
"progress": "3: 2/8",
|
546 |
"evaluator result": "6/11"
|
547 |
},
|
548 |
{
|
549 |
+
"model": "gamingagent + o1-mini-2024-09-12",
|
550 |
"score": 0,
|
551 |
"progress": "0",
|
552 |
"evaluator result": "1/5"
|
553 |
},
|
554 |
{
|
555 |
+
"model": "gamingagent + o3-2025-04-16",
|
556 |
"score": 16,
|
557 |
"progress": "3: 2/8",
|
558 |
"evaluator result": "1/2"
|
559 |
},
|
560 |
{
|
561 |
+
"model": "gamingagent + o4-mini-2025-04-16",
|
562 |
"score": 4,
|
563 |
"progress": "1:4/5",
|
564 |
"evaluator result": "2/5"
|
565 |
},
|
566 |
{
|
567 |
+
"model": "random (x30)",
|
568 |
"score": 0,
|
569 |
"progress": "0",
|
570 |
"evaluator result": "0"
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"model": "gamingagent + claude-opus-4-20250514",
|
574 |
+
"score": 6,
|
575 |
+
"details": "6"
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"model": "gamingagent + claude-sonnet-4-20250514",
|
579 |
+
"score": 3.67,
|
580 |
+
"details": "3,4,4"
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"model": "gamingagent + gemini-2.5-flash-preview-05-20",
|
584 |
+
"score": 4.33,
|
585 |
+
"details": "3,4,6"
|
586 |
}
|
587 |
]
|
588 |
}
|
rank_single_model_03_25_2025.json
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Super Mario Bros": {
|
3 |
+
"runs": 3,
|
4 |
+
"results": [
|
5 |
+
{
|
6 |
+
"model": "claude-3-5-sonnet-20241022",
|
7 |
+
"score": 1540.0,
|
8 |
+
"detail_data":"1551,1515,1554",
|
9 |
+
"progress": "1-1"
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
13 |
+
"score": 1430.0,
|
14 |
+
"detail_data":"1532,1515,1243",
|
15 |
+
"progress": "1-1"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
19 |
+
"score": 1540.7,
|
20 |
+
"detail_data":"1794,1270,1558",
|
21 |
+
"progress": "1-1"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
25 |
+
"score": 1025.3,
|
26 |
+
"detail_data":"820,1534,722",
|
27 |
+
"progress": "1-1"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
31 |
+
"score": 786.0,
|
32 |
+
"detail_data":"837,300,1221",
|
33 |
+
"progress": "1-1"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"model": "gpt-4.1-2025-04-14",
|
37 |
+
"score": 1991.3,
|
38 |
+
"detail_data":"1563,1257,3154",
|
39 |
+
"progress": "1-1"
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"model": "gpt-4o-2024-11-20",
|
43 |
+
"score": 1028.3,
|
44 |
+
"detail_data":"1565,297,1223",
|
45 |
+
"progress": "1-1"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"model": "o1-2024-12-17",
|
49 |
+
"score": 1434.0,
|
50 |
+
"detail_data":"1434",
|
51 |
+
"progress": "1-1"
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"model": "o3-2025-04-16",
|
55 |
+
"score": 1955.0,
|
56 |
+
"detail_data":"1955",
|
57 |
+
"progress": "1-1"
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"model": "o4-mini-2025-04-16",
|
61 |
+
"score": 1348.3,
|
62 |
+
"detail_data":"1554,1245,1246",
|
63 |
+
"progress": "1-1"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"model": "random (x30)",
|
67 |
+
"score": 986.97,
|
68 |
+
"detail_data":"986.97",
|
69 |
+
"progress": "1-1"
|
70 |
+
}
|
71 |
+
]
|
72 |
+
},
|
73 |
+
"2048": {
|
74 |
+
"runs": 3,
|
75 |
+
"results": [
|
76 |
+
{
|
77 |
+
"model": "claude-3-5-sonnet-20241022",
|
78 |
+
"score": 17.0,
|
79 |
+
"details": "188,20,44",
|
80 |
+
"highest_tail": 32
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
84 |
+
"score": 126.3,
|
85 |
+
"details": "1596,4256,3008",
|
86 |
+
"highest_tail": 512
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
90 |
+
"score": 97.7,
|
91 |
+
"details": "2228,1424,1564",
|
92 |
+
"highest_tail": 256
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
96 |
+
"score": 120.5,
|
97 |
+
"details": "5784,3544,3704",
|
98 |
+
"highest_tail": 512
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
102 |
+
"score": 44.6,
|
103 |
+
"details": "16,56,12",
|
104 |
+
"highest_tail": 64
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"model": "gpt-4.1-2025-04-14",
|
108 |
+
"score": 94.5,
|
109 |
+
"details": "264,500,2576",
|
110 |
+
"highest_tail": 256
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"model": "gpt-4o-2024-11-20",
|
114 |
+
"score": 70.4,
|
115 |
+
"details": "292,196,40",
|
116 |
+
"highest_tail": 32
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"model": "o1-2024-12-17",
|
120 |
+
"score": 128.1,
|
121 |
+
"details": "7176",
|
122 |
+
"highest_tail": 512
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"model": "o3-2025-04-16",
|
126 |
+
"score": 128.2,
|
127 |
+
"details": "7220",
|
128 |
+
"highest_tail": 512
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"model": "o4-mini-2025-04-16",
|
132 |
+
"score": 97.6,
|
133 |
+
"details": "3004,84,2560",
|
134 |
+
"highest_tail": 256
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"model": "random (x30)",
|
138 |
+
"score": 100.4,
|
139 |
+
"details": "",
|
140 |
+
"highest_tail": 128
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"model": "gemini-2.5-flash-preview-05-20",
|
144 |
+
"score": 2750,
|
145 |
+
"details": "3128, 2758, 2364",
|
146 |
+
"highest_tail": 128
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"model": "claude-sonnet-4-20250514",
|
150 |
+
"score": 3844,
|
151 |
+
"details": "3280,5024,3228",
|
152 |
+
"highest_tail": 512
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"model": "gemini-2.5-pro-preview-06-05",
|
156 |
+
"score": 1,
|
157 |
+
"details": "3232,x,1628",
|
158 |
+
"highest_tail": 128
|
159 |
+
}
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"Tetris": {
|
163 |
+
"runs": 3,
|
164 |
+
"results": [
|
165 |
+
{
|
166 |
+
"model": "claude-3-5-sonnet-20241022",
|
167 |
+
"score": 12.3,
|
168 |
+
"details": "10,15,12"
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
172 |
+
"score": 13.0,
|
173 |
+
"details": "13,13,13"
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
177 |
+
"score": 19.0,
|
178 |
+
"details": "15,18,24"
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
182 |
+
"score": 12.3,
|
183 |
+
"details": "15,9,13"
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
187 |
+
"score": 11.7,
|
188 |
+
"details": "13,11,11"
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"model": "gpt-4.1-2025-04-14",
|
192 |
+
"score": 13.0,
|
193 |
+
"details": "11,14,14"
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"model": "gpt-4o-2024-11-20",
|
197 |
+
"score": 14.7,
|
198 |
+
"details": "14,17,13"
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"model": "o1-2024-12-17",
|
202 |
+
"score": 13.0,
|
203 |
+
"details": "13.0"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"model": "o3-2025-04-16",
|
207 |
+
"score": 31.0,
|
208 |
+
"details": "31.0"
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"model": "o4-mini-2025-04-16",
|
212 |
+
"score": 15.0,
|
213 |
+
"details": "14,12,19"
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"model": "random (x30)",
|
217 |
+
"score": 10.2,
|
218 |
+
"details": ""
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"model": "gemini-2.5-flash-preview-05-20",
|
222 |
+
"score": 16,
|
223 |
+
"details": "15,15,18"
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"model": "claude-sonnet-4-20250514",
|
227 |
+
"score": 13.67,
|
228 |
+
"details": "15,12,14"
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"model": "gemini-2.5-pro-preview-06-05",
|
232 |
+
"score": 12,
|
233 |
+
"details": "12"
|
234 |
+
}
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"Candy Crush": {
|
238 |
+
"runs": 3,
|
239 |
+
"results": [
|
240 |
+
{
|
241 |
+
"model": "claude-3-5-sonnet-20241022",
|
242 |
+
"score": 17.0,
|
243 |
+
"details": "15,36,0"
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
247 |
+
"score": 126.3,
|
248 |
+
"details": "148,182,49"
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
252 |
+
"score": 97.7,
|
253 |
+
"details": "60,101,132"
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
257 |
+
"score": 177.3,
|
258 |
+
"details": "117,169,246"
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
262 |
+
"score": 32.3,
|
263 |
+
"details": "18,79,0"
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"model": "gpt-4.1-2025-04-14",
|
267 |
+
"score": 101.0,
|
268 |
+
"details": "13,238,52"
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"model": "gpt-4o-2024-11-20",
|
272 |
+
"score": 59.0,
|
273 |
+
"details": "29,122,26"
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"model": "o1-2024-12-17",
|
277 |
+
"score": 90.0,
|
278 |
+
"details": "90.0"
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"model": "o3-2025-04-16",
|
282 |
+
"score": 106.0,
|
283 |
+
"details": "106.0"
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"model": "o4-mini-2025-04-16",
|
287 |
+
"score": 110.7,
|
288 |
+
"details": "259,591,612"
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"model": "random (x30)",
|
292 |
+
"score": 116.5,
|
293 |
+
"details": ""
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"model": "gemini-2.5-flash-preview-05-20",
|
297 |
+
"score": 254,
|
298 |
+
"details": "276,191,295"
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"model": "claude-sonnet-4-20250514",
|
302 |
+
"score": 557.67,
|
303 |
+
"details": "503, 557, 613"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"model": "gemini-2.5-pro-preview-06-05",
|
307 |
+
"score": 496,
|
308 |
+
"details": "461,556,471"
|
309 |
+
}
|
310 |
+
]
|
311 |
+
},
|
312 |
+
"Sokoban": {
|
313 |
+
"runs": 3,
|
314 |
+
"results": [
|
315 |
+
{
|
316 |
+
"model": "claude-3-5-sonnet-20241022",
|
317 |
+
"score": 0,
|
318 |
+
"detail_box_on_target":"0,0,0",
|
319 |
+
"cracked_levels": "0,0,0"
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
323 |
+
"score": 0,
|
324 |
+
"detail_box_on_target":"0,0,0",
|
325 |
+
"cracked_levels": "0,0,0"
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
329 |
+
"score": 0,
|
330 |
+
"detail_box_on_target":"0,0,0",
|
331 |
+
"cracked_levels": "0,0,0"
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
335 |
+
"score": 1,
|
336 |
+
"detail_box_on_target":"1,1,1",
|
337 |
+
"cracked_levels": "0,0,0"
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
341 |
+
"score": 0,
|
342 |
+
"detail_box_on_target":"0,0,0",
|
343 |
+
"cracked_levels": "0,0,0"
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"model": "gpt-4.1-2025-04-14",
|
347 |
+
"score": 0,
|
348 |
+
"detail_box_on_target":"0,0,0",
|
349 |
+
"cracked_levels": "0,0,0"
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"model": "gpt-4o-2024-11-20",
|
353 |
+
"score": 0,
|
354 |
+
"detail_box_on_target":"0,0,0",
|
355 |
+
"cracked_levels": "0,0,0"
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"model": "o1-2024-12-17",
|
359 |
+
"score": 0,
|
360 |
+
"detail_box_on_target":"0",
|
361 |
+
"cracked_levels": "0"
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"model": "o3-2025-04-16",
|
365 |
+
"score": 2,
|
366 |
+
"detail_box_on_target":"2",
|
367 |
+
"cracked_levels": "1"
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"model": "o4-mini-2025-04-16",
|
371 |
+
"score": 1.33,
|
372 |
+
"detail_box_on_target":"1,2,1",
|
373 |
+
"cracked_levels": "0,1,0"
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"model": "random (x30)",
|
377 |
+
"score": 0,
|
378 |
+
"detail_box_on_target":"0,0,0",
|
379 |
+
"cracked_levels": "0,0,0"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"model": "claude-sonnet-4-20250514",
|
383 |
+
"score": 0,
|
384 |
+
"detail_box_on_target":"0,0,0",
|
385 |
+
"cracked_levels": "0,0,0"
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"model": "gemini-2.5-pro-preview-06-05",
|
389 |
+
"score": 0.33,
|
390 |
+
"detail_box_on_target": "0,0,1",
|
391 |
+
"cracked_levels": "0,0,0"
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"model": "gemini-2.5-flash-preview-05-20",
|
395 |
+
"score": 0,
|
396 |
+
"detail_box_on_target": "0,0,0",
|
397 |
+
"cracked_levels": "0,0,0"
|
398 |
+
}
|
399 |
+
]
|
400 |
+
},
|
401 |
+
"Ace Attorney": {
|
402 |
+
"runs": 1,
|
403 |
+
"results": [
|
404 |
+
{
|
405 |
+
"model": "claude-3-5-sonnet-20241022",
|
406 |
+
"score": 1,
|
407 |
+
"progress": "1:1/5"
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"model": "claude-3-7-sonnet-20250219 (thinking)",
|
411 |
+
"score": 3,
|
412 |
+
"progress": "1:3/5"
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"model": "gemini-2.5-flash-preview-04-17 (thinking)",
|
416 |
+
"score": 1,
|
417 |
+
"progress": "1:1/5"
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"model": "gemini-2.5-pro-preview-05-06 (thinking)",
|
421 |
+
"score": 8,
|
422 |
+
"progress": "2:3/9"
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"model": "llama-4-maverick-17b-128e-instruct-fp8",
|
426 |
+
"score": 0,
|
427 |
+
"progress": "0"
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"model": "gpt-4.1-2025-04-14",
|
431 |
+
"score": 0,
|
432 |
+
"progress": "0"
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"model": "gpt-4o-2024-11-20",
|
436 |
+
"score": 0,
|
437 |
+
"progress": "0"
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"model": "o1-2024-12-17",
|
441 |
+
"score": 3,
|
442 |
+
"progress": "1:3/5"
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"model": "o3-2025-04-16",
|
446 |
+
"score": 8,
|
447 |
+
"progress": "2:3/9"
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"model": "o4-mini-2025-04-16",
|
451 |
+
"score": 2,
|
452 |
+
"progress": "1:2/5"
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"model": "random (x30)",
|
456 |
+
"score": 0,
|
457 |
+
"progress": "0"
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"model": "gemini-2.5-flash-preview-05-20",
|
461 |
+
"score": 2.33,
|
462 |
+
"details": "1,4,2",
|
463 |
+
"progress": "1:4/5"
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"model": "claude-sonnet-4-20250514",
|
467 |
+
"score": 1.33,
|
468 |
+
"details": "0,2,2",
|
469 |
+
"progress": "1:2/5"
|
470 |
+
}
|
471 |
+
]
|
472 |
+
}
|
473 |
+
}
|