khoa-done's picture
Add all files for the model
9a6970e
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
import gradio as gr
# --- import your architecture ---
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
# and update the import path accordingly.
from model import DeBERTaLSTMClassifier # <-- your class
# --------- Config ----------
REPO_ID = "khoa-done/phishing-detector" # HF repo that holds the checkpoint
CKPT_NAME = "deberta_lstm_checkpoint.pt" # the .pt file name
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
LABELS = ["benign", "phishing"] # adjust to your classes
# If your checkpoint contains hyperparams, you can fetch them like:
# checkpoint.get("config") or checkpoint.get("model_args")
# and pass into DeBERTaLSTMClassifier(**model_args)
# --------- Load model/tokenizer once (global) ----------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
checkpoint = torch.load(ckpt_path, map_location=device)
# If you saved hyperparams in the checkpoint, use them:
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
model = DeBERTaLSTMClassifier(**model_args)
model.load_state_dict(checkpoint["model_state_dict"])
model.to(device).eval()
# --------- Inference function ----------
def predict_fn(text: str):
if not text or not text.strip():
return {"error": "Please enter a URL or text."}
# Tokenize
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True, # single example -> becomes [1, seq_len]
max_length=256 # adjust as used during training
)
# DeBERTa typically doesn't use token_type_ids
inputs.pop("token_type_ids", None)
# Move to device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs) # your model.forward should accept (input_ids, attention_mask)
probs = F.softmax(logits, dim=-1).squeeze(0).tolist()
# Build label->prob mapping for Gradio Label output
# If LABELS length doesn't match logits dim, just return raw list
if len(LABELS) == len(probs):
return {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
else:
return {f"class_{i}": float(p) for i, p in enumerate(probs)}
# --------- Gradio UI ----------
demo = gr.Interface(
fn=predict_fn,
inputs=gr.Textbox(label="URL or text", placeholder="e.g., http://suspicious-site.example"),
outputs=gr.Label(label="Prediction"),
title="Phishing Detector (DeBERTa + LSTM)",
description="Enter a URL/text. The model outputs class probabilities.",
examples=[
["http://rendmoiunserviceeee.com"],
["https://www.google.com"],
["https://mail-secure-login-verify.example/path?token=..."]
]
)
if __name__ == "__main__":
demo.launch()