karthikvasa30 commited on
Commit
a841389
·
verified ·
1 Parent(s): 2ad2f01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -53
app.py CHANGED
@@ -1,64 +1,91 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import json
3
+ import torch
4
+ import pandas as pd
5
+ import numpy as np
6
+ from transformers import AutoTokenizer, AutoModel
7
+ from sklearn.linear_model import LogisticRegression
8
+ from sklearn.preprocessing import LabelEncoder
9
  import gradio as gr
 
10
 
11
+ # Load the model and tokenizer (Bio_ClinicalBERT)
12
+ model_name = "emilyalsentzer/Bio_ClinicalBERT"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ model = AutoModel.from_pretrained(model_name)
15
+ model.eval()
16
 
17
+ # Load disease mapping
18
+ with open("disease_mapping.json", "r") as f:
19
+ disease_data = json.load(f)
20
+ disease_info = {item["Disease"].lower(): item for item in disease_data}
21
 
22
+ # Load precomputed embeddings
23
+ train_embeddings = pd.read_csv("train_embeddings.csv")
24
+ test_embeddings = pd.read_csv("test_embeddings.csv")
 
 
 
 
 
 
25
 
26
+ # Encode disease labels
27
+ le = LabelEncoder()
28
+ train_embeddings["label"] = le.fit_transform(train_embeddings["label"])
29
+ test_embeddings["label"] = le.transform(test_embeddings["label"])
 
30
 
31
+ # Split X and y for training
32
+ X_train = train_embeddings.drop(columns=["label"]).values
33
+ y_train = train_embeddings["label"].values
34
+ X_test = test_embeddings.drop(columns=["label"]).values
35
+ y_test = test_embeddings["label"].values
36
 
37
+ # Train Logistic Regression classifier
38
+ clf = LogisticRegression(max_iter=1000)
39
+ clf.fit(X_train, y_train)
40
 
41
+ # Prediction function
42
+ def predict_disease(symptoms):
43
+ """
44
+ Predicts the top 3 diseases based on the input symptoms using the trained Logistic Regression model
45
+ and provides disease information.
 
 
 
46
 
47
+ Args:
48
+ symptoms (str): The input symptoms.
49
+
50
+ Returns:
51
+ list: A list of dictionaries, each containing information about a predicted disease.
52
+ """
53
+ emb = get_embedding(symptoms).reshape(1, -1)
54
+ probs = clf.predict_proba(emb)[0]
55
+ top3_idx = np.argsort(probs)[::-1][:3]
56
+ results = []
57
+ for idx in top3_idx:
58
+ disease = le.inverse_transform([idx])[0]
59
+ info = disease_info.get(disease.lower(), {})
60
+ results.append({
61
+ "Disease": disease,
62
+ "Confidence": round(probs[idx]*100, 2),
63
+ "Description": info.get("Description", "Not available"),
64
+ "Severity": info.get("Severity", "Not available"),
65
+ "Precaution": info.get("Precaution", "Not available")
66
+ })
67
+ return results
68
 
69
+ # Gradio UI function
70
+ def chatbot(symptoms):
71
+ """
72
+ Gradio interface function for getting disease predictions based on symptoms.
73
+ """
74
+ preds = predict_disease(symptoms)
75
+ output = ""
76
+ for i, pred in enumerate(preds, 1):
77
+ output += f"### Prediction {i}\n"
78
+ output += f"- **Disease**: {pred['Disease']} ({pred['Confidence']}%)\n"
79
+ output += f"- **Description**: {pred['Description']}\n"
80
+ output += f"- **Severity**: {pred['Severity']}\n"
81
+ output += f"- **Precaution**: {pred['Precaution']}\n\n"
82
+ return output.strip()
83
 
84
+ # Start the Gradio interface
85
+ gr.Interface(
86
+ fn=chatbot,
87
+ inputs=gr.Textbox(label="Enter your symptoms"),
88
+ outputs=gr.Markdown(),
89
+ title="🩺 BioClinicalBERT Medical Chatbot",
90
+ description="Enter your symptoms to receive top 3 disease predictions with severity and precautions."
91
+ ).launch()