Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
+
# Load the model and tokenizer (Bio_ClinicalBERT)
|
12 |
+
model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModel.from_pretrained(model_name)
|
15 |
+
model.eval()
|
16 |
|
17 |
+
# Load disease mapping
|
18 |
+
with open("disease_mapping.json", "r") as f:
|
19 |
+
disease_data = json.load(f)
|
20 |
+
disease_info = {item["Disease"].lower(): item for item in disease_data}
|
21 |
|
22 |
+
# Load precomputed embeddings
|
23 |
+
train_embeddings = pd.read_csv("train_embeddings.csv")
|
24 |
+
test_embeddings = pd.read_csv("test_embeddings.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Encode disease labels
|
27 |
+
le = LabelEncoder()
|
28 |
+
train_embeddings["label"] = le.fit_transform(train_embeddings["label"])
|
29 |
+
test_embeddings["label"] = le.transform(test_embeddings["label"])
|
|
|
30 |
|
31 |
+
# Split X and y for training
|
32 |
+
X_train = train_embeddings.drop(columns=["label"]).values
|
33 |
+
y_train = train_embeddings["label"].values
|
34 |
+
X_test = test_embeddings.drop(columns=["label"]).values
|
35 |
+
y_test = test_embeddings["label"].values
|
36 |
|
37 |
+
# Train Logistic Regression classifier
|
38 |
+
clf = LogisticRegression(max_iter=1000)
|
39 |
+
clf.fit(X_train, y_train)
|
40 |
|
41 |
+
# Prediction function
|
42 |
+
def predict_disease(symptoms):
|
43 |
+
"""
|
44 |
+
Predicts the top 3 diseases based on the input symptoms using the trained Logistic Regression model
|
45 |
+
and provides disease information.
|
|
|
|
|
|
|
46 |
|
47 |
+
Args:
|
48 |
+
symptoms (str): The input symptoms.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
list: A list of dictionaries, each containing information about a predicted disease.
|
52 |
+
"""
|
53 |
+
emb = get_embedding(symptoms).reshape(1, -1)
|
54 |
+
probs = clf.predict_proba(emb)[0]
|
55 |
+
top3_idx = np.argsort(probs)[::-1][:3]
|
56 |
+
results = []
|
57 |
+
for idx in top3_idx:
|
58 |
+
disease = le.inverse_transform([idx])[0]
|
59 |
+
info = disease_info.get(disease.lower(), {})
|
60 |
+
results.append({
|
61 |
+
"Disease": disease,
|
62 |
+
"Confidence": round(probs[idx]*100, 2),
|
63 |
+
"Description": info.get("Description", "Not available"),
|
64 |
+
"Severity": info.get("Severity", "Not available"),
|
65 |
+
"Precaution": info.get("Precaution", "Not available")
|
66 |
+
})
|
67 |
+
return results
|
68 |
|
69 |
+
# Gradio UI function
|
70 |
+
def chatbot(symptoms):
|
71 |
+
"""
|
72 |
+
Gradio interface function for getting disease predictions based on symptoms.
|
73 |
+
"""
|
74 |
+
preds = predict_disease(symptoms)
|
75 |
+
output = ""
|
76 |
+
for i, pred in enumerate(preds, 1):
|
77 |
+
output += f"### Prediction {i}\n"
|
78 |
+
output += f"- **Disease**: {pred['Disease']} ({pred['Confidence']}%)\n"
|
79 |
+
output += f"- **Description**: {pred['Description']}\n"
|
80 |
+
output += f"- **Severity**: {pred['Severity']}\n"
|
81 |
+
output += f"- **Precaution**: {pred['Precaution']}\n\n"
|
82 |
+
return output.strip()
|
83 |
|
84 |
+
# Start the Gradio interface
|
85 |
+
gr.Interface(
|
86 |
+
fn=chatbot,
|
87 |
+
inputs=gr.Textbox(label="Enter your symptoms"),
|
88 |
+
outputs=gr.Markdown(),
|
89 |
+
title="🩺 BioClinicalBERT Medical Chatbot",
|
90 |
+
description="Enter your symptoms to receive top 3 disease predictions with severity and precautions."
|
91 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|