File size: 4,640 Bytes
3061cbc
4d9c0cf
 
3e14e4c
 
 
 
 
6f37298
3e14e4c
 
7763b87
3e14e4c
 
 
 
4d9c0cf
3e14e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d9c0cf
3e14e4c
 
 
4d9c0cf
 
3e14e4c
4d9c0cf
 
3e14e4c
4d9c0cf
 
 
 
3e14e4c
4d9c0cf
3e14e4c
 
 
 
 
4d9c0cf
3e14e4c
4d9c0cf
 
 
 
 
 
 
3e14e4c
 
 
 
 
4d9c0cf
3e14e4c
4d9c0cf
 
 
 
 
 
 
3e14e4c
4d9c0cf
3e14e4c
4d9c0cf
3e14e4c
4d9c0cf
 
 
 
 
7763b87
4d9c0cf
3e14e4c
4d9c0cf
 
 
 
 
7763b87
4d9c0cf
3e14e4c
4d9c0cf
3e14e4c
4d9c0cf
3e14e4c
 
 
4d9c0cf
7763b87
4d9c0cf
3e14e4c
4d9c0cf
 
 
 
 
3e14e4c
4d9c0cf
3e14e4c
 
 
 
 
 
 
 
4d9c0cf
 
 
3e14e4c
 
 
4d9c0cf
 
3e14e4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img, seed
    
examples = [
    "a tiny astronaut hatching from an egg on mars",
    "a dog holding a sign that reads 'hello world'",
    "an anime illustration of an apple strudel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 620px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Krea [dev]
FLUX.1 Krea [dev] model further tuned and customized with [Krea](https://krea.ai)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=4.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()