|
from abc import abstractmethod, ABC |
|
import torch |
|
|
|
|
|
class SchedulerInterface(ABC): |
|
""" |
|
Base class for diffusion noise schedule. |
|
""" |
|
alphas_cumprod: torch.Tensor |
|
|
|
@abstractmethod |
|
def add_noise( |
|
self, clean_latent: torch.Tensor, |
|
noise: torch.Tensor, timestep: torch.Tensor |
|
): |
|
""" |
|
Diffusion forward corruption process. |
|
Input: |
|
- clean_latent: the clean latent with shape [B, C, H, W] |
|
- noise: the noise with shape [B, C, H, W] |
|
- timestep: the timestep with shape [B] |
|
Output: the corrupted latent with shape [B, C, H, W] |
|
""" |
|
pass |
|
|
|
def convert_x0_to_noise( |
|
self, x0: torch.Tensor, xt: torch.Tensor, |
|
timestep: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Convert the diffusion network's x0 prediction to noise predidction. |
|
x0: the predicted clean data with shape [B, C, H, W] |
|
xt: the input noisy data with shape [B, C, H, W] |
|
timestep: the timestep with shape [B] |
|
|
|
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) (eq 11 in https://arxiv.org/abs/2311.18828) |
|
""" |
|
|
|
original_dtype = x0.dtype |
|
x0, xt, alphas_cumprod = map( |
|
lambda x: x.double().to(x0.device), [x0, xt, |
|
self.alphas_cumprod] |
|
) |
|
|
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
noise_pred = (xt - alpha_prod_t ** |
|
(0.5) * x0) / beta_prod_t ** (0.5) |
|
return noise_pred.to(original_dtype) |
|
|
|
def convert_noise_to_x0( |
|
self, noise: torch.Tensor, xt: torch.Tensor, |
|
timestep: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Convert the diffusion network's noise prediction to x0 predidction. |
|
noise: the predicted noise with shape [B, C, H, W] |
|
xt: the input noisy data with shape [B, C, H, W] |
|
timestep: the timestep with shape [B] |
|
|
|
x0 = (x_t - sqrt(beta_t) * noise) / sqrt(alpha_t) (eq 11 in https://arxiv.org/abs/2311.18828) |
|
""" |
|
|
|
original_dtype = noise.dtype |
|
noise, xt, alphas_cumprod = map( |
|
lambda x: x.double().to(noise.device), [noise, xt, |
|
self.alphas_cumprod] |
|
) |
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
x0_pred = (xt - beta_prod_t ** |
|
(0.5) * noise) / alpha_prod_t ** (0.5) |
|
return x0_pred.to(original_dtype) |
|
|
|
def convert_velocity_to_x0( |
|
self, velocity: torch.Tensor, xt: torch.Tensor, |
|
timestep: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Convert the diffusion network's velocity prediction to x0 predidction. |
|
velocity: the predicted noise with shape [B, C, H, W] |
|
xt: the input noisy data with shape [B, C, H, W] |
|
timestep: the timestep with shape [B] |
|
|
|
v = sqrt(alpha_t) * noise - sqrt(beta_t) x0 |
|
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) |
|
given v, x_t, we have |
|
x0 = sqrt(alpha_t) * x_t - sqrt(beta_t) * v |
|
see derivations https://chatgpt.com/share/679fb6c8-3a30-8008-9b0e-d1ae892dac56 |
|
""" |
|
|
|
original_dtype = velocity.dtype |
|
velocity, xt, alphas_cumprod = map( |
|
lambda x: x.double().to(velocity.device), [velocity, xt, |
|
self.alphas_cumprod] |
|
) |
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
x0_pred = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * velocity |
|
return x0_pred.to(original_dtype) |
|
|
|
|
|
class FlowMatchScheduler(): |
|
|
|
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): |
|
self.num_train_timesteps = num_train_timesteps |
|
self.shift = shift |
|
self.sigma_max = sigma_max |
|
self.sigma_min = sigma_min |
|
self.inverse_timesteps = inverse_timesteps |
|
self.extra_one_step = extra_one_step |
|
self.reverse_sigmas = reverse_sigmas |
|
self.set_timesteps(num_inference_steps) |
|
|
|
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False): |
|
sigma_start = self.sigma_min + \ |
|
(self.sigma_max - self.sigma_min) * denoising_strength |
|
if self.extra_one_step: |
|
self.sigmas = torch.linspace( |
|
sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] |
|
else: |
|
self.sigmas = torch.linspace( |
|
sigma_start, self.sigma_min, num_inference_steps) |
|
if self.inverse_timesteps: |
|
self.sigmas = torch.flip(self.sigmas, dims=[0]) |
|
self.sigmas = self.shift * self.sigmas / \ |
|
(1 + (self.shift - 1) * self.sigmas) |
|
if self.reverse_sigmas: |
|
self.sigmas = 1 - self.sigmas |
|
self.timesteps = self.sigmas * self.num_train_timesteps |
|
if training: |
|
x = self.timesteps |
|
y = torch.exp(-2 * ((x - num_inference_steps / 2) / |
|
num_inference_steps) ** 2) |
|
y_shifted = y - y.min() |
|
bsmntw_weighing = y_shifted * \ |
|
(num_inference_steps / y_shifted.sum()) |
|
self.linear_timesteps_weights = bsmntw_weighing |
|
|
|
def step(self, model_output, timestep, sample, to_final=False): |
|
if timestep.ndim == 2: |
|
timestep = timestep.flatten(0, 1) |
|
self.sigmas = self.sigmas.to(model_output.device) |
|
self.timesteps = self.timesteps.to(model_output.device) |
|
timestep_id = torch.argmin( |
|
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1) |
|
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) |
|
if to_final or (timestep_id + 1 >= len(self.timesteps)).any(): |
|
sigma_ = 1 if ( |
|
self.inverse_timesteps or self.reverse_sigmas) else 0 |
|
else: |
|
sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1) |
|
prev_sample = sample + model_output * (sigma_ - sigma) |
|
return prev_sample |
|
|
|
def add_noise(self, original_samples, noise, timestep): |
|
""" |
|
Diffusion forward corruption process. |
|
Input: |
|
- clean_latent: the clean latent with shape [B*T, C, H, W] |
|
- noise: the noise with shape [B*T, C, H, W] |
|
- timestep: the timestep with shape [B*T] |
|
Output: the corrupted latent with shape [B*T, C, H, W] |
|
""" |
|
if timestep.ndim == 2: |
|
timestep = timestep.flatten(0, 1) |
|
self.sigmas = self.sigmas.to(noise.device) |
|
self.timesteps = self.timesteps.to(noise.device) |
|
timestep_id = torch.argmin( |
|
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1) |
|
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) |
|
sample = (1 - sigma) * original_samples + sigma * noise |
|
return sample.type_as(noise) |
|
|
|
def training_target(self, sample, noise, timestep): |
|
target = noise - sample |
|
return target |
|
|
|
def training_weight(self, timestep): |
|
""" |
|
Input: |
|
- timestep: the timestep with shape [B*T] |
|
Output: the corresponding weighting [B*T] |
|
""" |
|
if timestep.ndim == 2: |
|
timestep = timestep.flatten(0, 1) |
|
self.linear_timesteps_weights = self.linear_timesteps_weights.to(timestep.device) |
|
timestep_id = torch.argmin( |
|
(self.timesteps.unsqueeze(1) - timestep.unsqueeze(0)).abs(), dim=0) |
|
weights = self.linear_timesteps_weights[timestep_id] |
|
return weights |
|
|