fast-rendering-node-for-clapper / app_with_streaming.py
jbilcke-hf's picture
jbilcke-hf HF Staff
experiment
6373d0a
import subprocess
# not sure why it works in the original space but says "pip not found" in mine
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import os
from huggingface_hub import snapshot_download, hf_hub_download
# Configuration for data paths
DATA_ROOT = os.path.normpath(os.getenv('DATA_ROOT', '.'))
WAN_MODELS_PATH = os.path.join(DATA_ROOT, 'wan_models')
OTHER_MODELS_PATH = os.path.join(DATA_ROOT, 'other_models')
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir=os.path.join(WAN_MODELS_PATH, "Wan2.1-T2V-1.3B"),
local_dir_use_symlinks=False,
resume_download=True,
repo_type="model"
)
hf_hub_download(
repo_id="gdhe17/Self-Forcing",
filename="checkpoints/self_forcing_dmd.pt",
local_dir=OTHER_MODELS_PATH,
local_dir_use_symlinks=False
)
import re
import random
import argparse
import hashlib
import urllib.request
import time
from PIL import Image
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio
import av
import uuid
import tempfile
import shutil
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Union
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #, BitsAndBytesConfig
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_WIDTH = 832
DEFAULT_HEIGHT = 480
# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default=os.path.join(OTHER_MODELS_PATH, 'checkpoints', 'self_forcing_dmd.pt'), help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
args = parser.parse_args()
gpu = "cuda"
try:
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
exit(1)
# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)
try:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
exit(1)
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
text_encoder.to(gpu)
transformer.to(gpu)
APP_STATE = {
"torch_compile_applied": False,
"fp8_applied": False,
"current_use_taehv": False,
"current_vae_decoder": None,
}
# I've tried to enable it, but I didn't notice a significant performance improvement..
ENABLE_TORCH_COMPILATION = False
# β€œdefault”: The default mode, used when no mode parameter is specified. It provides a good balance between performance and overhead.
# β€œreduce-overhead”: Minimizes Python-related overhead using CUDA graphs. However, it may increase memory usage.
# β€œmax-autotune”: Uses Triton or template-based matrix multiplications on supported devices. It takes longer to compile but optimizes for the fastest possible execution. On GPUs it enables CUDA graphs by default.
# β€œmax-autotune-no-cudagraphs”: Similar to β€œmax-autotune”, but without CUDA graphs.
TORCH_COMPILATION_MODE = "default"
# Apply torch.compile for maximum performance
if not APP_STATE["torch_compile_applied"] and ENABLE_TORCH_COMPILATION:
print("πŸš€ Applying torch.compile for speed optimization...")
transformer.compile(mode=TORCH_COMPILATION_MODE)
APP_STATE["torch_compile_applied"] = True
print("βœ… torch.compile applied to transformer")
def frames_to_ts_file(frames, filepath, fps = 15):
"""
Convert frames directly to .ts file using PyAV.
Args:
frames: List of numpy arrays (HWC, RGB, uint8)
filepath: Output file path
fps: Frames per second
Returns:
The filepath of the created file
"""
if not frames:
return filepath
height, width = frames[0].shape[:2]
# Create container for MPEG-TS format
container = av.open(filepath, mode='w', format='mpegts')
# Add video stream with optimized settings for streaming
stream = container.add_stream('h264', rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = 'yuv420p'
# Optimize for low latency streaming
stream.options = {
'preset': 'ultrafast',
'tune': 'zerolatency',
'crf': '23',
'profile': 'baseline',
'level': '3.0'
}
try:
for frame_np in frames:
frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24')
frame = frame.reformat(format=stream.pix_fmt)
for packet in stream.encode(frame):
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
finally:
container.close()
return filepath
def initialize_vae_decoder(use_taehv=False, use_trt=False):
if use_trt:
from demo_utils.vae import VAETRTWrapper
print("Initializing TensorRT VAE Decoder...")
vae_decoder = VAETRTWrapper()
APP_STATE["current_use_taehv"] = False
elif use_taehv:
print("Initializing TAEHV VAE Decoder...")
from demo_utils.taehv import TAEHV
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
if not os.path.exists(taehv_checkpoint_path):
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
os.makedirs("checkpoints", exist_ok=True)
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
try:
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
except Exception as e:
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
class DotDict(dict): __getattr__ = dict.get
class TAEHVDiffusersWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
self.config = DotDict(scaling_factor=1.0)
def decode(self, latents, return_dict=None):
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
vae_decoder = TAEHVDiffusersWrapper()
APP_STATE["current_use_taehv"] = True
else:
print("Initializing Default VAE Decoder...")
vae_decoder = VAEDecoderWrapper()
try:
vae_state_dict = torch.load(os.path.join(WAN_MODELS_PATH, 'Wan2.1-T2V-1.3B', 'Wan2.1_VAE.pth'), map_location="cpu")
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
vae_decoder.load_state_dict(decoder_state_dict)
except FileNotFoundError:
print("Warning: Default VAE weights not found.")
APP_STATE["current_use_taehv"] = False
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
# Apply torch.compile to VAE decoder if enabled (following demo.py pattern)
if APP_STATE["torch_compile_applied"] and not use_taehv and not use_trt:
print("πŸš€ Applying torch.compile to VAE decoder...")
vae_decoder.compile(mode=TORCH_COMPILATION_MODE)
print("βœ… torch.compile applied to VAE decoder")
APP_STATE["current_vae_decoder"] = vae_decoder
print(f"βœ… VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
pipeline = CausalInferencePipeline(
config, device=gpu, generator=transformer, text_encoder=text_encoder,
vae=APP_STATE["current_vae_decoder"]
)
pipeline.to(dtype=torch.float16).to(gpu)
@torch.no_grad()
def video_generation_handler_streaming(prompt, seed=42, fps=15, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, duration=5):
"""
Generator function that yields .ts video chunks using PyAV for streaming.
"""
# Add fallback values for None parameters
if seed is None:
seed = -1
if fps is None:
fps = 15
if width is None:
width = DEFAULT_WIDTH
if height is None:
height = DEFAULT_HEIGHT
if duration is None:
duration = 5
if seed == -1:
seed = random.randint(0, 2**32 - 1)
# Setup
conditional_dict = text_encoder(text_prompts=[prompt])
for key, value in conditional_dict.items():
conditional_dict[key] = value.to(dtype=torch.float16)
rnd = torch.Generator(gpu).manual_seed(int(seed))
pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
# Calculate latent dimensions based on actual width/height (assuming 8x downsampling)
latent_height = height // 8
latent_width = width // 8
print(f"🎬 video_generation_handler_streaming called, seed: {seed}, duration: {duration}s, fps: {fps}, width: {width}, height: {height}")
noise = torch.randn([1, 21, 16, latent_height, latent_width], device=gpu, dtype=torch.float16, generator=rnd)
vae_cache, latents_cache = None, None
if not APP_STATE["current_use_taehv"] and not args.trt:
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
# Calculate number of blocks based on duration
# Current setup generates approximately 5 seconds with 7 blocks
# So we scale proportionally
base_duration = 5.0 # seconds
base_blocks = 8
num_blocks = max(1, int(base_blocks * duration / base_duration))
current_start_frame = 0
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
total_frames_yielded = 0
# Ensure temp directory exists
os.makedirs("gradio_tmp", exist_ok=True)
# Generation loop
for idx, current_num_frames in enumerate(all_num_frames):
print(f"πŸ“¦ Processing block {idx+1}/{num_blocks}")
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
# Denoising steps
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
_, denoised_pred = pipeline.generator(
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
timestep=timestep, kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length
)
if step_idx < len(pipeline.denoising_step_list) - 1:
next_timestep = pipeline.denoising_step_list[step_idx + 1]
noisy_input = pipeline.scheduler.add_noise(
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
if idx < len(all_num_frames) - 1:
pipeline.generator(
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length,
)
# Decode to pixels
if args.trt:
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
elif APP_STATE["current_use_taehv"]:
if latents_cache is None:
latents_cache = denoised_pred
else:
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
latents_cache = denoised_pred[:, -3:]
pixels = pipeline.vae.decode(denoised_pred)
else:
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
# Handle frame skipping
if idx == 0 and not args.trt:
pixels = pixels[:, 3:]
elif APP_STATE["current_use_taehv"] and idx > 0:
pixels = pixels[:, 12:]
print(f"πŸ” DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}")
# Process all frames from this block at once
all_frames_from_block = []
for frame_idx in range(pixels.shape[1]):
frame_tensor = pixels[0, frame_idx]
# Convert to numpy (HWC, RGB, uint8)
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
frame_np = frame_np.to(torch.uint8).cpu().numpy()
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
all_frames_from_block.append(frame_np)
total_frames_yielded += 1
# Yield status update for each frame (cute tracking!)
blocks_completed = idx
current_block_progress = (frame_idx + 1) / pixels.shape[1]
total_progress = (blocks_completed + current_block_progress) / num_blocks * 100
# Cap at 100% to avoid going over
total_progress = min(total_progress, 100.0)
frame_status_html = (
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
f" <div style='width: {total_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
f" </div>"
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {total_progress:.1f}%"
f" </p>"
f"</div>"
)
# Yield None for video but update status (frame-by-frame tracking)
yield None, frame_status_html
# Encode entire block as one chunk
if all_frames_from_block:
print(f"πŸ“Ή Encoding block {idx} with {len(all_frames_from_block)} frames")
try:
chunk_uuid = str(uuid.uuid4())[:8]
ts_filename = f"block_{idx:04d}_{chunk_uuid}.ts"
ts_path = os.path.join("gradio_tmp", ts_filename)
frames_to_ts_file(all_frames_from_block, ts_path, fps)
# Calculate final progress for this block
total_progress = (idx + 1) / num_blocks * 100
# Yield the actual video chunk
yield ts_path, gr.update()
except Exception as e:
print(f"⚠️ Error encoding block {idx}: {e}")
import traceback
traceback.print_exc()
current_start_frame += current_num_frames
# Final completion status
final_status_html = (
f"<div style='padding: 16px; border: 1px solid #198754; background: linear-gradient(135deg, #d1e7dd, #f8f9fa); border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>"
f" <div style='display: flex; align-items: center; margin-bottom: 8px;'>"
f" <span style='font-size: 24px; margin-right: 12px;'>πŸŽ‰</span>"
f" <h4 style='margin: 0; color: #0f5132; font-size: 18px;'>Stream Complete!</h4>"
f" </div>"
f" <div style='background: rgba(255,255,255,0.7); padding: 8px; border-radius: 4px;'>"
f" <p style='margin: 0; color: #0f5132; font-weight: 500;'>"
f" πŸ“Š Generated {total_frames_yielded} frames across {num_blocks} blocks"
f" </p>"
f" <p style='margin: 4px 0 0 0; color: #0f5132; font-size: 14px;'>"
f" 🎬 Playback: {fps} FPS β€’ πŸ“ Format: MPEG-TS/H.264"
f" </p>"
f" </div>"
f"</div>"
)
yield None, final_status_html
print(f"βœ… PyAV streaming complete! {total_frames_yielded} frames across {num_blocks} blocks")
# --- Gradio UI Layout ---
with gr.Blocks(title="Wan2.1 1.3B Self-Forcing streaming demo") as demo:
gr.Markdown("Real-time video generation with distilled Wan2-1 1.3B [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
prompt = gr.Textbox(
label="Prompt",
placeholder="A stylish woman walks down a Tokyo street...",
lines=4,
value=""
)
start_btn = gr.Button("🎬 Start Streaming", variant="primary", size="lg")
gr.Markdown("### βš™οΈ Settings")
with gr.Row():
seed = gr.Slider(
label="Generation Seed (-1 for random)",
minimum=-1,
maximum=2147483647, # 2^31 - 1
step=1,
value=-1
)
fps = gr.Slider(
label="Playback FPS",
minimum=1,
maximum=30,
value=args.fps,
step=1,
visible=False,
info="Frames per second for playback"
)
with gr.Row():
duration = gr.Slider(
label="Duration (seconds)",
minimum=1,
maximum=5,
value=3,
step=1,
info="Video duration in seconds"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=224,
maximum=832,
value=DEFAULT_WIDTH,
step=8,
info="Video width in pixels (8px steps)"
)
height = gr.Slider(
label="Height",
minimum=224,
maximum=832,
value=DEFAULT_HEIGHT,
step=8,
info="Video height in pixels (8px steps)"
)
with gr.Column(scale=3):
gr.Markdown("### πŸ“Ί Video Stream")
streaming_video = gr.Video(
label="Live Stream",
streaming=True,
loop=True,
height=400,
autoplay=True,
show_label=False
)
status_display = gr.HTML(
value=(
"<div style='text-align: center; padding: 20px; color: #666; border: 1px dashed #ddd; border-radius: 8px;'>"
"🎬 Ready to start streaming...<br>"
"<small>Configure your prompt and click 'Start Streaming'</small>"
"</div>"
),
label="Generation Status"
)
# Connect the generator to the streaming video
start_btn.click(
fn=video_generation_handler_streaming,
inputs=[prompt, seed, fps, width, height, duration],
outputs=[streaming_video, status_display]
)
# --- Launch App ---
if __name__ == "__main__":
if os.path.exists("gradio_tmp"):
import shutil
shutil.rmtree("gradio_tmp")
os.makedirs("gradio_tmp", exist_ok=True)
print("πŸš€ Clapper Rendering Node (default engine is Wan2.1 1.3B Self-Forcing)")
print(f"πŸ“ Temporary files will be stored in: gradio_tmp/")
print(f"🎯 Chunk encoding: PyAV (MPEG-TS/H.264)")
print(f"⚑ GPU acceleration: {gpu}")
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True,
max_threads=40,
mcp_server=True
)