jbilcke-hf's picture
jbilcke-hf HF Staff
okay...
eeb108a
import subprocess
# not sure why it works in the original space but says "pip not found" in mine
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import os
import base64
from huggingface_hub import snapshot_download, hf_hub_download
# Configuration for data paths
DATA_ROOT = os.path.normpath(os.getenv('DATA_ROOT', '.'))
WAN_MODELS_PATH = os.path.join(DATA_ROOT, 'wan_models')
OTHER_MODELS_PATH = os.path.join(DATA_ROOT, 'other_models')
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir=os.path.join(WAN_MODELS_PATH, "Wan2.1-T2V-1.3B"),
local_dir_use_symlinks=False,
resume_download=True,
repo_type="model"
)
hf_hub_download(
repo_id="gdhe17/Self-Forcing",
filename="checkpoints/self_forcing_dmd.pt",
local_dir=OTHER_MODELS_PATH,
local_dir_use_symlinks=False
)
import re
import random
import argparse
import hashlib
import urllib.request
import time
from PIL import Image
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio
import av
import uuid
import io
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Union
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #, BitsAndBytesConfig
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_WIDTH = 832
DEFAULT_HEIGHT = 480
def create_vae_cache_for_resolution(latent_height, latent_width, device, dtype):
"""
Create VAE cache tensors dynamically based on the latent resolution.
The cache structure mirrors ZERO_VAE_CACHE but with resolution-dependent dimensions.
"""
# Scale dimensions based on latent resolution
# The original cache assumes 832x480 -> 104x60 latent dimensions
# We need to scale proportionally for other resolutions
cache = [
torch.zeros(1, 16, 2, latent_height, latent_width, device=device, dtype=dtype),
# First set of 384-channel caches at latent resolution
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
# Second set at 2x upsampled resolution
torch.zeros(1, 192, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
# Third set at 4x upsampled resolution
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
# Fourth set at 8x upsampled resolution (final output resolution)
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype)
]
return cache
# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default=os.path.join(OTHER_MODELS_PATH, 'checkpoints', 'self_forcing_dmd.pt'), help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
args = parser.parse_args()
gpu = "cuda"
try:
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
exit(1)
# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)
try:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
exit(1)
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
text_encoder.to(gpu)
transformer.to(gpu)
APP_STATE = {
"torch_compile_applied": False,
"fp8_applied": False,
"current_use_taehv": False,
"current_vae_decoder": None,
}
# I've tried to enable it, but I didn't notice a significant performance improvement..
# and it outputs a lot of errors in the logs :D
ENABLE_TORCH_COMPILATION = False
# “default”: The default mode, used when no mode parameter is specified. It provides a good balance between performance and overhead.
# “reduce-overhead”: Minimizes Python-related overhead using CUDA graphs. However, it may increase memory usage.
# “max-autotune”: Uses Triton or template-based matrix multiplications on supported devices. It takes longer to compile but optimizes for the fastest possible execution. On GPUs it enables CUDA graphs by default.
# “max-autotune-no-cudagraphs”: Similar to “max-autotune”, but without CUDA graphs.
TORCH_COMPILATION_MODE = "default"
# Apply torch.compile for maximum performance
if not APP_STATE["torch_compile_applied"] and ENABLE_TORCH_COMPILATION:
print("🚀 Applying torch.compile for speed optimization...")
transformer.compile(mode=TORCH_COMPILATION_MODE)
APP_STATE["torch_compile_applied"] = True
print("✅ torch.compile applied to transformer")
def frames_to_mp4_base64(frames, fps = 15):
"""
Convert frames directly to base64 data URI using PyAV with in-memory file.
Args:
frames: List of numpy arrays (HWC, RGB, uint8)
fps: Frames per second
Returns:
Base64 data URI string for the MP4 video
"""
if not frames:
return "data:video/mp4;base64,"
height, width = frames[0].shape[:2]
# Create BytesIO "in memory file"
output_memory_file = io.BytesIO()
try:
# Create container for MP4 format using in-memory file
container = av.open(output_memory_file, mode='w', format='mp4')
# Add video stream with fast settings
stream = container.add_stream('h264', rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = 'yuv420p'
# Optimize for low latency streaming
stream.options = {
'preset': 'ultrafast',
'tune': 'zerolatency',
'crf': '23',
'profile': 'baseline',
'level': '3.0'
}
try:
for frame_np in frames:
frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24')
frame = frame.reformat(format=stream.pix_fmt)
for packet in stream.encode(frame):
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
finally:
container.close()
# Get video data from in-memory file and encode to base64
video_data = output_memory_file.getbuffer()
base64_data = base64.b64encode(video_data).decode('utf-8')
return f"data:video/mp4;base64,{base64_data}"
except Exception as e:
print(f"Error encoding video: {e}")
return "data:video/mp4;base64,"
# note: we set use_taehv to be able to use other resolutions
# this might impact performance
def initialize_vae_decoder(use_taehv=True, use_trt=False):
if use_trt:
from demo_utils.vae import VAETRTWrapper
print("Initializing TensorRT VAE Decoder...")
vae_decoder = VAETRTWrapper()
APP_STATE["current_use_taehv"] = False
elif use_taehv:
print("Initializing TAEHV VAE Decoder...")
from demo_utils.taehv import TAEHV
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
if not os.path.exists(taehv_checkpoint_path):
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
os.makedirs("checkpoints", exist_ok=True)
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
try:
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
except Exception as e:
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
class DotDict(dict): __getattr__ = dict.get
class TAEHVDiffusersWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
self.config = DotDict(scaling_factor=1.0)
def decode(self, latents, return_dict=None):
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
vae_decoder = TAEHVDiffusersWrapper()
APP_STATE["current_use_taehv"] = True
else:
print("Initializing Default VAE Decoder...")
vae_decoder = VAEDecoderWrapper()
try:
vae_state_dict = torch.load(os.path.join(WAN_MODELS_PATH, 'Wan2.1-T2V-1.3B', 'Wan2.1_VAE.pth'), map_location="cpu")
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
vae_decoder.load_state_dict(decoder_state_dict)
except FileNotFoundError:
print("Warning: Default VAE weights not found.")
APP_STATE["current_use_taehv"] = False
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
# Apply torch.compile to VAE decoder if enabled (following demo.py pattern)
if APP_STATE["torch_compile_applied"] and not use_taehv and not use_trt:
print("🚀 Applying torch.compile to VAE decoder...")
vae_decoder.compile(mode=TORCH_COMPILATION_MODE)
print("✅ torch.compile applied to VAE decoder")
APP_STATE["current_vae_decoder"] = vae_decoder
print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
pipeline = CausalInferencePipeline(
config, device=gpu, generator=transformer, text_encoder=text_encoder,
vae=APP_STATE["current_vae_decoder"]
)
pipeline.to(dtype=torch.float16).to(gpu)
@torch.no_grad()
def video_generation_handler(prompt, seed=42, fps=15, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, duration=5):
"""
Generate video and return a single MP4 file.
"""
# Add fallback values for None parameters
if seed is None:
seed = -1
if fps is None:
fps = 15
if width is None:
width = DEFAULT_WIDTH
if height is None:
height = DEFAULT_HEIGHT
if duration is None:
duration = 5
if seed == -1:
seed = random.randint(0, 2**32 - 1)
#print(f"🎬 video_generation_handler called, seed: {seed}, duration: {duration}s, fps: {fps}, width: {width}, height: {height}")
# Setup
conditional_dict = text_encoder(text_prompts=[prompt])
for key, value in conditional_dict.items():
conditional_dict[key] = value.to(dtype=torch.float16)
rnd = torch.Generator(gpu).manual_seed(int(seed))
pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
# Calculate latent dimensions based on actual width/height (assuming 8x downsampling)
latent_height = height // 8
latent_width = width // 8
noise = torch.randn([1, 21, 16, latent_height, latent_width], device=gpu, dtype=torch.float16, generator=rnd)
vae_cache, latents_cache = None, None
if not APP_STATE["current_use_taehv"] and not args.trt:
# Create resolution-dependent VAE cache
vae_cache = create_vae_cache_for_resolution(latent_height, latent_width, device=gpu, dtype=torch.float16)
# Calculate number of blocks based on duration
# Current setup generates approximately 5 seconds with 7 blocks
# So we scale proportionally
base_duration = 5.0 # seconds
base_blocks = 8
num_blocks = max(1, int(base_blocks * duration / base_duration))
current_start_frame = 0
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
all_frames = []
total_frames_generated = 0
# Ensure temp directory exists
os.makedirs("gradio_tmp", exist_ok=True)
# Generation loop
for idx, current_num_frames in enumerate(all_num_frames):
#print(f"📦 Processing block {idx+1}/{num_blocks}")
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
# Denoising steps
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
_, denoised_pred = pipeline.generator(
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
timestep=timestep, kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length
)
if step_idx < len(pipeline.denoising_step_list) - 1:
next_timestep = pipeline.denoising_step_list[step_idx + 1]
noisy_input = pipeline.scheduler.add_noise(
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
if idx < len(all_num_frames) - 1:
pipeline.generator(
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length,
)
# Decode to pixels
if args.trt:
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
elif APP_STATE["current_use_taehv"]:
if latents_cache is None:
latents_cache = denoised_pred
else:
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
latents_cache = denoised_pred[:, -3:]
pixels = pipeline.vae.decode(denoised_pred)
else:
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
# Handle frame skipping
if idx == 0 and not args.trt:
pixels = pixels[:, 3:]
elif APP_STATE["current_use_taehv"] and idx > 0:
pixels = pixels[:, 12:]
#print(f"🔍 DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}")
# Process all frames from this block and add to main collection
for frame_idx in range(pixels.shape[1]):
frame_tensor = pixels[0, frame_idx]
# Convert to numpy (HWC, RGB, uint8)
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
frame_np = frame_np.to(torch.uint8).cpu().numpy()
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
all_frames.append(frame_np)
total_frames_generated += 1
#print(f"📦 Block {idx+1}/{num_blocks}, Frame {frame_idx+1}/{pixels.shape[1]} - Total frames: {total_frames_generated}")
current_start_frame += current_num_frames
# Generate final MP4 as base64 data URI
if all_frames:
#print(f"📹 Encoding final MP4 with {len(all_frames)} frames")
try:
base64_data_uri = frames_to_mp4_base64(all_frames, fps)
#print(f"✅ Video generation complete! {total_frames_generated} frames encoded to base64 data URI")
return base64_data_uri
except Exception as e:
print(f"⚠️ Error encoding final video: {e}")
import traceback
traceback.print_exc()
return "data:video/mp4;base64,"
else:
print("⚠️ No frames generated")
return "data:video/mp4;base64,"
# --- Gradio UI Layout ---
with gr.Blocks(title="Wan2.1 1.3B Self-Forcing demo") as demo:
gr.Markdown("Video generation with distilled Wan2-1 1.3B [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
prompt = gr.Textbox(
label="Prompt",
placeholder="A stylish woman walks down a Tokyo street...",
lines=4,
value=""
)
start_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg")
gr.Markdown("### ⚙️ Settings")
with gr.Row():
seed = gr.Slider(
label="Generation Seed (-1 for random)",
minimum=-1,
maximum=2147483647, # 2^31 - 1
step=1,
value=-1
)
fps = gr.Slider(
label="Playback FPS",
minimum=1,
maximum=30,
value=args.fps,
step=1,
visible=False,
info="Frames per second for playback"
)
with gr.Row():
duration = gr.Slider(
label="Duration (seconds)",
minimum=1,
maximum=5,
value=3,
step=1,
info="Video duration in seconds"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=224,
maximum=832,
value=DEFAULT_WIDTH,
step=8,
info="Video width in pixels (8px steps)"
)
height = gr.Slider(
label="Height",
minimum=224,
maximum=832,
value=DEFAULT_HEIGHT,
step=8,
info="Video height in pixels (8px steps)"
)
with gr.Column(scale=3):
gr.Markdown("### 🎬 Generated Video (Base64)")
video_output = gr.Textbox(
label="Base64 Video Data URI",
lines=10,
max_lines=20,
show_copy_button=True,
placeholder="Generated video will appear here as base64 data URI..."
)
# Connect the generator to the text output
start_btn.click(
fn=video_generation_handler,
inputs=[prompt, seed, fps, width, height, duration],
outputs=[video_output]
)
# --- Launch App ---
if __name__ == "__main__":
if os.path.exists("gradio_tmp"):
import shutil
shutil.rmtree("gradio_tmp")
os.makedirs("gradio_tmp", exist_ok=True)
print("🚀 Video Generation Node (default engine is Wan2.1 1.3B Self-Forcing)")
print(f"📁 Temporary files will be stored in: gradio_tmp/")
print(f"🎯 Video encoding: PyAV (MP4/H.264)")
print(f"⚡ GPU acceleration: {gpu}")
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True,
max_threads=40,
mcp_server=True
)