|
from wan.modules.attention import attention |
|
from wan.modules.model import ( |
|
WanRMSNorm, |
|
rope_apply, |
|
WanLayerNorm, |
|
WAN_CROSSATTENTION_CLASSES, |
|
rope_params, |
|
MLPProj, |
|
sinusoidal_embedding_1d |
|
) |
|
from torch.nn.attention.flex_attention import create_block_mask, flex_attention |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from torch.nn.attention.flex_attention import BlockMask |
|
from diffusers.models.modeling_utils import ModelMixin |
|
import torch.nn as nn |
|
import torch |
|
import math |
|
import torch.distributed as dist |
|
|
|
|
|
|
|
|
|
flex_attention = torch.compile( |
|
flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs") |
|
|
|
|
|
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0): |
|
n, c = x.size(2), x.size(3) // 2 |
|
|
|
|
|
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) |
|
|
|
|
|
output = [] |
|
|
|
for i, (f, h, w) in enumerate(grid_sizes.tolist()): |
|
seq_len = f * h * w |
|
|
|
|
|
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( |
|
seq_len, n, -1, 2)) |
|
freqs_i = torch.cat([ |
|
freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1), |
|
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), |
|
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) |
|
], |
|
dim=-1).reshape(seq_len, 1, -1) |
|
|
|
|
|
x_i = torch.view_as_real(x_i * freqs_i).flatten(2) |
|
x_i = torch.cat([x_i, x[i, seq_len:]]) |
|
|
|
|
|
output.append(x_i) |
|
return torch.stack(output).type_as(x) |
|
|
|
|
|
class CausalWanSelfAttention(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
local_attn_size=-1, |
|
sink_size=0, |
|
qk_norm=True, |
|
eps=1e-6): |
|
assert dim % num_heads == 0 |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.local_attn_size = local_attn_size |
|
self.sink_size = sink_size |
|
self.qk_norm = qk_norm |
|
self.eps = eps |
|
self.max_attention_size = 32760 if local_attn_size == -1 else local_attn_size * 1560 |
|
|
|
|
|
self.q = nn.Linear(dim, dim) |
|
self.k = nn.Linear(dim, dim) |
|
self.v = nn.Linear(dim, dim) |
|
self.o = nn.Linear(dim, dim) |
|
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() |
|
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
x, |
|
seq_lens, |
|
grid_sizes, |
|
freqs, |
|
block_mask, |
|
kv_cache=None, |
|
current_start=0, |
|
cache_start=None |
|
): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L, num_heads, C / num_heads] |
|
seq_lens(Tensor): Shape [B] |
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) |
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] |
|
block_mask (BlockMask) |
|
""" |
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim |
|
if cache_start is None: |
|
cache_start = current_start |
|
|
|
|
|
def qkv_fn(x): |
|
q = self.norm_q(self.q(x)).view(b, s, n, d) |
|
k = self.norm_k(self.k(x)).view(b, s, n, d) |
|
v = self.v(x).view(b, s, n, d) |
|
return q, k, v |
|
|
|
q, k, v = qkv_fn(x) |
|
|
|
if kv_cache is None: |
|
|
|
is_tf = (s == seq_lens[0].item() * 2) |
|
if is_tf: |
|
q_chunk = torch.chunk(q, 2, dim=1) |
|
k_chunk = torch.chunk(k, 2, dim=1) |
|
roped_query = [] |
|
roped_key = [] |
|
|
|
for ii in range(2): |
|
rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v) |
|
rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v) |
|
roped_query.append(rq) |
|
roped_key.append(rk) |
|
|
|
roped_query = torch.cat(roped_query, dim=1) |
|
roped_key = torch.cat(roped_key, dim=1) |
|
|
|
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] |
|
padded_roped_query = torch.cat( |
|
[roped_query, |
|
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], |
|
device=q.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
padded_roped_key = torch.cat( |
|
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], |
|
device=k.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
padded_v = torch.cat( |
|
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], |
|
device=v.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
x = flex_attention( |
|
query=padded_roped_query.transpose(2, 1), |
|
key=padded_roped_key.transpose(2, 1), |
|
value=padded_v.transpose(2, 1), |
|
block_mask=block_mask |
|
)[:, :, :-padded_length].transpose(2, 1) |
|
|
|
else: |
|
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v) |
|
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v) |
|
|
|
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] |
|
padded_roped_query = torch.cat( |
|
[roped_query, |
|
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], |
|
device=q.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
padded_roped_key = torch.cat( |
|
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], |
|
device=k.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
padded_v = torch.cat( |
|
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], |
|
device=v.device, dtype=v.dtype)], |
|
dim=1 |
|
) |
|
|
|
x = flex_attention( |
|
query=padded_roped_query.transpose(2, 1), |
|
key=padded_roped_key.transpose(2, 1), |
|
value=padded_v.transpose(2, 1), |
|
block_mask=block_mask |
|
)[:, :, :-padded_length].transpose(2, 1) |
|
else: |
|
frame_seqlen = math.prod(grid_sizes[0][1:]).item() |
|
current_start_frame = current_start // frame_seqlen |
|
roped_query = causal_rope_apply( |
|
q, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) |
|
roped_key = causal_rope_apply( |
|
k, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) |
|
|
|
current_end = current_start + roped_query.shape[1] |
|
sink_tokens = self.sink_size * frame_seqlen |
|
|
|
kv_cache_size = kv_cache["k"].shape[1] |
|
num_new_tokens = roped_query.shape[1] |
|
if self.local_attn_size != -1 and (current_end > kv_cache["global_end_index"].item()) and ( |
|
num_new_tokens + kv_cache["local_end_index"].item() > kv_cache_size): |
|
|
|
|
|
|
|
num_evicted_tokens = num_new_tokens + kv_cache["local_end_index"].item() - kv_cache_size |
|
num_rolled_tokens = kv_cache["local_end_index"].item() - num_evicted_tokens - sink_tokens |
|
kv_cache["k"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ |
|
kv_cache["k"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() |
|
kv_cache["v"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ |
|
kv_cache["v"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() |
|
|
|
local_end_index = kv_cache["local_end_index"].item() + current_end - \ |
|
kv_cache["global_end_index"].item() - num_evicted_tokens |
|
local_start_index = local_end_index - num_new_tokens |
|
kv_cache["k"][:, local_start_index:local_end_index] = roped_key |
|
kv_cache["v"][:, local_start_index:local_end_index] = v |
|
else: |
|
|
|
local_end_index = kv_cache["local_end_index"].item() + current_end - kv_cache["global_end_index"].item() |
|
local_start_index = local_end_index - num_new_tokens |
|
kv_cache["k"][:, local_start_index:local_end_index] = roped_key |
|
kv_cache["v"][:, local_start_index:local_end_index] = v |
|
x = attention( |
|
roped_query, |
|
kv_cache["k"][:, max(0, local_end_index - self.max_attention_size):local_end_index], |
|
kv_cache["v"][:, max(0, local_end_index - self.max_attention_size):local_end_index] |
|
) |
|
kv_cache["global_end_index"].fill_(current_end) |
|
kv_cache["local_end_index"].fill_(local_end_index) |
|
|
|
|
|
x = x.flatten(2) |
|
x = x.to(self.o.weight.dtype) |
|
x = self.o(x) |
|
return x |
|
|
|
|
|
class CausalWanAttentionBlock(nn.Module): |
|
|
|
def __init__(self, |
|
cross_attn_type, |
|
dim, |
|
ffn_dim, |
|
num_heads, |
|
local_attn_size=-1, |
|
sink_size=0, |
|
qk_norm=True, |
|
cross_attn_norm=False, |
|
eps=1e-6): |
|
super().__init__() |
|
self.dim = dim |
|
self.ffn_dim = ffn_dim |
|
self.num_heads = num_heads |
|
self.local_attn_size = local_attn_size |
|
self.qk_norm = qk_norm |
|
self.cross_attn_norm = cross_attn_norm |
|
self.eps = eps |
|
|
|
|
|
self.norm1 = WanLayerNorm(dim, eps) |
|
self.self_attn = CausalWanSelfAttention(dim, num_heads, local_attn_size, sink_size, qk_norm, eps) |
|
self.norm3 = WanLayerNorm( |
|
dim, eps, |
|
elementwise_affine=True) if cross_attn_norm else nn.Identity() |
|
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, |
|
num_heads, |
|
(-1, -1), |
|
qk_norm, |
|
eps) |
|
self.norm2 = WanLayerNorm(dim, eps) |
|
self.ffn = nn.Sequential( |
|
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), |
|
nn.Linear(ffn_dim, dim)) |
|
|
|
|
|
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) |
|
|
|
def forward( |
|
self, |
|
x, |
|
e, |
|
seq_lens, |
|
grid_sizes, |
|
freqs, |
|
context, |
|
context_lens, |
|
block_mask, |
|
kv_cache=None, |
|
crossattn_cache=None, |
|
current_start=0, |
|
cache_start=None |
|
): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L, C] |
|
e(Tensor): Shape [B, F, 6, C] |
|
seq_lens(Tensor): Shape [B], length of each sequence in batch |
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) |
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] |
|
""" |
|
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] |
|
|
|
|
|
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2) |
|
|
|
|
|
|
|
y = self.self_attn( |
|
(self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]).flatten(1, 2), |
|
seq_lens, grid_sizes, |
|
freqs, block_mask, kv_cache, current_start, cache_start) |
|
|
|
|
|
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(1, 2) |
|
|
|
|
|
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None): |
|
x = x + self.cross_attn(self.norm3(x), context, |
|
context_lens, crossattn_cache=crossattn_cache) |
|
y = self.ffn( |
|
(self.norm2(x).unflatten(dim=1, sizes=(num_frames, |
|
frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2) |
|
) |
|
|
|
x = x + (y.unflatten(dim=1, sizes=(num_frames, |
|
frame_seqlen)) * e[5]).flatten(1, 2) |
|
return x |
|
|
|
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache) |
|
return x |
|
|
|
|
|
class CausalHead(nn.Module): |
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6): |
|
super().__init__() |
|
self.dim = dim |
|
self.out_dim = out_dim |
|
self.patch_size = patch_size |
|
self.eps = eps |
|
|
|
|
|
out_dim = math.prod(patch_size) * out_dim |
|
self.norm = WanLayerNorm(dim, eps) |
|
self.head = nn.Linear(dim, out_dim) |
|
|
|
|
|
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) |
|
|
|
def forward(self, x, e): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L1, C] |
|
e(Tensor): Shape [B, F, 1, C] |
|
""" |
|
|
|
|
|
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] |
|
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2) |
|
x = (self.head(self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0])) |
|
return x |
|
|
|
|
|
class CausalWanModel(ModelMixin, ConfigMixin): |
|
r""" |
|
Wan diffusion backbone supporting both text-to-video and image-to-video. |
|
""" |
|
|
|
ignore_for_config = [ |
|
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim' |
|
] |
|
_no_split_modules = ['WanAttentionBlock'] |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__(self, |
|
model_type='t2v', |
|
patch_size=(1, 2, 2), |
|
text_len=512, |
|
in_dim=16, |
|
dim=2048, |
|
ffn_dim=8192, |
|
freq_dim=256, |
|
text_dim=4096, |
|
out_dim=16, |
|
num_heads=16, |
|
num_layers=32, |
|
local_attn_size=-1, |
|
sink_size=0, |
|
qk_norm=True, |
|
cross_attn_norm=True, |
|
eps=1e-6): |
|
r""" |
|
Initialize the diffusion model backbone. |
|
|
|
Args: |
|
model_type (`str`, *optional*, defaults to 't2v'): |
|
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) |
|
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): |
|
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) |
|
text_len (`int`, *optional*, defaults to 512): |
|
Fixed length for text embeddings |
|
in_dim (`int`, *optional*, defaults to 16): |
|
Input video channels (C_in) |
|
dim (`int`, *optional*, defaults to 2048): |
|
Hidden dimension of the transformer |
|
ffn_dim (`int`, *optional*, defaults to 8192): |
|
Intermediate dimension in feed-forward network |
|
freq_dim (`int`, *optional*, defaults to 256): |
|
Dimension for sinusoidal time embeddings |
|
text_dim (`int`, *optional*, defaults to 4096): |
|
Input dimension for text embeddings |
|
out_dim (`int`, *optional*, defaults to 16): |
|
Output video channels (C_out) |
|
num_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads |
|
num_layers (`int`, *optional*, defaults to 32): |
|
Number of transformer blocks |
|
local_attn_size (`int`, *optional*, defaults to -1): |
|
Window size for temporal local attention (-1 indicates global attention) |
|
sink_size (`int`, *optional*, defaults to 0): |
|
Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache |
|
qk_norm (`bool`, *optional*, defaults to True): |
|
Enable query/key normalization |
|
cross_attn_norm (`bool`, *optional*, defaults to False): |
|
Enable cross-attention normalization |
|
eps (`float`, *optional*, defaults to 1e-6): |
|
Epsilon value for normalization layers |
|
""" |
|
|
|
super().__init__() |
|
|
|
assert model_type in ['t2v', 'i2v'] |
|
self.model_type = model_type |
|
|
|
self.patch_size = patch_size |
|
self.text_len = text_len |
|
self.in_dim = in_dim |
|
self.dim = dim |
|
self.ffn_dim = ffn_dim |
|
self.freq_dim = freq_dim |
|
self.text_dim = text_dim |
|
self.out_dim = out_dim |
|
self.num_heads = num_heads |
|
self.num_layers = num_layers |
|
self.local_attn_size = local_attn_size |
|
self.qk_norm = qk_norm |
|
self.cross_attn_norm = cross_attn_norm |
|
self.eps = eps |
|
|
|
|
|
self.patch_embedding = nn.Conv3d( |
|
in_dim, dim, kernel_size=patch_size, stride=patch_size) |
|
self.text_embedding = nn.Sequential( |
|
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), |
|
nn.Linear(dim, dim)) |
|
|
|
self.time_embedding = nn.Sequential( |
|
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) |
|
self.time_projection = nn.Sequential( |
|
nn.SiLU(), nn.Linear(dim, dim * 6)) |
|
|
|
|
|
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' |
|
self.blocks = nn.ModuleList([ |
|
CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, |
|
local_attn_size, sink_size, qk_norm, cross_attn_norm, eps) |
|
for _ in range(num_layers) |
|
]) |
|
|
|
|
|
self.head = CausalHead(dim, out_dim, patch_size, eps) |
|
|
|
|
|
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 |
|
d = dim // num_heads |
|
self.freqs = torch.cat([ |
|
rope_params(1024, d - 4 * (d // 6)), |
|
rope_params(1024, 2 * (d // 6)), |
|
rope_params(1024, 2 * (d // 6)) |
|
], |
|
dim=1) |
|
|
|
if model_type == 'i2v': |
|
self.img_emb = MLPProj(1280, dim) |
|
|
|
|
|
self.init_weights() |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.block_mask = None |
|
|
|
self.num_frame_per_block = 1 |
|
self.independent_first_frame = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
@staticmethod |
|
def _prepare_blockwise_causal_attn_mask( |
|
device: torch.device | str, num_frames: int = 21, |
|
frame_seqlen: int = 1560, num_frame_per_block=1, local_attn_size=-1 |
|
) -> BlockMask: |
|
""" |
|
we will divide the token sequence into the following format |
|
[1 latent frame] [1 latent frame] ... [1 latent frame] |
|
We use flexattention to construct the attention mask |
|
""" |
|
total_length = num_frames * frame_seqlen |
|
|
|
|
|
padded_length = math.ceil(total_length / 128) * 128 - total_length |
|
|
|
ends = torch.zeros(total_length + padded_length, |
|
device=device, dtype=torch.long) |
|
|
|
|
|
frame_indices = torch.arange( |
|
start=0, |
|
end=total_length, |
|
step=frame_seqlen * num_frame_per_block, |
|
device=device |
|
) |
|
|
|
for tmp in frame_indices: |
|
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ |
|
frame_seqlen * num_frame_per_block |
|
|
|
def attention_mask(b, h, q_idx, kv_idx): |
|
if local_attn_size == -1: |
|
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) |
|
else: |
|
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | (q_idx == kv_idx) |
|
|
|
|
|
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, |
|
KV_LEN=total_length + padded_length, _compile=False, device=device) |
|
|
|
import torch.distributed as dist |
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
print( |
|
f" cache a block wise causal mask with block size of {num_frame_per_block} frames") |
|
print(block_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return block_mask |
|
|
|
@staticmethod |
|
def _prepare_teacher_forcing_mask( |
|
device: torch.device | str, num_frames: int = 21, |
|
frame_seqlen: int = 1560, num_frame_per_block=1 |
|
) -> BlockMask: |
|
""" |
|
we will divide the token sequence into the following format |
|
[1 latent frame] [1 latent frame] ... [1 latent frame] |
|
We use flexattention to construct the attention mask |
|
""" |
|
|
|
DEBUG = False |
|
if DEBUG: |
|
num_frames = 9 |
|
frame_seqlen = 256 |
|
|
|
total_length = num_frames * frame_seqlen * 2 |
|
|
|
|
|
padded_length = math.ceil(total_length / 128) * 128 - total_length |
|
|
|
clean_ends = num_frames * frame_seqlen |
|
|
|
context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) |
|
|
|
noise_context_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) |
|
noise_context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) |
|
noise_noise_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) |
|
noise_noise_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) |
|
|
|
|
|
attention_block_size = frame_seqlen * num_frame_per_block |
|
frame_indices = torch.arange( |
|
start=0, |
|
end=num_frames * frame_seqlen, |
|
step=attention_block_size, |
|
device=device, dtype=torch.long |
|
) |
|
|
|
|
|
for start in frame_indices: |
|
context_ends[start:start + attention_block_size] = start + attention_block_size |
|
|
|
noisy_image_start_list = torch.arange( |
|
num_frames * frame_seqlen, total_length, |
|
step=attention_block_size, |
|
device=device, dtype=torch.long |
|
) |
|
noisy_image_end_list = noisy_image_start_list + attention_block_size |
|
|
|
|
|
for block_index, (start, end) in enumerate(zip(noisy_image_start_list, noisy_image_end_list)): |
|
|
|
noise_noise_starts[start:end] = start |
|
noise_noise_ends[start:end] = end |
|
|
|
|
|
noise_context_ends[start:end] = block_index * attention_block_size |
|
|
|
def attention_mask(b, h, q_idx, kv_idx): |
|
|
|
clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx]) |
|
|
|
|
|
C1 = (kv_idx < noise_noise_ends[q_idx]) & (kv_idx >= noise_noise_starts[q_idx]) |
|
C2 = (kv_idx < noise_context_ends[q_idx]) & (kv_idx >= noise_context_starts[q_idx]) |
|
noise_mask = (q_idx >= clean_ends) & (C1 | C2) |
|
|
|
eye_mask = q_idx == kv_idx |
|
return eye_mask | clean_mask | noise_mask |
|
|
|
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, |
|
KV_LEN=total_length + padded_length, _compile=False, device=device) |
|
|
|
if DEBUG: |
|
print(block_mask) |
|
import imageio |
|
import numpy as np |
|
from torch.nn.attention.flex_attention import create_mask |
|
|
|
mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + |
|
padded_length, KV_LEN=total_length + padded_length, device=device) |
|
import cv2 |
|
mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) |
|
imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) |
|
|
|
return block_mask |
|
|
|
@staticmethod |
|
def _prepare_blockwise_causal_attn_mask_i2v( |
|
device: torch.device | str, num_frames: int = 21, |
|
frame_seqlen: int = 1560, num_frame_per_block=4, local_attn_size=-1 |
|
) -> BlockMask: |
|
""" |
|
we will divide the token sequence into the following format |
|
[1 latent frame] [N latent frame] ... [N latent frame] |
|
The first frame is separated out to support I2V generation |
|
We use flexattention to construct the attention mask |
|
""" |
|
total_length = num_frames * frame_seqlen |
|
|
|
|
|
padded_length = math.ceil(total_length / 128) * 128 - total_length |
|
|
|
ends = torch.zeros(total_length + padded_length, |
|
device=device, dtype=torch.long) |
|
|
|
|
|
ends[:frame_seqlen] = frame_seqlen |
|
|
|
|
|
frame_indices = torch.arange( |
|
start=frame_seqlen, |
|
end=total_length, |
|
step=frame_seqlen * num_frame_per_block, |
|
device=device |
|
) |
|
|
|
for idx, tmp in enumerate(frame_indices): |
|
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ |
|
frame_seqlen * num_frame_per_block |
|
|
|
def attention_mask(b, h, q_idx, kv_idx): |
|
if local_attn_size == -1: |
|
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) |
|
else: |
|
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | \ |
|
(q_idx == kv_idx) |
|
|
|
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, |
|
KV_LEN=total_length + padded_length, _compile=False, device=device) |
|
|
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
print( |
|
f" cache a block wise causal mask with block size of {num_frame_per_block} frames") |
|
print(block_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return block_mask |
|
|
|
def _forward_inference( |
|
self, |
|
x, |
|
t, |
|
context, |
|
seq_len, |
|
clip_fea=None, |
|
y=None, |
|
kv_cache: dict = None, |
|
crossattn_cache: dict = None, |
|
current_start: int = 0, |
|
cache_start: int = 0 |
|
): |
|
r""" |
|
Run the diffusion model with kv caching. |
|
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details. |
|
This function will be run for num_frame times. |
|
Process the latent frames one by one (1560 tokens each) |
|
|
|
Args: |
|
x (List[Tensor]): |
|
List of input video tensors, each with shape [C_in, F, H, W] |
|
t (Tensor): |
|
Diffusion timesteps tensor of shape [B] |
|
context (List[Tensor]): |
|
List of text embeddings each with shape [L, C] |
|
seq_len (`int`): |
|
Maximum sequence length for positional encoding |
|
clip_fea (Tensor, *optional*): |
|
CLIP image features for image-to-video mode |
|
y (List[Tensor], *optional*): |
|
Conditional video inputs for image-to-video mode, same shape as x |
|
|
|
Returns: |
|
List[Tensor]: |
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] |
|
""" |
|
|
|
if self.model_type == 'i2v': |
|
assert clip_fea is not None and y is not None |
|
|
|
device = self.patch_embedding.weight.device |
|
if self.freqs.device != device: |
|
self.freqs = self.freqs.to(device) |
|
|
|
if y is not None: |
|
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] |
|
|
|
|
|
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] |
|
grid_sizes = torch.stack( |
|
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) |
|
x = [u.flatten(2).transpose(1, 2) for u in x] |
|
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) |
|
assert seq_lens.max() <= seq_len |
|
x = torch.cat(x) |
|
""" |
|
torch.cat([ |
|
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], |
|
dim=1) for u in x |
|
]) |
|
""" |
|
|
|
|
|
|
|
e = self.time_embedding( |
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) |
|
e0 = self.time_projection(e).unflatten( |
|
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) |
|
|
|
|
|
|
|
context_lens = None |
|
context = self.text_embedding( |
|
torch.stack([ |
|
torch.cat( |
|
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) |
|
for u in context |
|
])) |
|
|
|
if clip_fea is not None: |
|
context_clip = self.img_emb(clip_fea) |
|
context = torch.concat([context_clip, context], dim=1) |
|
|
|
|
|
kwargs = dict( |
|
e=e0, |
|
seq_lens=seq_lens, |
|
grid_sizes=grid_sizes, |
|
freqs=self.freqs, |
|
context=context, |
|
context_lens=context_lens, |
|
block_mask=self.block_mask |
|
) |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs, **kwargs): |
|
return module(*inputs, **kwargs) |
|
return custom_forward |
|
|
|
for block_index, block in enumerate(self.blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
kwargs.update( |
|
{ |
|
"kv_cache": kv_cache[block_index], |
|
"current_start": current_start, |
|
"cache_start": cache_start |
|
} |
|
) |
|
x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
x, **kwargs, |
|
use_reentrant=False, |
|
) |
|
else: |
|
kwargs.update( |
|
{ |
|
"kv_cache": kv_cache[block_index], |
|
"crossattn_cache": crossattn_cache[block_index], |
|
"current_start": current_start, |
|
"cache_start": cache_start |
|
} |
|
) |
|
x = block(x, **kwargs) |
|
|
|
|
|
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) |
|
|
|
x = self.unpatchify(x, grid_sizes) |
|
return torch.stack(x) |
|
|
|
def _forward_train( |
|
self, |
|
x, |
|
t, |
|
context, |
|
seq_len, |
|
clean_x=None, |
|
aug_t=None, |
|
clip_fea=None, |
|
y=None, |
|
): |
|
r""" |
|
Forward pass through the diffusion model |
|
|
|
Args: |
|
x (List[Tensor]): |
|
List of input video tensors, each with shape [C_in, F, H, W] |
|
t (Tensor): |
|
Diffusion timesteps tensor of shape [B] |
|
context (List[Tensor]): |
|
List of text embeddings each with shape [L, C] |
|
seq_len (`int`): |
|
Maximum sequence length for positional encoding |
|
clip_fea (Tensor, *optional*): |
|
CLIP image features for image-to-video mode |
|
y (List[Tensor], *optional*): |
|
Conditional video inputs for image-to-video mode, same shape as x |
|
|
|
Returns: |
|
List[Tensor]: |
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] |
|
""" |
|
if self.model_type == 'i2v': |
|
assert clip_fea is not None and y is not None |
|
|
|
device = self.patch_embedding.weight.device |
|
if self.freqs.device != device: |
|
self.freqs = self.freqs.to(device) |
|
|
|
|
|
if self.block_mask is None: |
|
if clean_x is not None: |
|
if self.independent_first_frame: |
|
raise NotImplementedError() |
|
else: |
|
self.block_mask = self._prepare_teacher_forcing_mask( |
|
device, num_frames=x.shape[2], |
|
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), |
|
num_frame_per_block=self.num_frame_per_block |
|
) |
|
else: |
|
if self.independent_first_frame: |
|
self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v( |
|
device, num_frames=x.shape[2], |
|
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), |
|
num_frame_per_block=self.num_frame_per_block, |
|
local_attn_size=self.local_attn_size |
|
) |
|
else: |
|
self.block_mask = self._prepare_blockwise_causal_attn_mask( |
|
device, num_frames=x.shape[2], |
|
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), |
|
num_frame_per_block=self.num_frame_per_block, |
|
local_attn_size=self.local_attn_size |
|
) |
|
|
|
if y is not None: |
|
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] |
|
|
|
|
|
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] |
|
|
|
grid_sizes = torch.stack( |
|
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) |
|
x = [u.flatten(2).transpose(1, 2) for u in x] |
|
|
|
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) |
|
assert seq_lens.max() <= seq_len |
|
x = torch.cat([ |
|
torch.cat([u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))], |
|
dim=1) for u in x |
|
]) |
|
|
|
|
|
|
|
e = self.time_embedding( |
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) |
|
e0 = self.time_projection(e).unflatten( |
|
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) |
|
|
|
|
|
|
|
context_lens = None |
|
context = self.text_embedding( |
|
torch.stack([ |
|
torch.cat( |
|
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) |
|
for u in context |
|
])) |
|
|
|
if clip_fea is not None: |
|
context_clip = self.img_emb(clip_fea) |
|
context = torch.concat([context_clip, context], dim=1) |
|
|
|
if clean_x is not None: |
|
clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x] |
|
clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x] |
|
|
|
seq_lens_clean = torch.tensor([u.size(1) for u in clean_x], dtype=torch.long) |
|
assert seq_lens_clean.max() <= seq_len |
|
clean_x = torch.cat([ |
|
torch.cat([u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))], dim=1) for u in clean_x |
|
]) |
|
|
|
x = torch.cat([clean_x, x], dim=1) |
|
if aug_t is None: |
|
aug_t = torch.zeros_like(t) |
|
e_clean = self.time_embedding( |
|
sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x)) |
|
e0_clean = self.time_projection(e_clean).unflatten( |
|
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) |
|
e0 = torch.cat([e0_clean, e0], dim=1) |
|
|
|
|
|
kwargs = dict( |
|
e=e0, |
|
seq_lens=seq_lens, |
|
grid_sizes=grid_sizes, |
|
freqs=self.freqs, |
|
context=context, |
|
context_lens=context_lens, |
|
block_mask=self.block_mask) |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs, **kwargs): |
|
return module(*inputs, **kwargs) |
|
return custom_forward |
|
|
|
for block in self.blocks: |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
x, **kwargs, |
|
use_reentrant=False, |
|
) |
|
else: |
|
x = block(x, **kwargs) |
|
|
|
if clean_x is not None: |
|
x = x[:, x.shape[1] // 2:] |
|
|
|
|
|
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) |
|
|
|
|
|
x = self.unpatchify(x, grid_sizes) |
|
return torch.stack(x) |
|
|
|
def forward( |
|
self, |
|
*args, |
|
**kwargs |
|
): |
|
if kwargs.get('kv_cache', None) is not None: |
|
return self._forward_inference(*args, **kwargs) |
|
else: |
|
return self._forward_train(*args, **kwargs) |
|
|
|
def unpatchify(self, x, grid_sizes): |
|
r""" |
|
Reconstruct video tensors from patch embeddings. |
|
|
|
Args: |
|
x (List[Tensor]): |
|
List of patchified features, each with shape [L, C_out * prod(patch_size)] |
|
grid_sizes (Tensor): |
|
Original spatial-temporal grid dimensions before patching, |
|
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) |
|
|
|
Returns: |
|
List[Tensor]: |
|
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] |
|
""" |
|
|
|
c = self.out_dim |
|
out = [] |
|
for u, v in zip(x, grid_sizes.tolist()): |
|
u = u[:math.prod(v)].view(*v, *self.patch_size, c) |
|
u = torch.einsum('fhwpqrc->cfphqwr', u) |
|
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) |
|
out.append(u) |
|
return out |
|
|
|
def init_weights(self): |
|
r""" |
|
Initialize model parameters using Xavier initialization. |
|
""" |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
|
|
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) |
|
for m in self.text_embedding.modules(): |
|
if isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, std=.02) |
|
for m in self.time_embedding.modules(): |
|
if isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, std=.02) |
|
|
|
|
|
nn.init.zeros_(self.head.head.weight) |
|
|