|
from utils.distributed import launch_distributed_job |
|
from utils.scheduler import FlowMatchScheduler |
|
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder |
|
from utils.dataset import TextDataset |
|
import torch.distributed as dist |
|
from tqdm import tqdm |
|
import argparse |
|
import torch |
|
import math |
|
import os |
|
|
|
|
|
def init_model(device): |
|
model = WanDiffusionWrapper().to(device).to(torch.float32) |
|
encoder = WanTextEncoder().to(device).to(torch.float32) |
|
model.model.requires_grad_(False) |
|
|
|
scheduler = FlowMatchScheduler( |
|
shift=8.0, sigma_min=0.0, extra_one_step=True) |
|
scheduler.set_timesteps(num_inference_steps=48, denoising_strength=1.0) |
|
scheduler.sigmas = scheduler.sigmas.to(device) |
|
|
|
sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走' |
|
|
|
unconditional_dict = encoder( |
|
text_prompts=[sample_neg_prompt] |
|
) |
|
|
|
return model, encoder, scheduler, unconditional_dict |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--local_rank", type=int, default=-1) |
|
parser.add_argument("--output_folder", type=str) |
|
parser.add_argument("--caption_path", type=str) |
|
parser.add_argument("--guidance_scale", type=float, default=6.0) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
launch_distributed_job() |
|
|
|
device = torch.cuda.current_device() |
|
|
|
torch.set_grad_enabled(False) |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
model, encoder, scheduler, unconditional_dict = init_model(device=device) |
|
|
|
dataset = TextDataset(args.caption_path) |
|
|
|
|
|
os.makedirs(args.output_folder, exist_ok=True) |
|
|
|
for index in tqdm(range(int(math.ceil(len(dataset) / dist.get_world_size()))), disable=dist.get_rank() != 0): |
|
prompt_index = index * dist.get_world_size() + dist.get_rank() |
|
if prompt_index >= len(dataset): |
|
continue |
|
prompt = dataset[prompt_index] |
|
|
|
conditional_dict = encoder(text_prompts=prompt) |
|
|
|
latents = torch.randn( |
|
[1, 21, 16, 60, 104], dtype=torch.float32, device=device |
|
) |
|
|
|
noisy_input = [] |
|
|
|
for progress_id, t in enumerate(tqdm(scheduler.timesteps)): |
|
timestep = t * \ |
|
torch.ones([1, 21], device=device, dtype=torch.float32) |
|
|
|
noisy_input.append(latents) |
|
|
|
_, x0_pred_cond = model( |
|
latents, conditional_dict, timestep |
|
) |
|
|
|
_, x0_pred_uncond = model( |
|
latents, unconditional_dict, timestep |
|
) |
|
|
|
x0_pred = x0_pred_uncond + args.guidance_scale * ( |
|
x0_pred_cond - x0_pred_uncond |
|
) |
|
|
|
flow_pred = model._convert_x0_to_flow_pred( |
|
scheduler=scheduler, |
|
x0_pred=x0_pred.flatten(0, 1), |
|
xt=latents.flatten(0, 1), |
|
timestep=timestep.flatten(0, 1) |
|
).unflatten(0, x0_pred.shape[:2]) |
|
|
|
latents = scheduler.step( |
|
flow_pred.flatten(0, 1), |
|
scheduler.timesteps[progress_id] * torch.ones( |
|
[1, 21], device=device, dtype=torch.long).flatten(0, 1), |
|
latents.flatten(0, 1) |
|
).unflatten(dim=0, sizes=flow_pred.shape[:2]) |
|
|
|
noisy_input.append(latents) |
|
|
|
noisy_inputs = torch.stack(noisy_input, dim=1) |
|
|
|
noisy_inputs = noisy_inputs[:, [0, 12, 24, 36, -1]] |
|
|
|
stored_data = noisy_inputs |
|
|
|
torch.save( |
|
{prompt: stored_data.cpu().detach()}, |
|
os.path.join(args.output_folder, f"{prompt_index:05d}.pt") |
|
) |
|
|
|
dist.barrier() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|