|
import subprocess |
|
|
|
|
|
|
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
|
|
snapshot_download( |
|
repo_id="Wan-AI/Wan2.1-T2V-1.3B", |
|
local_dir="wan_models/Wan2.1-T2V-1.3B", |
|
local_dir_use_symlinks=False, |
|
resume_download=True, |
|
repo_type="model" |
|
) |
|
|
|
hf_hub_download( |
|
repo_id="gdhe17/Self-Forcing", |
|
filename="checkpoints/self_forcing_dmd.pt", |
|
local_dir=".", |
|
local_dir_use_symlinks=False |
|
) |
|
|
|
import os |
|
import re |
|
import random |
|
import argparse |
|
import hashlib |
|
import urllib.request |
|
import time |
|
from PIL import Image |
|
import torch |
|
import gradio as gr |
|
from omegaconf import OmegaConf |
|
from tqdm import tqdm |
|
import imageio |
|
import av |
|
import uuid |
|
|
|
from pipeline import CausalInferencePipeline |
|
from demo_utils.constant import ZERO_VAE_CACHE |
|
from demo_utils.vae_block3 import VAEDecoderWrapper |
|
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder |
|
|
|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM |
|
import numpy as np |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming") |
|
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.") |
|
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.") |
|
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.") |
|
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.") |
|
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.") |
|
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.") |
|
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.") |
|
args = parser.parse_args() |
|
|
|
gpu = "cuda" |
|
|
|
try: |
|
config = OmegaConf.load(args.config_path) |
|
default_config = OmegaConf.load("configs/default_config.yaml") |
|
config = OmegaConf.merge(default_config, config) |
|
except FileNotFoundError as e: |
|
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.") |
|
exit(1) |
|
|
|
|
|
print("Initializing models...") |
|
text_encoder = WanTextEncoder() |
|
transformer = WanDiffusionWrapper(is_causal=True) |
|
|
|
try: |
|
state_dict = torch.load(args.checkpoint_path, map_location="cpu") |
|
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator'))) |
|
except FileNotFoundError as e: |
|
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.") |
|
exit(1) |
|
|
|
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False) |
|
transformer.eval().to(dtype=torch.float16).requires_grad_(False) |
|
|
|
text_encoder.to(gpu) |
|
transformer.to(gpu) |
|
|
|
APP_STATE = { |
|
"torch_compile_applied": False, |
|
"fp8_applied": False, |
|
"current_use_taehv": False, |
|
"current_vae_decoder": None, |
|
} |
|
|
|
def frames_to_ts_file(frames, filepath, fps = 15): |
|
""" |
|
Convert frames directly to .ts file using PyAV. |
|
|
|
Args: |
|
frames: List of numpy arrays (HWC, RGB, uint8) |
|
filepath: Output file path |
|
fps: Frames per second |
|
|
|
Returns: |
|
The filepath of the created file |
|
""" |
|
if not frames: |
|
return filepath |
|
|
|
height, width = frames[0].shape[:2] |
|
|
|
|
|
container = av.open(filepath, mode='w', format='mpegts') |
|
|
|
|
|
stream = container.add_stream('h264', rate=fps) |
|
stream.width = width |
|
stream.height = height |
|
stream.pix_fmt = 'yuv420p' |
|
|
|
|
|
stream.options = { |
|
'preset': 'ultrafast', |
|
'tune': 'zerolatency', |
|
'crf': '23', |
|
'profile': 'baseline', |
|
'level': '3.0' |
|
} |
|
|
|
try: |
|
for frame_np in frames: |
|
frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24') |
|
frame = frame.reformat(format=stream.pix_fmt) |
|
for packet in stream.encode(frame): |
|
container.mux(packet) |
|
|
|
for packet in stream.encode(): |
|
container.mux(packet) |
|
|
|
finally: |
|
container.close() |
|
|
|
return filepath |
|
|
|
def initialize_vae_decoder(use_taehv=False, use_trt=False): |
|
if use_trt: |
|
from demo_utils.vae import VAETRTWrapper |
|
print("Initializing TensorRT VAE Decoder...") |
|
vae_decoder = VAETRTWrapper() |
|
APP_STATE["current_use_taehv"] = False |
|
elif use_taehv: |
|
print("Initializing TAEHV VAE Decoder...") |
|
from demo_utils.taehv import TAEHV |
|
taehv_checkpoint_path = "checkpoints/taew2_1.pth" |
|
if not os.path.exists(taehv_checkpoint_path): |
|
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...") |
|
os.makedirs("checkpoints", exist_ok=True) |
|
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth" |
|
try: |
|
urllib.request.urlretrieve(download_url, taehv_checkpoint_path) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to download taew2_1.pth: {e}") |
|
|
|
class DotDict(dict): __getattr__ = dict.get |
|
|
|
class TAEHVDiffusersWrapper(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.dtype = torch.float16 |
|
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype) |
|
self.config = DotDict(scaling_factor=1.0) |
|
def decode(self, latents, return_dict=None): |
|
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1) |
|
|
|
vae_decoder = TAEHVDiffusersWrapper() |
|
APP_STATE["current_use_taehv"] = True |
|
else: |
|
print("Initializing Default VAE Decoder...") |
|
vae_decoder = VAEDecoderWrapper() |
|
try: |
|
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu") |
|
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k} |
|
vae_decoder.load_state_dict(decoder_state_dict) |
|
except FileNotFoundError: |
|
print("Warning: Default VAE weights not found.") |
|
APP_STATE["current_use_taehv"] = False |
|
|
|
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu) |
|
APP_STATE["current_vae_decoder"] = vae_decoder |
|
print(f"β
VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}") |
|
|
|
|
|
initialize_vae_decoder(use_taehv=False, use_trt=args.trt) |
|
|
|
pipeline = CausalInferencePipeline( |
|
config, device=gpu, generator=transformer, text_encoder=text_encoder, |
|
vae=APP_STATE["current_vae_decoder"] |
|
) |
|
|
|
pipeline.to(dtype=torch.float16).to(gpu) |
|
|
|
@torch.no_grad() |
|
def video_generation_handler_streaming(prompt, seed=42, fps=15): |
|
""" |
|
Generator function that yields .ts video chunks using PyAV for streaming. |
|
Now optimized for block-based processing. |
|
""" |
|
if seed == -1: |
|
seed = random.randint(0, 2**32 - 1) |
|
|
|
print(f"π¬ Starting PyAV streaming: '{prompt}', seed: {seed}") |
|
|
|
|
|
conditional_dict = text_encoder(text_prompts=[prompt]) |
|
for key, value in conditional_dict.items(): |
|
conditional_dict[key] = value.to(dtype=torch.float16) |
|
|
|
rnd = torch.Generator(gpu).manual_seed(int(seed)) |
|
pipeline._initialize_kv_cache(1, torch.float16, device=gpu) |
|
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu) |
|
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd) |
|
|
|
vae_cache, latents_cache = None, None |
|
if not APP_STATE["current_use_taehv"] and not args.trt: |
|
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE] |
|
|
|
num_blocks = 7 |
|
current_start_frame = 0 |
|
all_num_frames = [pipeline.num_frame_per_block] * num_blocks |
|
|
|
total_frames_yielded = 0 |
|
|
|
|
|
os.makedirs("gradio_tmp", exist_ok=True) |
|
|
|
|
|
for idx, current_num_frames in enumerate(all_num_frames): |
|
print(f"π¦ Processing block {idx+1}/{num_blocks}") |
|
|
|
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames] |
|
|
|
|
|
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list): |
|
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep |
|
_, denoised_pred = pipeline.generator( |
|
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict, |
|
timestep=timestep, kv_cache=pipeline.kv_cache1, |
|
crossattn_cache=pipeline.crossattn_cache, |
|
current_start=current_start_frame * pipeline.frame_seq_length |
|
) |
|
if step_idx < len(pipeline.denoising_step_list) - 1: |
|
next_timestep = pipeline.denoising_step_list[step_idx + 1] |
|
noisy_input = pipeline.scheduler.add_noise( |
|
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)), |
|
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long) |
|
).unflatten(0, denoised_pred.shape[:2]) |
|
|
|
if idx < len(all_num_frames) - 1: |
|
pipeline.generator( |
|
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict, |
|
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1, |
|
crossattn_cache=pipeline.crossattn_cache, |
|
current_start=current_start_frame * pipeline.frame_seq_length, |
|
) |
|
|
|
|
|
if args.trt: |
|
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache) |
|
elif APP_STATE["current_use_taehv"]: |
|
if latents_cache is None: |
|
latents_cache = denoised_pred |
|
else: |
|
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1) |
|
latents_cache = denoised_pred[:, -3:] |
|
pixels = pipeline.vae.decode(denoised_pred) |
|
else: |
|
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache) |
|
|
|
|
|
if idx == 0 and not args.trt: |
|
pixels = pixels[:, 3:] |
|
elif APP_STATE["current_use_taehv"] and idx > 0: |
|
pixels = pixels[:, 12:] |
|
|
|
print(f"π DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}") |
|
|
|
|
|
all_frames_from_block = [] |
|
for frame_idx in range(pixels.shape[1]): |
|
frame_tensor = pixels[0, frame_idx] |
|
|
|
|
|
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5 |
|
frame_np = frame_np.to(torch.uint8).cpu().numpy() |
|
frame_np = np.transpose(frame_np, (1, 2, 0)) |
|
|
|
all_frames_from_block.append(frame_np) |
|
total_frames_yielded += 1 |
|
|
|
|
|
blocks_completed = idx |
|
current_block_progress = (frame_idx + 1) / pixels.shape[1] |
|
total_progress = (blocks_completed + current_block_progress) / num_blocks * 100 |
|
|
|
|
|
total_progress = min(total_progress, 100.0) |
|
|
|
frame_status_html = ( |
|
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>" |
|
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>" |
|
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>" |
|
f" <div style='width: {total_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>" |
|
f" </div>" |
|
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>" |
|
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {total_progress:.1f}%" |
|
f" </p>" |
|
f"</div>" |
|
) |
|
|
|
|
|
yield None, frame_status_html |
|
|
|
|
|
if all_frames_from_block: |
|
print(f"πΉ Encoding block {idx} with {len(all_frames_from_block)} frames") |
|
|
|
try: |
|
chunk_uuid = str(uuid.uuid4())[:8] |
|
ts_filename = f"block_{idx:04d}_{chunk_uuid}.ts" |
|
ts_path = os.path.join("gradio_tmp", ts_filename) |
|
|
|
frames_to_ts_file(all_frames_from_block, ts_path, fps) |
|
|
|
|
|
total_progress = (idx + 1) / num_blocks * 100 |
|
|
|
|
|
yield ts_path, gr.update() |
|
|
|
except Exception as e: |
|
print(f"β οΈ Error encoding block {idx}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
current_start_frame += current_num_frames |
|
|
|
|
|
final_status_html = ( |
|
f"<div style='padding: 16px; border: 1px solid #198754; background: linear-gradient(135deg, #d1e7dd, #f8f9fa); border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>" |
|
f" <div style='display: flex; align-items: center; margin-bottom: 8px;'>" |
|
f" <span style='font-size: 24px; margin-right: 12px;'>π</span>" |
|
f" <h4 style='margin: 0; color: #0f5132; font-size: 18px;'>Stream Complete!</h4>" |
|
f" </div>" |
|
f" <div style='background: rgba(255,255,255,0.7); padding: 8px; border-radius: 4px;'>" |
|
f" <p style='margin: 0; color: #0f5132; font-weight: 500;'>" |
|
f" π Generated {total_frames_yielded} frames across {num_blocks} blocks" |
|
f" </p>" |
|
f" <p style='margin: 4px 0 0 0; color: #0f5132; font-size: 14px;'>" |
|
f" π¬ Playback: {fps} FPS β’ π Format: MPEG-TS/H.264" |
|
f" </p>" |
|
f" </div>" |
|
f"</div>" |
|
) |
|
yield None, final_status_html |
|
print(f"β
PyAV streaming complete! {total_frames_yielded} frames across {num_blocks} blocks") |
|
|
|
|
|
with gr.Blocks(title="Self-Forcing Streaming Demo") as demo: |
|
gr.Markdown("# π Self-Forcing Video Generation") |
|
gr.Markdown("Real-time video generation with distilled Wan2-1 1.3B [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="A stylish woman walks down a Tokyo street...", |
|
lines=4, |
|
value="" |
|
) |
|
|
|
start_btn = gr.Button("π¬ Start Streaming", variant="primary", size="lg") |
|
|
|
gr.Markdown("### π― Examples") |
|
gr.Examples( |
|
examples=[ |
|
"A close-up shot of a ceramic teacup slowly pouring water into a glass mug.", |
|
"A playful cat is seen playing an electronic guitar, strumming the strings with its front paws. The cat has distinctive black facial markings and a bushy tail. It sits comfortably on a small stool, its body slightly tilted as it focuses intently on the instrument. The setting is a cozy, dimly lit room with vintage posters on the walls, adding a retro vibe. The cat's expressive eyes convey a sense of joy and concentration. Medium close-up shot, focusing on the cat's face and hands interacting with the guitar.", |
|
"A dynamic over-the-shoulder perspective of a chef meticulously plating a dish in a bustling kitchen. The chef, a middle-aged woman, deftly arranges ingredients on a pristine white plate. Her hands move with precision, each gesture deliberate and practiced. The background shows a crowded kitchen with steaming pots, whirring blenders, and the clatter of utensils. Bright lights highlight the scene, casting shadows across the busy workspace. The camera angle captures the chef's detailed work from behind, emphasizing his skill and dedication.", |
|
], |
|
inputs=[prompt], |
|
) |
|
|
|
gr.Markdown("### βοΈ Settings") |
|
with gr.Row(): |
|
seed = gr.Number( |
|
label="Seed", |
|
value=-1, |
|
info="Use -1 for random seed", |
|
precision=0 |
|
) |
|
fps = gr.Slider( |
|
label="Playback FPS", |
|
minimum=1, |
|
maximum=30, |
|
value=args.fps, |
|
step=1, |
|
visible=False, |
|
info="Frames per second for playback" |
|
) |
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("### πΊ Video Stream") |
|
|
|
streaming_video = gr.Video( |
|
label="Live Stream", |
|
streaming=True, |
|
loop=True, |
|
height=400, |
|
autoplay=True, |
|
show_label=False |
|
) |
|
|
|
status_display = gr.HTML( |
|
value=( |
|
"<div style='text-align: center; padding: 20px; color: #666; border: 1px dashed #ddd; border-radius: 8px;'>" |
|
"π¬ Ready to start streaming...<br>" |
|
"<small>Configure your prompt and click 'Start Streaming'</small>" |
|
"</div>" |
|
), |
|
label="Generation Status" |
|
) |
|
|
|
|
|
start_btn.click( |
|
fn=video_generation_handler_streaming, |
|
inputs=[prompt, seed, fps], |
|
outputs=[streaming_video, status_display] |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
if os.path.exists("gradio_tmp"): |
|
import shutil |
|
shutil.rmtree("gradio_tmp") |
|
os.makedirs("gradio_tmp", exist_ok=True) |
|
|
|
print("π Starting Self-Forcing Streaming Demo") |
|
print(f"π Temporary files will be stored in: gradio_tmp/") |
|
print(f"π― Chunk encoding: PyAV (MPEG-TS/H.264)") |
|
print(f"β‘ GPU acceleration: {gpu}") |
|
|
|
demo.queue().launch( |
|
server_name=args.host, |
|
server_port=args.port, |
|
share=args.share, |
|
show_error=True, |
|
max_threads=40, |
|
mcp_server=True |
|
) |