File size: 23,209 Bytes
0537464 08dc4c6 0537464 b55bb25 3fa232c b720739 b55bb25 b720739 b55bb25 b720739 b55bb25 b720739 1b86783 b720739 1b86783 26ef40e b55bb25 b720739 6676eef 26ef40e 8732b40 f29396c 2f939c6 257dc46 b720739 1b86783 b720739 b55bb25 b720739 1b86783 b720739 d50658d b720739 ec96039 b720739 d50658d b720739 b2c19b1 3a23852 08dc4c6 b2c19b1 08dc4c6 3a23852 08dc4c6 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 6373d0a b720739 b55bb25 b720739 08dc4c6 3a23852 08dc4c6 b720739 481a175 c0724a8 481a175 26ef40e 3fa232c 26ef40e 3fa232c 26ef40e 396c421 2f939c6 396c421 2f939c6 396c421 26ef40e 2f939c6 3fa232c b55bb25 26ef40e b735958 26ef40e 257dc46 26ef40e b2c19b1 b55bb25 b2c19b1 26ef40e 3fa232c 26ef40e b55bb25 26ef40e 3fa232c 26ef40e b720739 3fa232c b720739 3fa232c b720739 3fa232c b720739 3fa232c 6896d2c b720739 923cdcc 3fa232c 923cdcc 6896d2c 923cdcc b720739 0ce1e5e b2c19b1 0ce1e5e 2f939c6 0ce1e5e 2f939c6 0ce1e5e b55bb25 0ce1e5e 3fa232c 0ce1e5e b720739 3fa232c 1b86783 3fa232c 0ce1e5e 3fa232c b720739 3fa232c 26ef40e 3fa232c 26ef40e b720739 26ef40e 261eea4 b720739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import subprocess
# not sure why it works in the original space but says "pip not found" in mine
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import os
import base64
from huggingface_hub import snapshot_download, hf_hub_download
# Configuration for data paths
DATA_ROOT = os.path.normpath(os.getenv('DATA_ROOT', '.'))
WAN_MODELS_PATH = os.path.join(DATA_ROOT, 'wan_models')
OTHER_MODELS_PATH = os.path.join(DATA_ROOT, 'other_models')
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir=os.path.join(WAN_MODELS_PATH, "Wan2.1-T2V-1.3B"),
local_dir_use_symlinks=False,
resume_download=True,
repo_type="model"
)
hf_hub_download(
repo_id="gdhe17/Self-Forcing",
filename="checkpoints/self_forcing_dmd.pt",
local_dir=OTHER_MODELS_PATH,
local_dir_use_symlinks=False
)
import re
import random
import argparse
import hashlib
import urllib.request
import time
from PIL import Image
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio
import av
import uuid
import tempfile
import shutil
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Union
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #, BitsAndBytesConfig
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_WIDTH = 832
DEFAULT_HEIGHT = 480
def create_vae_cache_for_resolution(latent_height, latent_width, device, dtype):
"""
Create VAE cache tensors dynamically based on the latent resolution.
The cache structure mirrors ZERO_VAE_CACHE but with resolution-dependent dimensions.
"""
# Scale dimensions based on latent resolution
# The original cache assumes 832x480 -> 104x60 latent dimensions
# We need to scale proportionally for other resolutions
cache = [
torch.zeros(1, 16, 2, latent_height, latent_width, device=device, dtype=dtype),
# First set of 384-channel caches at latent resolution
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height, latent_width, device=device, dtype=dtype),
# Second set at 2x upsampled resolution
torch.zeros(1, 192, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
torch.zeros(1, 384, 2, latent_height * 2, latent_width * 2, device=device, dtype=dtype),
# Third set at 4x upsampled resolution
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
torch.zeros(1, 192, 2, latent_height * 4, latent_width * 4, device=device, dtype=dtype),
# Fourth set at 8x upsampled resolution (final output resolution)
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype),
torch.zeros(1, 96, 2, latent_height * 8, latent_width * 8, device=device, dtype=dtype)
]
return cache
# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default=os.path.join(OTHER_MODELS_PATH, 'checkpoints', 'self_forcing_dmd.pt'), help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
args = parser.parse_args()
gpu = "cuda"
try:
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
exit(1)
# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)
try:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
exit(1)
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
text_encoder.to(gpu)
transformer.to(gpu)
APP_STATE = {
"torch_compile_applied": False,
"fp8_applied": False,
"current_use_taehv": False,
"current_vae_decoder": None,
}
# I've tried to enable it, but I didn't notice a significant performance improvement..
ENABLE_TORCH_COMPILATION = False
# “default”: The default mode, used when no mode parameter is specified. It provides a good balance between performance and overhead.
# “reduce-overhead”: Minimizes Python-related overhead using CUDA graphs. However, it may increase memory usage.
# “max-autotune”: Uses Triton or template-based matrix multiplications on supported devices. It takes longer to compile but optimizes for the fastest possible execution. On GPUs it enables CUDA graphs by default.
# “max-autotune-no-cudagraphs”: Similar to “max-autotune”, but without CUDA graphs.
TORCH_COMPILATION_MODE = "default"
# Apply torch.compile for maximum performance
if not APP_STATE["torch_compile_applied"] and ENABLE_TORCH_COMPILATION:
print("🚀 Applying torch.compile for speed optimization...")
transformer.compile(mode=TORCH_COMPILATION_MODE)
APP_STATE["torch_compile_applied"] = True
print("✅ torch.compile applied to transformer")
def frames_to_mp4_base64(frames, fps = 15):
"""
Convert frames directly to base64 data URI using PyAV.
Args:
frames: List of numpy arrays (HWC, RGB, uint8)
fps: Frames per second
Returns:
Base64 data URI string for the MP4 video
"""
if not frames:
return "data:video/mp4;base64,"
height, width = frames[0].shape[:2]
# Create temporary file for MP4 encoding
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
temp_filepath = temp_file.name
temp_file.close()
try:
# Create container for MP4 format
container = av.open(temp_filepath, mode='w', format='mp4')
# Add video stream with fast settings
stream = container.add_stream('h264', rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = 'yuv420p'
# Optimize for low latency streaming
stream.options = {
'preset': 'ultrafast',
'tune': 'zerolatency',
'crf': '23',
'profile': 'baseline',
'level': '3.0'
}
try:
for frame_np in frames:
frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24')
frame = frame.reformat(format=stream.pix_fmt)
for packet in stream.encode(frame):
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
finally:
container.close()
# Read the MP4 file and encode to base64
with open(temp_filepath, 'rb') as f:
video_data = f.read()
base64_data = base64.b64encode(video_data).decode('utf-8')
return f"data:video/mp4;base64,{base64_data}"
finally:
# Clean up temporary file
if os.path.exists(temp_filepath):
os.unlink(temp_filepath)
return "data:video/mp4;base64,"
# note: we set use_taehv to be able to use other resolutions
# this might impact performance
def initialize_vae_decoder(use_taehv=True, use_trt=False):
if use_trt:
from demo_utils.vae import VAETRTWrapper
print("Initializing TensorRT VAE Decoder...")
vae_decoder = VAETRTWrapper()
APP_STATE["current_use_taehv"] = False
elif use_taehv:
print("Initializing TAEHV VAE Decoder...")
from demo_utils.taehv import TAEHV
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
if not os.path.exists(taehv_checkpoint_path):
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
os.makedirs("checkpoints", exist_ok=True)
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
try:
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
except Exception as e:
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
class DotDict(dict): __getattr__ = dict.get
class TAEHVDiffusersWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
self.config = DotDict(scaling_factor=1.0)
def decode(self, latents, return_dict=None):
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
vae_decoder = TAEHVDiffusersWrapper()
APP_STATE["current_use_taehv"] = True
else:
print("Initializing Default VAE Decoder...")
vae_decoder = VAEDecoderWrapper()
try:
vae_state_dict = torch.load(os.path.join(WAN_MODELS_PATH, 'Wan2.1-T2V-1.3B', 'Wan2.1_VAE.pth'), map_location="cpu")
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
vae_decoder.load_state_dict(decoder_state_dict)
except FileNotFoundError:
print("Warning: Default VAE weights not found.")
APP_STATE["current_use_taehv"] = False
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
# Apply torch.compile to VAE decoder if enabled (following demo.py pattern)
if APP_STATE["torch_compile_applied"] and not use_taehv and not use_trt:
print("🚀 Applying torch.compile to VAE decoder...")
vae_decoder.compile(mode=TORCH_COMPILATION_MODE)
print("✅ torch.compile applied to VAE decoder")
APP_STATE["current_vae_decoder"] = vae_decoder
print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
pipeline = CausalInferencePipeline(
config, device=gpu, generator=transformer, text_encoder=text_encoder,
vae=APP_STATE["current_vae_decoder"]
)
pipeline.to(dtype=torch.float16).to(gpu)
@torch.no_grad()
def video_generation_handler(prompt, seed=42, fps=15, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, duration=5):
"""
Generate video and return a single MP4 file.
"""
# Add fallback values for None parameters
if seed is None:
seed = -1
if fps is None:
fps = 15
if width is None:
width = DEFAULT_WIDTH
if height is None:
height = DEFAULT_HEIGHT
if duration is None:
duration = 5
if seed == -1:
seed = random.randint(0, 2**32 - 1)
print(f"🎬 video_generation_handler called, seed: {seed}, duration: {duration}s, fps: {fps}, width: {width}, height: {height}")
# Setup
conditional_dict = text_encoder(text_prompts=[prompt])
for key, value in conditional_dict.items():
conditional_dict[key] = value.to(dtype=torch.float16)
rnd = torch.Generator(gpu).manual_seed(int(seed))
pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
# Calculate latent dimensions based on actual width/height (assuming 8x downsampling)
latent_height = height // 8
latent_width = width // 8
noise = torch.randn([1, 21, 16, latent_height, latent_width], device=gpu, dtype=torch.float16, generator=rnd)
vae_cache, latents_cache = None, None
if not APP_STATE["current_use_taehv"] and not args.trt:
# Create resolution-dependent VAE cache
vae_cache = create_vae_cache_for_resolution(latent_height, latent_width, device=gpu, dtype=torch.float16)
# Calculate number of blocks based on duration
# Current setup generates approximately 5 seconds with 7 blocks
# So we scale proportionally
base_duration = 5.0 # seconds
base_blocks = 8
num_blocks = max(1, int(base_blocks * duration / base_duration))
current_start_frame = 0
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
all_frames = []
total_frames_generated = 0
# Ensure temp directory exists
os.makedirs("gradio_tmp", exist_ok=True)
# Generation loop
for idx, current_num_frames in enumerate(all_num_frames):
print(f"📦 Processing block {idx+1}/{num_blocks}")
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
# Denoising steps
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
_, denoised_pred = pipeline.generator(
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
timestep=timestep, kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length
)
if step_idx < len(pipeline.denoising_step_list) - 1:
next_timestep = pipeline.denoising_step_list[step_idx + 1]
noisy_input = pipeline.scheduler.add_noise(
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
if idx < len(all_num_frames) - 1:
pipeline.generator(
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length,
)
# Decode to pixels
if args.trt:
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
elif APP_STATE["current_use_taehv"]:
if latents_cache is None:
latents_cache = denoised_pred
else:
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
latents_cache = denoised_pred[:, -3:]
pixels = pipeline.vae.decode(denoised_pred)
else:
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
# Handle frame skipping
if idx == 0 and not args.trt:
pixels = pixels[:, 3:]
elif APP_STATE["current_use_taehv"] and idx > 0:
pixels = pixels[:, 12:]
print(f"🔍 DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}")
# Process all frames from this block and add to main collection
for frame_idx in range(pixels.shape[1]):
frame_tensor = pixels[0, frame_idx]
# Convert to numpy (HWC, RGB, uint8)
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
frame_np = frame_np.to(torch.uint8).cpu().numpy()
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
all_frames.append(frame_np)
total_frames_generated += 1
print(f"📦 Block {idx+1}/{num_blocks}, Frame {frame_idx+1}/{pixels.shape[1]} - Total frames: {total_frames_generated}")
current_start_frame += current_num_frames
# Generate final MP4 as base64 data URI
if all_frames:
print(f"📹 Encoding final MP4 with {len(all_frames)} frames")
try:
base64_data_uri = frames_to_mp4_base64(all_frames, fps)
print(f"✅ Video generation complete! {total_frames_generated} frames encoded to base64 data URI")
return base64_data_uri
except Exception as e:
print(f"⚠️ Error encoding final video: {e}")
import traceback
traceback.print_exc()
return "data:video/mp4;base64,"
else:
print("⚠️ No frames generated")
return "data:video/mp4;base64,"
# --- Gradio UI Layout ---
with gr.Blocks(title="Wan2.1 1.3B Self-Forcing demo") as demo:
gr.Markdown("Video generation with distilled Wan2-1 1.3B [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
prompt = gr.Textbox(
label="Prompt",
placeholder="A stylish woman walks down a Tokyo street...",
lines=4,
value=""
)
start_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg")
gr.Markdown("### ⚙️ Settings")
with gr.Row():
seed = gr.Slider(
label="Generation Seed (-1 for random)",
minimum=-1,
maximum=2147483647, # 2^31 - 1
step=1,
value=-1
)
fps = gr.Slider(
label="Playback FPS",
minimum=1,
maximum=30,
value=args.fps,
step=1,
visible=False,
info="Frames per second for playback"
)
with gr.Row():
duration = gr.Slider(
label="Duration (seconds)",
minimum=1,
maximum=5,
value=3,
step=1,
info="Video duration in seconds"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=224,
maximum=832,
value=DEFAULT_WIDTH,
step=8,
info="Video width in pixels (8px steps)"
)
height = gr.Slider(
label="Height",
minimum=224,
maximum=832,
value=DEFAULT_HEIGHT,
step=8,
info="Video height in pixels (8px steps)"
)
with gr.Column(scale=3):
gr.Markdown("### 🎬 Generated Video (Base64)")
video_output = gr.Textbox(
label="Base64 Video Data URI",
lines=10,
max_lines=20,
show_copy_button=True,
placeholder="Generated video will appear here as base64 data URI..."
)
# Connect the generator to the text output
start_btn.click(
fn=video_generation_handler,
inputs=[prompt, seed, fps, width, height, duration],
outputs=[video_output]
)
# --- Launch App ---
if __name__ == "__main__":
if os.path.exists("gradio_tmp"):
import shutil
shutil.rmtree("gradio_tmp")
os.makedirs("gradio_tmp", exist_ok=True)
print("🚀 Video Generation Node (default engine is Wan2.1 1.3B Self-Forcing)")
print(f"📁 Temporary files will be stored in: gradio_tmp/")
print(f"🎯 Video encoding: PyAV (MP4/H.264)")
print(f"⚡ GPU acceleration: {gpu}")
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True,
max_threads=40,
mcp_server=True
) |