File size: 26,702 Bytes
54eccd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import subprocess
# not sure why it works in the original space but says "pip not found" in mine
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import os
from huggingface_hub import snapshot_download, hf_hub_download

# Configuration for data paths
DATA_ROOT = os.path.normpath(os.getenv('DATA_ROOT', '.'))
WAN_MODELS_PATH = os.path.join(DATA_ROOT, 'wan_models')
OTHER_MODELS_PATH = os.path.join(DATA_ROOT, 'other_models')

snapshot_download(
    repo_id="Wan-AI/Wan2.1-T2V-1.3B",
    local_dir=os.path.join(WAN_MODELS_PATH, "Wan2.1-T2V-1.3B"),
    local_dir_use_symlinks=False,
    resume_download=True,
    repo_type="model" 
)

hf_hub_download(
    repo_id="gdhe17/Self-Forcing",
    filename="checkpoints/self_forcing_dmd.pt",
    local_dir=OTHER_MODELS_PATH,              
    local_dir_use_symlinks=False 
)
import re
import random
import argparse
import hashlib
import urllib.request
import time
from PIL import Image
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio
import av
import uuid
import tempfile
import shutil
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Union

from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder

from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #, BitsAndBytesConfig
import numpy as np

device = "cuda" if torch.cuda.is_available() else "cpu"

# LoRA Storage Configuration
STORAGE_PATH = Path(DATA_ROOT) / "storage"
LORA_PATH = STORAGE_PATH / "loras"
OUTPUT_PATH = STORAGE_PATH / "output"

# Create necessary directories
STORAGE_PATH.mkdir(parents=True, exist_ok=True)
LORA_PATH.mkdir(parents=True, exist_ok=True)
OUTPUT_PATH.mkdir(parents=True, exist_ok=True)

# Global variables for LoRA management
current_lora_id = None
current_lora_path = None

# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default=os.path.join(OTHER_MODELS_PATH, 'checkpoints', 'self_forcing_dmd.pt'), help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
args = parser.parse_args()

gpu = "cuda"

try:
    config = OmegaConf.load(args.config_path)
    default_config = OmegaConf.load("configs/default_config.yaml")
    config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
    print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
    exit(1)

# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)

try:
    state_dict = torch.load(args.checkpoint_path, map_location="cpu")
    transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
    print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
    exit(1)

text_encoder.eval().to(dtype=torch.float16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)

text_encoder.to(gpu)
transformer.to(gpu)

APP_STATE = {
    "torch_compile_applied": False,
    "fp8_applied": False,
    "current_use_taehv": False,
    "current_vae_decoder": None,
}

# I've tried to enable it, but I didn't notice a significant performance improvement..
ENABLE_TORCH_COMPILATION = False

# “default”: The default mode, used when no mode parameter is specified. It provides a good balance between performance and overhead.
# “reduce-overhead”: Minimizes Python-related overhead using CUDA graphs. However, it may increase memory usage.
# “max-autotune”: Uses Triton or template-based matrix multiplications on supported devices. It takes longer to compile but optimizes for the fastest possible execution. On GPUs it enables CUDA graphs by default.
# “max-autotune-no-cudagraphs”: Similar to “max-autotune”, but without CUDA graphs.
TORCH_COMPILATION_MODE = "default"

# Apply torch.compile for maximum performance
if not APP_STATE["torch_compile_applied"] and ENABLE_TORCH_COMPILATION:
    print("🚀 Applying torch.compile for speed optimization...")
    transformer.compile(mode=TORCH_COMPILATION_MODE)
    APP_STATE["torch_compile_applied"] = True
    print("✅ torch.compile applied to transformer")

def upload_lora_file(file: tempfile._TemporaryFileWrapper) -> Tuple[str, str]:
    """Upload a LoRA file and return a hash-based ID for future reference"""
    if file is None:
        return "", ""
        
    try:
        # Calculate SHA256 hash of the file
        sha256_hash = hashlib.sha256()
        with open(file.name, "rb") as f:
            for chunk in iter(lambda: f.read(4096), b""):
                sha256_hash.update(chunk)
        file_hash = sha256_hash.hexdigest()
        
        # Create destination path using hash
        dest_path = LORA_PATH / f"{file_hash}.safetensors"
        
        # Check if file already exists
        if dest_path.exists():
            print(f"LoRA file already exists!")
            return file_hash, file_hash
        
        # Copy the file to the destination
        shutil.copy(file.name, dest_path)
        
        print(f"LoRA file uploaded!")
        return file_hash, file_hash
    except Exception as e:
        print(f"Error uploading LoRA file: {e}")
        raise gr.Error(f"Failed to upload LoRA file: {str(e)}")

def get_lora_file_path(lora_id: Optional[str]) -> Optional[Path]:
    """Get the path to a LoRA file from its hash-based ID"""
    if not lora_id:
        return None
        
    # Check if file exists
    lora_path = LORA_PATH / f"{lora_id}.safetensors"
    if lora_path.exists():
        return lora_path
    
    return None

def manage_lora_weights(lora_id: Optional[str], lora_weight: float) -> Tuple[bool, Optional[Path]]:
    """Manage LoRA weights for the transformer model"""
    global current_lora_id, current_lora_path
    
    # Determine if we should use LoRA
    using_lora = lora_id is not None and lora_id.strip() != "" and lora_weight > 0
    
    # If not using LoRA but we have one loaded, clear it
    if not using_lora and current_lora_id is not None:
        print(f"Clearing current LoRA")
        current_lora_id = None
        current_lora_path = None
        return False, None
    
    # If using LoRA, check if we need to change weights
    if using_lora:
        lora_path = get_lora_file_path(lora_id)
        
        if not lora_path:
            print(f"A LoRA file with this ID was found. Using base model instead.")
            
            # If we had a LoRA loaded, clear it
            if current_lora_id is not None:
                print(f"Clearing current LoRA")
                current_lora_id = None
                current_lora_path = None
                
            return False, None
        
        # If LoRA ID changed, update
        if lora_id != current_lora_id:
            print(f"Loading LoRA..")
            current_lora_id = lora_id
            current_lora_path = lora_path
        else:
            print(f"Using a LoRA!")
        
        return True, lora_path
    
    return False, None

def frames_to_ts_file(frames, filepath, fps = 15):
    """
    Convert frames directly to .ts file using PyAV.
    
    Args:
        frames: List of numpy arrays (HWC, RGB, uint8)
        filepath: Output file path
        fps: Frames per second
    
    Returns:
        The filepath of the created file
    """
    if not frames:
        return filepath
    
    height, width = frames[0].shape[:2]
    
    # Create container for MPEG-TS format
    container = av.open(filepath, mode='w', format='mpegts')
    
    # Add video stream with optimized settings for streaming
    stream = container.add_stream('h264', rate=fps)
    stream.width = width
    stream.height = height
    stream.pix_fmt = 'yuv420p'
    
    # Optimize for low latency streaming
    stream.options = {
        'preset': 'ultrafast',
        'tune': 'zerolatency', 
        'crf': '23',
        'profile': 'baseline',
        'level': '3.0'
    }
    
    try:
        for frame_np in frames:
            frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24')
            frame = frame.reformat(format=stream.pix_fmt)
            for packet in stream.encode(frame):
                container.mux(packet)
        
        for packet in stream.encode():
            container.mux(packet)
            
    finally:
        container.close()
    
    return filepath

def initialize_vae_decoder(use_taehv=False, use_trt=False):
    if use_trt:
        from demo_utils.vae import VAETRTWrapper
        print("Initializing TensorRT VAE Decoder...")
        vae_decoder = VAETRTWrapper()
        APP_STATE["current_use_taehv"] = False
    elif use_taehv:
        print("Initializing TAEHV VAE Decoder...")
        from demo_utils.taehv import TAEHV
        taehv_checkpoint_path = "checkpoints/taew2_1.pth"
        if not os.path.exists(taehv_checkpoint_path):
            print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
            os.makedirs("checkpoints", exist_ok=True)
            download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
            try:
                urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
            except Exception as e:
                raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
        
        class DotDict(dict): __getattr__ = dict.get
        
        class TAEHVDiffusersWrapper(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.dtype = torch.float16
                self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
                self.config = DotDict(scaling_factor=1.0)
            def decode(self, latents, return_dict=None):
                return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
        
        vae_decoder = TAEHVDiffusersWrapper()
        APP_STATE["current_use_taehv"] = True
    else:
        print("Initializing Default VAE Decoder...")
        vae_decoder = VAEDecoderWrapper()
        try:
            vae_state_dict = torch.load(os.path.join(WAN_MODELS_PATH, 'Wan2.1-T2V-1.3B', 'Wan2.1_VAE.pth'), map_location="cpu")
            decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
            vae_decoder.load_state_dict(decoder_state_dict)
        except FileNotFoundError:
            print("Warning: Default VAE weights not found.")
        APP_STATE["current_use_taehv"] = False

    vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
    
    # Apply torch.compile to VAE decoder if enabled (following demo.py pattern)
    if APP_STATE["torch_compile_applied"] and not use_taehv and not use_trt:
        print("🚀 Applying torch.compile to VAE decoder...")
        vae_decoder.compile(mode=TORCH_COMPILATION_MODE)
        print("✅ torch.compile applied to VAE decoder")
    
    APP_STATE["current_vae_decoder"] = vae_decoder
    print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")

# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)

pipeline = CausalInferencePipeline(
    config, device=gpu, generator=transformer, text_encoder=text_encoder, 
    vae=APP_STATE["current_vae_decoder"]
)

pipeline.to(dtype=torch.float16).to(gpu)

@torch.no_grad()
def video_generation_handler_streaming(prompt, seed=42, fps=15, width=400, height=224, duration=5, lora_id=None, lora_weight=0.0):
    """
    Generator function that yields .ts video chunks using PyAV for streaming.
    """
    if seed == -1: 
        seed = random.randint(0, 2**32 - 1)
    
    # print(f"🎬 Starting PyAV streaming: seed: {seed}, duration: {duration}s")

    # Handle LoRA weights
    using_lora, lora_path = manage_lora_weights(lora_id, lora_weight)
    if using_lora:
        print(f"🎨 Using LoRA with weight factor {lora_weight}")
    else:
        print("🎨 Using base model (no LoRA)")

    # Setup
    conditional_dict = text_encoder(text_prompts=[prompt])
    for key, value in conditional_dict.items():
        conditional_dict[key] = value.to(dtype=torch.float16)
    
    rnd = torch.Generator(gpu).manual_seed(int(seed))
    pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
    pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
    noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
    
    vae_cache, latents_cache = None, None
    if not APP_STATE["current_use_taehv"] and not args.trt:
        vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]

    # Calculate number of blocks based on duration
    # Current setup generates approximately 5 seconds with 7 blocks
    # So we scale proportionally
    base_duration = 5.0  # seconds
    base_blocks = 8
    num_blocks = max(1, int(base_blocks * duration / base_duration))
    
    current_start_frame = 0
    all_num_frames = [pipeline.num_frame_per_block] * num_blocks
    
    total_frames_yielded = 0
    
    # Ensure temp directory exists
    os.makedirs("gradio_tmp", exist_ok=True)

    # Generation loop
    for idx, current_num_frames in enumerate(all_num_frames):
        print(f"📦 Processing block {idx+1}/{num_blocks}")
        
        noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]

        # Denoising steps
        for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
            timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
            _, denoised_pred = pipeline.generator(
                noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
                timestep=timestep, kv_cache=pipeline.kv_cache1,
                crossattn_cache=pipeline.crossattn_cache,
                current_start=current_start_frame * pipeline.frame_seq_length
            )
            if step_idx < len(pipeline.denoising_step_list) - 1:
                next_timestep = pipeline.denoising_step_list[step_idx + 1]
                noisy_input = pipeline.scheduler.add_noise(
                    denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
                    next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
                ).unflatten(0, denoised_pred.shape[:2])

        if idx < len(all_num_frames) - 1:
            pipeline.generator(
                noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
                timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
                crossattn_cache=pipeline.crossattn_cache,
                current_start=current_start_frame * pipeline.frame_seq_length,
            )

        # Decode to pixels
        if args.trt:
            pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
        elif APP_STATE["current_use_taehv"]:
            if latents_cache is None: 
                latents_cache = denoised_pred
            else:
                denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
                latents_cache = denoised_pred[:, -3:]
            pixels = pipeline.vae.decode(denoised_pred)
        else:
            pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
            
        # Handle frame skipping
        if idx == 0 and not args.trt: 
            pixels = pixels[:, 3:]
        elif APP_STATE["current_use_taehv"] and idx > 0: 
            pixels = pixels[:, 12:]

        print(f"🔍 DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}")

        # Process all frames from this block at once
        all_frames_from_block = []
        for frame_idx in range(pixels.shape[1]):
            frame_tensor = pixels[0, frame_idx]
            
            # Convert to numpy (HWC, RGB, uint8)
            frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
            frame_np = frame_np.to(torch.uint8).cpu().numpy()
            frame_np = np.transpose(frame_np, (1, 2, 0))  # CHW -> HWC
            
            all_frames_from_block.append(frame_np)
            total_frames_yielded += 1
            
            # Yield status update for each frame (cute tracking!)
            blocks_completed = idx
            current_block_progress = (frame_idx + 1) / pixels.shape[1]
            total_progress = (blocks_completed + current_block_progress) / num_blocks * 100
            
            # Cap at 100% to avoid going over
            total_progress = min(total_progress, 100.0)
            
            frame_status_html = (
                f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
                f"  <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
                f"  <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
                f"    <div style='width: {total_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
                f"  </div>"
                f"  <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
                f"    Block {idx+1}/{num_blocks}   |   Frame {total_frames_yielded}   |   {total_progress:.1f}%"
                f"  </p>"
                f"</div>"
            )
            
            # Yield None for video but update status (frame-by-frame tracking)
            yield None, frame_status_html

        # Encode entire block as one chunk
        if all_frames_from_block:
            print(f"📹 Encoding block {idx} with {len(all_frames_from_block)} frames")
            
            try:
                chunk_uuid = str(uuid.uuid4())[:8]
                ts_filename = f"block_{idx:04d}_{chunk_uuid}.ts"
                ts_path = os.path.join("gradio_tmp", ts_filename)
                
                frames_to_ts_file(all_frames_from_block, ts_path, fps)
                
                # Calculate final progress for this block
                total_progress = (idx + 1) / num_blocks * 100
                
                # Yield the actual video chunk
                yield ts_path, gr.update()
                
            except Exception as e:
                print(f"⚠️ Error encoding block {idx}: {e}")
                import traceback
                traceback.print_exc()
                    
        current_start_frame += current_num_frames
    
    # Final completion status
    final_status_html = (
        f"<div style='padding: 16px; border: 1px solid #198754; background: linear-gradient(135deg, #d1e7dd, #f8f9fa); border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>"
        f"  <div style='display: flex; align-items: center; margin-bottom: 8px;'>"
        f"    <span style='font-size: 24px; margin-right: 12px;'>🎉</span>"
        f"    <h4 style='margin: 0; color: #0f5132; font-size: 18px;'>Stream Complete!</h4>"
        f"  </div>"
        f"  <div style='background: rgba(255,255,255,0.7); padding: 8px; border-radius: 4px;'>"
        f"    <p style='margin: 0; color: #0f5132; font-weight: 500;'>"
        f"      📊 Generated {total_frames_yielded} frames across {num_blocks} blocks"
        f"    </p>"
        f"    <p style='margin: 4px 0 0 0; color: #0f5132; font-size: 14px;'>"
        f"      🎬 Playback: {fps} FPS • 📁 Format: MPEG-TS/H.264"
        f"    </p>"
        f"  </div>"
        f"</div>"
    )
    yield None, final_status_html
    print(f"✅ PyAV streaming complete! {total_frames_yielded} frames across {num_blocks} blocks")

# --- Gradio UI Layout ---
with gr.Blocks(title="Wan2.1 1.3B LoRA Self-Forcing streaming demo") as demo:
    gr.Markdown("# 🚀 Run Any LoRA in near real-time!")
    gr.Markdown("Real-time video generation with distilled Wan2-1 1.3B and LoRA [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)")
    
    with gr.Tabs():
        # LoRA Upload Tab
        with gr.TabItem("1️⃣ Upload LoRA"):
            gr.Markdown("## Upload LoRA Weights")
            gr.Markdown("Upload your custom LoRA weights file to use for generation. The file will be automatically stored and you'll receive a unique hash-based ID.")
            
            with gr.Row():
                lora_file = gr.File(label="LoRA File (safetensors format)")
                
            with gr.Row():
                lora_id_output = gr.Textbox(label="LoRA Hash ID (use this in the generation tab)", interactive=False)
        
        # Video Generation Tab
        with gr.TabItem("2️⃣ Generate Video"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Group():
                        prompt = gr.Textbox(
                            label="Prompt", 
                            placeholder="A stylish woman walks down a Tokyo street...", 
                            lines=4,
                            value=""
                        )

                    start_btn = gr.Button("🎬 Start Streaming", variant="primary", size="lg")
                    
                    gr.Markdown("### ⚙️ Settings")
                    with gr.Row():
                        seed = gr.Number(
                            label="Seed", 
                            value=-1, 
                            info="Use -1 for random seed",
                            precision=0
                        )
                        fps = gr.Slider(
                            label="Playback FPS", 
                            minimum=1, 
                            maximum=30, 
                            value=args.fps, 
                            step=1,
                            visible=False,
                            info="Frames per second for playback"
                        )
                    
                    with gr.Row():
                        duration = gr.Slider(
                            label="Duration (seconds)",
                            minimum=1,
                            maximum=5,
                            value=3,
                            step=1,
                            info="Video duration in seconds"
                        )
                    
                    with gr.Row():
                        width = gr.Slider(
                            label="Width", 
                            minimum=224, 
                            maximum=720, 
                            value=400, 
                            step=8,
                            info="Video width in pixels (8px steps)"
                        )
                        height = gr.Slider(
                            label="Height", 
                            minimum=224, 
                            maximum=720, 
                            value=224, 
                            step=8,
                            info="Video height in pixels (8px steps)"
                        )
                    
                    gr.Markdown("### 🎨 LoRA Settings")
                    lora_id = gr.Textbox(
                        label="LoRA ID (from upload tab)",
                        placeholder="Enter your LoRA ID here...",
                    )
                    
                    lora_weight = gr.Slider(
                        label="LoRA Weight",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=1.0,
                        info="Strength of LoRA influence"
                    )
                    
                with gr.Column(scale=3):
                    gr.Markdown("### 📺 Video Stream")

                    streaming_video = gr.Video(
                        label="Live Stream",
                        streaming=True,
                        loop=True,
                        height=400,
                        autoplay=True,
                        show_label=False
                    )
                    
                    status_display = gr.HTML(
                        value=(
                            "<div style='text-align: center; padding: 20px; color: #666; border: 1px dashed #ddd; border-radius: 8px;'>"
                            "🎬 Ready to start streaming...<br>"
                            "<small>Configure your prompt and click 'Start Streaming'</small>"
                            "</div>"
                        ),
                        label="Generation Status"
                    )

    # Connect the generator to the streaming video
    start_btn.click(
        fn=video_generation_handler_streaming,
        inputs=[prompt, seed, fps, width, height, duration, lora_id, lora_weight],
        outputs=[streaming_video, status_display]
    )
    
    # Connect LoRA upload to both display fields
    lora_file.change(
        fn=upload_lora_file,
        inputs=[lora_file],
        outputs=[lora_id_output, lora_id]
    )


# --- Launch App ---
if __name__ == "__main__":
    if os.path.exists("gradio_tmp"):
        import shutil
        shutil.rmtree("gradio_tmp")
    os.makedirs("gradio_tmp", exist_ok=True)
    
    print("🚀 Starting Self-Forcing Streaming Demo")
    print(f"📁 Temporary files will be stored in: gradio_tmp/")
    print(f"🎯 Chunk encoding: PyAV (MPEG-TS/H.264)")
    print(f"⚡ GPU acceleration: {gpu}")
    
    demo.queue().launch(
        server_name=args.host, 
        server_port=args.port, 
        share=args.share,
        show_error=True,
        max_threads=40,
        mcp_server=True
    )