Spaces:
Running
on
L40S
Running
on
L40S
Upload 210 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- diffsynth/__init__.py +6 -0
- diffsynth/configs/__init__.py +0 -0
- diffsynth/configs/model_config.py +777 -0
- diffsynth/controlnets/__init__.py +2 -0
- diffsynth/controlnets/controlnet_unit.py +91 -0
- diffsynth/controlnets/processors.py +62 -0
- diffsynth/data/__init__.py +1 -0
- diffsynth/data/simple_text_image.py +41 -0
- diffsynth/data/video.py +148 -0
- diffsynth/extensions/ESRGAN/__init__.py +137 -0
- diffsynth/extensions/FastBlend/__init__.py +63 -0
- diffsynth/extensions/FastBlend/api.py +397 -0
- diffsynth/extensions/FastBlend/cupy_kernels.py +119 -0
- diffsynth/extensions/FastBlend/data.py +146 -0
- diffsynth/extensions/FastBlend/patch_match.py +298 -0
- diffsynth/extensions/FastBlend/runners/__init__.py +4 -0
- diffsynth/extensions/FastBlend/runners/accurate.py +35 -0
- diffsynth/extensions/FastBlend/runners/balanced.py +46 -0
- diffsynth/extensions/FastBlend/runners/fast.py +141 -0
- diffsynth/extensions/FastBlend/runners/interpolation.py +121 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py +1 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/blip.py +77 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py +44 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/med.py +947 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/vit.py +301 -0
- diffsynth/extensions/ImageQualityMetric/__init__.py +148 -0
- diffsynth/extensions/ImageQualityMetric/aesthetic.py +148 -0
- diffsynth/extensions/ImageQualityMetric/clip.py +97 -0
- diffsynth/extensions/ImageQualityMetric/config.py +23 -0
- diffsynth/extensions/ImageQualityMetric/hps.py +118 -0
- diffsynth/extensions/ImageQualityMetric/imagereward.py +212 -0
- diffsynth/extensions/ImageQualityMetric/mps.py +129 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py +14 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py +458 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/constants.py +2 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/factory.py +433 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/generation_utils.py +0 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py +45 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py +176 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/loss.py +270 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/model.py +461 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/model_configs/ViT-H-14.json +17 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py +181 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/openai.py +144 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py +376 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py +243 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py +127 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py +211 -0
- diffsynth/extensions/ImageQualityMetric/open_clip/transform.py +216 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
diffsynth/tokenizer_configs/kolors/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
diffsynth/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .data import *
|
2 |
+
from .models import *
|
3 |
+
from .prompters import *
|
4 |
+
from .schedulers import *
|
5 |
+
from .pipelines import *
|
6 |
+
from .controlnets import *
|
diffsynth/configs/__init__.py
ADDED
File without changes
|
diffsynth/configs/model_config.py
ADDED
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import Literal, TypeAlias
|
2 |
+
|
3 |
+
from ..models.sd_text_encoder import SDTextEncoder
|
4 |
+
from ..models.sd_unet import SDUNet
|
5 |
+
from ..models.sd_vae_encoder import SDVAEEncoder
|
6 |
+
from ..models.sd_vae_decoder import SDVAEDecoder
|
7 |
+
|
8 |
+
from ..models.sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
|
9 |
+
from ..models.sdxl_unet import SDXLUNet
|
10 |
+
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
|
11 |
+
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
|
12 |
+
|
13 |
+
from ..models.sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
|
14 |
+
from ..models.sd3_dit import SD3DiT
|
15 |
+
from ..models.sd3_vae_decoder import SD3VAEDecoder
|
16 |
+
from ..models.sd3_vae_encoder import SD3VAEEncoder
|
17 |
+
|
18 |
+
from ..models.sd_controlnet import SDControlNet
|
19 |
+
from ..models.sdxl_controlnet import SDXLControlNetUnion
|
20 |
+
|
21 |
+
from ..models.sd_motion import SDMotionModel
|
22 |
+
from ..models.sdxl_motion import SDXLMotionModel
|
23 |
+
|
24 |
+
from ..models.svd_image_encoder import SVDImageEncoder
|
25 |
+
from ..models.svd_unet import SVDUNet
|
26 |
+
from ..models.svd_vae_decoder import SVDVAEDecoder
|
27 |
+
from ..models.svd_vae_encoder import SVDVAEEncoder
|
28 |
+
|
29 |
+
from ..models.sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
|
30 |
+
from ..models.sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder
|
31 |
+
|
32 |
+
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
|
33 |
+
from ..models.hunyuan_dit import HunyuanDiT
|
34 |
+
|
35 |
+
from ..models.flux_dit import FluxDiT
|
36 |
+
from ..models.flux_text_encoder import FluxTextEncoder2
|
37 |
+
from ..models.flux_vae import FluxVAEEncoder, FluxVAEDecoder
|
38 |
+
from ..models.flux_controlnet import FluxControlNet
|
39 |
+
from ..models.flux_ipadapter import FluxIpAdapter
|
40 |
+
|
41 |
+
from ..models.cog_vae import CogVAEEncoder, CogVAEDecoder
|
42 |
+
from ..models.cog_dit import CogDiT
|
43 |
+
|
44 |
+
from ..models.omnigen import OmniGenTransformer
|
45 |
+
|
46 |
+
from ..models.hunyuan_video_vae_decoder import HunyuanVideoVAEDecoder
|
47 |
+
from ..models.hunyuan_video_vae_encoder import HunyuanVideoVAEEncoder
|
48 |
+
|
49 |
+
from ..extensions.RIFE import IFNet
|
50 |
+
from ..extensions.ESRGAN import RRDBNet
|
51 |
+
|
52 |
+
from ..models.hunyuan_video_dit import HunyuanVideoDiT
|
53 |
+
|
54 |
+
from ..models.stepvideo_vae import StepVideoVAE
|
55 |
+
from ..models.stepvideo_dit import StepVideoModel
|
56 |
+
|
57 |
+
from ..models.wan_video_dit import WanModel
|
58 |
+
from ..models.wan_video_text_encoder import WanTextEncoder
|
59 |
+
from ..models.wan_video_image_encoder import WanImageEncoder
|
60 |
+
from ..models.wan_video_vae import WanVideoVAE
|
61 |
+
|
62 |
+
|
63 |
+
model_loader_configs = [
|
64 |
+
# These configs are provided for detecting model type automatically.
|
65 |
+
# The format is (state_dict_keys_hash, state_dict_keys_hash_with_shape, model_names, model_classes, model_resource)
|
66 |
+
(None, "091b0e30e77c76626b3ba62acdf95343", ["sd_controlnet"], [SDControlNet], "civitai"),
|
67 |
+
(None, "4a6c8306a27d916dea81263c8c88f450", ["hunyuan_dit_clip_text_encoder"], [HunyuanDiTCLIPTextEncoder], "civitai"),
|
68 |
+
(None, "f4aec400fe394297961218c768004521", ["hunyuan_dit"], [HunyuanDiT], "civitai"),
|
69 |
+
(None, "9e6e58043a5a2e332803ed42f6ee7181", ["hunyuan_dit_t5_text_encoder"], [HunyuanDiTT5TextEncoder], "civitai"),
|
70 |
+
(None, "13115dd45a6e1c39860f91ab073b8a78", ["sdxl_vae_encoder", "sdxl_vae_decoder"], [SDXLVAEEncoder, SDXLVAEDecoder], "diffusers"),
|
71 |
+
(None, "d78aa6797382a6d455362358a3295ea9", ["sd_ipadapter_clip_image_encoder"], [IpAdapterCLIPImageEmbedder], "diffusers"),
|
72 |
+
(None, "e291636cc15e803186b47404262ef812", ["sd_ipadapter"], [SDIpAdapter], "civitai"),
|
73 |
+
(None, "399c81f2f8de8d1843d0127a00f3c224", ["sdxl_ipadapter_clip_image_encoder"], [IpAdapterXLCLIPImageEmbedder], "diffusers"),
|
74 |
+
(None, "a64eac9aa0db4b9602213bc0131281c7", ["sdxl_ipadapter"], [SDXLIpAdapter], "civitai"),
|
75 |
+
(None, "52817e4fdd89df154f02749ca6f692ac", ["sdxl_unet"], [SDXLUNet], "diffusers"),
|
76 |
+
(None, "03343c606f16d834d6411d0902b53636", ["sd_text_encoder", "sd_unet", "sd_vae_decoder", "sd_vae_encoder"], [SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder], "civitai"),
|
77 |
+
(None, "d4ba77a7ece070679b4a987f58f201e9", ["sd_text_encoder"], [SDTextEncoder], "civitai"),
|
78 |
+
(None, "d0c89e55c5a57cf3981def0cb1c9e65a", ["sd_vae_decoder", "sd_vae_encoder"], [SDVAEDecoder, SDVAEEncoder], "civitai"),
|
79 |
+
(None, "3926bf373b39a67eeafd7901478a47a7", ["sd_unet"], [SDUNet], "civitai"),
|
80 |
+
(None, "1e0c39ec176b9007c05f76d52b554a4d", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
81 |
+
(None, "d9e0290829ba8d98e28e1a2b1407db4a", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_text_encoder_3", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
82 |
+
(None, "5072d0b24e406b49507abe861cf97691", ["sd3_text_encoder_3"], [SD3TextEncoder3], "civitai"),
|
83 |
+
(None, "4cf64a799d04260df438c6f33c9a047e", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"),
|
84 |
+
(None, "d9b008a867c498ab12ad24042eff8e3f", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"), # SDXL-Turbo
|
85 |
+
(None, "025bb7452e531a3853d951d77c63f032", ["sdxl_text_encoder", "sdxl_text_encoder_2"], [SDXLTextEncoder, SDXLTextEncoder2], "civitai"),
|
86 |
+
(None, "298997b403a4245c04102c9f36aac348", ["sdxl_unet"], [SDXLUNet], "civitai"),
|
87 |
+
(None, "2a07abce74b4bdc696b76254ab474da6", ["svd_image_encoder", "svd_unet", "svd_vae_decoder", "svd_vae_encoder"], [SVDImageEncoder, SVDUNet, SVDVAEDecoder, SVDVAEEncoder], "civitai"),
|
88 |
+
(None, "c96a285a6888465f87de22a984d049fb", ["sd_motion_modules"], [SDMotionModel], "civitai"),
|
89 |
+
(None, "72907b92caed19bdb2adb89aa4063fe2", ["sdxl_motion_modules"], [SDXLMotionModel], "civitai"),
|
90 |
+
(None, "31d2d9614fba60511fc9bf2604aa01f7", ["sdxl_controlnet"], [SDXLControlNetUnion], "diffusers"),
|
91 |
+
(None, "94eefa3dac9cec93cb1ebaf1747d7b78", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"),
|
92 |
+
(None, "1aafa3cc91716fb6b300cc1cd51b85a3", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "diffusers"),
|
93 |
+
(None, "21ea55f476dfc4fd135587abb59dfe5d", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "civitai"),
|
94 |
+
(None, "a29710fea6dddb0314663ee823598e50", ["flux_dit"], [FluxDiT], "civitai"),
|
95 |
+
(None, "57b02550baab820169365b3ee3afa2c9", ["flux_dit"], [FluxDiT], "civitai"),
|
96 |
+
(None, "3394f306c4cbf04334b712bf5aaed95f", ["flux_dit"], [FluxDiT], "civitai"),
|
97 |
+
(None, "023f054d918a84ccf503481fd1e3379e", ["flux_dit"], [FluxDiT], "civitai"),
|
98 |
+
(None, "605c56eab23e9e2af863ad8f0813a25d", ["flux_dit"], [FluxDiT], "diffusers"),
|
99 |
+
(None, "280189ee084bca10f70907bf6ce1649d", ["cog_vae_encoder", "cog_vae_decoder"], [CogVAEEncoder, CogVAEDecoder], "diffusers"),
|
100 |
+
(None, "9b9313d104ac4df27991352fec013fd4", ["rife"], [IFNet], "civitai"),
|
101 |
+
(None, "6b7116078c4170bfbeaedc8fe71f6649", ["esrgan"], [RRDBNet], "civitai"),
|
102 |
+
(None, "61cbcbc7ac11f169c5949223efa960d1", ["omnigen_transformer"], [OmniGenTransformer], "diffusers"),
|
103 |
+
(None, "78d18b9101345ff695f312e7e62538c0", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
104 |
+
(None, "b001c89139b5f053c715fe772362dd2a", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
105 |
+
(None, "52357cb26250681367488a8954c271e8", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
106 |
+
(None, "0cfd1740758423a2a854d67c136d1e8c", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
107 |
+
(None, "4daaa66cc656a8fe369908693dad0a35", ["flux_ipadapter"], [FluxIpAdapter], "diffusers"),
|
108 |
+
(None, "51aed3d27d482fceb5e0739b03060e8f", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
109 |
+
(None, "98cc34ccc5b54ae0e56bdea8688dcd5a", ["sd3_text_encoder_2"], [SD3TextEncoder2], "civitai"),
|
110 |
+
(None, "77ff18050dbc23f50382e45d51a779fe", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
111 |
+
(None, "5da81baee73198a7c19e6d2fe8b5148e", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"),
|
112 |
+
(None, "aeb82dce778a03dcb4d726cb03f3c43f", ["hunyuan_video_vae_decoder", "hunyuan_video_vae_encoder"], [HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder], "diffusers"),
|
113 |
+
(None, "b9588f02e78f5ccafc9d7c0294e46308", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"),
|
114 |
+
(None, "84ef4bd4757f60e906b54aa6a7815dc6", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"),
|
115 |
+
(None, "68beaf8429b7c11aa8ca05b1bd0058bd", ["stepvideo_vae"], [StepVideoVAE], "civitai"),
|
116 |
+
(None, "5c0216a2132b082c10cb7a0e0377e681", ["stepvideo_dit"], [StepVideoModel], "civitai"),
|
117 |
+
(None, "9269f8db9040a9d860eaca435be61814", ["wan_video_dit"], [WanModel], "civitai"),
|
118 |
+
(None, "aafcfd9672c3a2456dc46e1cb6e52c70", ["wan_video_dit"], [WanModel], "civitai"),
|
119 |
+
(None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"),
|
120 |
+
(None, "cb104773c6c2cb6df4f9529ad5c60d0b", ["wan_video_dit"], [WanModel], "diffusers"),
|
121 |
+
(None, "9c8818c2cbea55eca56c7b447df170da", ["wan_video_text_encoder"], [WanTextEncoder], "civitai"),
|
122 |
+
(None, "5941c53e207d62f20f9025686193c40b", ["wan_video_image_encoder"], [WanImageEncoder], "civitai"),
|
123 |
+
(None, "1378ea763357eea97acdef78e65d6d96", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
124 |
+
(None, "ccc42284ea13e1ad04693284c7a09be6", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
125 |
+
]
|
126 |
+
huggingface_model_loader_configs = [
|
127 |
+
# These configs are provided for detecting model type automatically.
|
128 |
+
# The format is (architecture_in_huggingface_config, huggingface_lib, model_name, redirected_architecture)
|
129 |
+
("ChatGLMModel", "diffsynth.models.kolors_text_encoder", "kolors_text_encoder", None),
|
130 |
+
("MarianMTModel", "transformers.models.marian.modeling_marian", "translator", None),
|
131 |
+
("BloomForCausalLM", "transformers.models.bloom.modeling_bloom", "beautiful_prompt", None),
|
132 |
+
("Qwen2ForCausalLM", "transformers.models.qwen2.modeling_qwen2", "qwen_prompt", None),
|
133 |
+
# ("LlamaForCausalLM", "transformers.models.llama.modeling_llama", "omost_prompt", None),
|
134 |
+
("T5EncoderModel", "diffsynth.models.flux_text_encoder", "flux_text_encoder_2", "FluxTextEncoder2"),
|
135 |
+
("CogVideoXTransformer3DModel", "diffsynth.models.cog_dit", "cog_dit", "CogDiT"),
|
136 |
+
("SiglipModel", "transformers.models.siglip.modeling_siglip", "siglip_vision_model", "SiglipVisionModel"),
|
137 |
+
("LlamaForCausalLM", "diffsynth.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoLLMEncoder"),
|
138 |
+
("LlavaForConditionalGeneration", "diffsynth.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoMLLMEncoder"),
|
139 |
+
("Step1Model", "diffsynth.models.stepvideo_text_encoder", "stepvideo_text_encoder_2", "STEP1TextEncoder"),
|
140 |
+
]
|
141 |
+
patch_model_loader_configs = [
|
142 |
+
# These configs are provided for detecting model type automatically.
|
143 |
+
# The format is (state_dict_keys_hash_with_shape, model_name, model_class, extra_kwargs)
|
144 |
+
("9a4ab6869ac9b7d6e31f9854e397c867", ["svd_unet"], [SVDUNet], {"add_positional_conv": 128}),
|
145 |
+
]
|
146 |
+
|
147 |
+
preset_models_on_huggingface = {
|
148 |
+
"HunyuanDiT": [
|
149 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
|
150 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
|
151 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
|
152 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
|
153 |
+
],
|
154 |
+
"stable-video-diffusion-img2vid-xt": [
|
155 |
+
("stabilityai/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
|
156 |
+
],
|
157 |
+
"ExVideo-SVD-128f-v1": [
|
158 |
+
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
|
159 |
+
],
|
160 |
+
# Stable Diffusion
|
161 |
+
"StableDiffusion_v15": [
|
162 |
+
("benjamin-paine/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"),
|
163 |
+
],
|
164 |
+
"DreamShaper_8": [
|
165 |
+
("Yntec/Dreamshaper8", "dreamshaper_8.safetensors", "models/stable_diffusion"),
|
166 |
+
],
|
167 |
+
# Textual Inversion
|
168 |
+
"TextualInversion_VeryBadImageNegative_v1.3": [
|
169 |
+
("gemasai/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"),
|
170 |
+
],
|
171 |
+
# Stable Diffusion XL
|
172 |
+
"StableDiffusionXL_v1": [
|
173 |
+
("stabilityai/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"),
|
174 |
+
],
|
175 |
+
"BluePencilXL_v200": [
|
176 |
+
("frankjoshua/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"),
|
177 |
+
],
|
178 |
+
"StableDiffusionXL_Turbo": [
|
179 |
+
("stabilityai/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"),
|
180 |
+
],
|
181 |
+
# Stable Diffusion 3
|
182 |
+
"StableDiffusion3": [
|
183 |
+
("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"),
|
184 |
+
],
|
185 |
+
"StableDiffusion3_without_T5": [
|
186 |
+
("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"),
|
187 |
+
],
|
188 |
+
# ControlNet
|
189 |
+
"ControlNet_v11f1p_sd15_depth": [
|
190 |
+
("lllyasviel/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"),
|
191 |
+
("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
192 |
+
],
|
193 |
+
"ControlNet_v11p_sd15_softedge": [
|
194 |
+
("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"),
|
195 |
+
("lllyasviel/Annotators", "ControlNetHED.pth", "models/Annotators")
|
196 |
+
],
|
197 |
+
"ControlNet_v11f1e_sd15_tile": [
|
198 |
+
("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet")
|
199 |
+
],
|
200 |
+
"ControlNet_v11p_sd15_lineart": [
|
201 |
+
("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"),
|
202 |
+
("lllyasviel/Annotators", "sk_model.pth", "models/Annotators"),
|
203 |
+
("lllyasviel/Annotators", "sk_model2.pth", "models/Annotators")
|
204 |
+
],
|
205 |
+
"ControlNet_union_sdxl_promax": [
|
206 |
+
("xinsir/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"),
|
207 |
+
("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
208 |
+
],
|
209 |
+
# AnimateDiff
|
210 |
+
"AnimateDiff_v2": [
|
211 |
+
("guoyww/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"),
|
212 |
+
],
|
213 |
+
"AnimateDiff_xl_beta": [
|
214 |
+
("guoyww/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"),
|
215 |
+
],
|
216 |
+
|
217 |
+
# Qwen Prompt
|
218 |
+
"QwenPrompt": [
|
219 |
+
("Qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
220 |
+
("Qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
221 |
+
("Qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
222 |
+
("Qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
223 |
+
("Qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
224 |
+
("Qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
225 |
+
("Qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
226 |
+
("Qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
227 |
+
],
|
228 |
+
# Beautiful Prompt
|
229 |
+
"BeautifulPrompt": [
|
230 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
231 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
232 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
233 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
234 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
235 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
236 |
+
],
|
237 |
+
# Omost prompt
|
238 |
+
"OmostPrompt":[
|
239 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
240 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
241 |
+
("lllyasviel/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
242 |
+
("lllyasviel/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
243 |
+
("lllyasviel/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
244 |
+
("lllyasviel/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
245 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
246 |
+
("lllyasviel/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
247 |
+
],
|
248 |
+
# Translator
|
249 |
+
"opus-mt-zh-en": [
|
250 |
+
("Helsinki-NLP/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"),
|
251 |
+
("Helsinki-NLP/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"),
|
252 |
+
("Helsinki-NLP/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"),
|
253 |
+
("Helsinki-NLP/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"),
|
254 |
+
("Helsinki-NLP/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"),
|
255 |
+
("Helsinki-NLP/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"),
|
256 |
+
("Helsinki-NLP/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"),
|
257 |
+
("Helsinki-NLP/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"),
|
258 |
+
],
|
259 |
+
# IP-Adapter
|
260 |
+
"IP-Adapter-SD": [
|
261 |
+
("h94/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"),
|
262 |
+
("h94/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"),
|
263 |
+
],
|
264 |
+
"IP-Adapter-SDXL": [
|
265 |
+
("h94/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"),
|
266 |
+
("h94/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"),
|
267 |
+
],
|
268 |
+
"SDXL-vae-fp16-fix": [
|
269 |
+
("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix")
|
270 |
+
],
|
271 |
+
# Kolors
|
272 |
+
"Kolors": [
|
273 |
+
("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"),
|
274 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"),
|
275 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
276 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
277 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
278 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
279 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
280 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
281 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
282 |
+
("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"),
|
283 |
+
("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"),
|
284 |
+
],
|
285 |
+
# FLUX
|
286 |
+
"FLUX.1-dev": [
|
287 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
288 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
289 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
290 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
291 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
292 |
+
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
293 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"),
|
294 |
+
],
|
295 |
+
"InstantX/FLUX.1-dev-IP-Adapter": {
|
296 |
+
"file_list": [
|
297 |
+
("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"),
|
298 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
299 |
+
("google/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
300 |
+
],
|
301 |
+
"load_path": [
|
302 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin",
|
303 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder",
|
304 |
+
],
|
305 |
+
},
|
306 |
+
# RIFE
|
307 |
+
"RIFE": [
|
308 |
+
("AlexWortega/RIFE", "flownet.pkl", "models/RIFE"),
|
309 |
+
],
|
310 |
+
# CogVideo
|
311 |
+
"CogVideoX-5B": [
|
312 |
+
("THUDM/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
313 |
+
("THUDM/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
314 |
+
("THUDM/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
315 |
+
("THUDM/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
316 |
+
("THUDM/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
317 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
318 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
319 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
320 |
+
("THUDM/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"),
|
321 |
+
],
|
322 |
+
# Stable Diffusion 3.5
|
323 |
+
"StableDiffusion3.5-large": [
|
324 |
+
("stabilityai/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"),
|
325 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
326 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
327 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
328 |
+
],
|
329 |
+
}
|
330 |
+
preset_models_on_modelscope = {
|
331 |
+
# Hunyuan DiT
|
332 |
+
"HunyuanDiT": [
|
333 |
+
("modelscope/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
|
334 |
+
("modelscope/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
|
335 |
+
("modelscope/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
|
336 |
+
("modelscope/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
|
337 |
+
],
|
338 |
+
# Stable Video Diffusion
|
339 |
+
"stable-video-diffusion-img2vid-xt": [
|
340 |
+
("AI-ModelScope/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
|
341 |
+
],
|
342 |
+
# ExVideo
|
343 |
+
"ExVideo-SVD-128f-v1": [
|
344 |
+
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
|
345 |
+
],
|
346 |
+
"ExVideo-CogVideoX-LoRA-129f-v1": [
|
347 |
+
("ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1", "ExVideo-CogVideoX-LoRA-129f-v1.safetensors", "models/lora"),
|
348 |
+
],
|
349 |
+
# Stable Diffusion
|
350 |
+
"StableDiffusion_v15": [
|
351 |
+
("AI-ModelScope/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"),
|
352 |
+
],
|
353 |
+
"DreamShaper_8": [
|
354 |
+
("sd_lora/dreamshaper_8", "dreamshaper_8.safetensors", "models/stable_diffusion"),
|
355 |
+
],
|
356 |
+
"AingDiffusion_v12": [
|
357 |
+
("sd_lora/aingdiffusion_v12", "aingdiffusion_v12.safetensors", "models/stable_diffusion"),
|
358 |
+
],
|
359 |
+
"Flat2DAnimerge_v45Sharp": [
|
360 |
+
("sd_lora/Flat-2D-Animerge", "flat2DAnimerge_v45Sharp.safetensors", "models/stable_diffusion"),
|
361 |
+
],
|
362 |
+
# Textual Inversion
|
363 |
+
"TextualInversion_VeryBadImageNegative_v1.3": [
|
364 |
+
("sd_lora/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"),
|
365 |
+
],
|
366 |
+
# Stable Diffusion XL
|
367 |
+
"StableDiffusionXL_v1": [
|
368 |
+
("AI-ModelScope/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"),
|
369 |
+
],
|
370 |
+
"BluePencilXL_v200": [
|
371 |
+
("sd_lora/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"),
|
372 |
+
],
|
373 |
+
"StableDiffusionXL_Turbo": [
|
374 |
+
("AI-ModelScope/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"),
|
375 |
+
],
|
376 |
+
"SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0": [
|
377 |
+
("sd_lora/zyd232_ChineseInkStyle_SDXL_v1_0", "zyd232_ChineseInkStyle_SDXL_v1_0.safetensors", "models/lora"),
|
378 |
+
],
|
379 |
+
# Stable Diffusion 3
|
380 |
+
"StableDiffusion3": [
|
381 |
+
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"),
|
382 |
+
],
|
383 |
+
"StableDiffusion3_without_T5": [
|
384 |
+
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"),
|
385 |
+
],
|
386 |
+
# ControlNet
|
387 |
+
"ControlNet_v11f1p_sd15_depth": [
|
388 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"),
|
389 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
390 |
+
],
|
391 |
+
"ControlNet_v11p_sd15_softedge": [
|
392 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"),
|
393 |
+
("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators")
|
394 |
+
],
|
395 |
+
"ControlNet_v11f1e_sd15_tile": [
|
396 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet")
|
397 |
+
],
|
398 |
+
"ControlNet_v11p_sd15_lineart": [
|
399 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"),
|
400 |
+
("sd_lora/Annotators", "sk_model.pth", "models/Annotators"),
|
401 |
+
("sd_lora/Annotators", "sk_model2.pth", "models/Annotators")
|
402 |
+
],
|
403 |
+
"ControlNet_union_sdxl_promax": [
|
404 |
+
("AI-ModelScope/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"),
|
405 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
406 |
+
],
|
407 |
+
"Annotators:Depth": [
|
408 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators"),
|
409 |
+
],
|
410 |
+
"Annotators:Softedge": [
|
411 |
+
("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators"),
|
412 |
+
],
|
413 |
+
"Annotators:Lineart": [
|
414 |
+
("sd_lora/Annotators", "sk_model.pth", "models/Annotators"),
|
415 |
+
("sd_lora/Annotators", "sk_model2.pth", "models/Annotators"),
|
416 |
+
],
|
417 |
+
"Annotators:Normal": [
|
418 |
+
("sd_lora/Annotators", "scannet.pt", "models/Annotators"),
|
419 |
+
],
|
420 |
+
"Annotators:Openpose": [
|
421 |
+
("sd_lora/Annotators", "body_pose_model.pth", "models/Annotators"),
|
422 |
+
("sd_lora/Annotators", "facenet.pth", "models/Annotators"),
|
423 |
+
("sd_lora/Annotators", "hand_pose_model.pth", "models/Annotators"),
|
424 |
+
],
|
425 |
+
# AnimateDiff
|
426 |
+
"AnimateDiff_v2": [
|
427 |
+
("Shanghai_AI_Laboratory/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"),
|
428 |
+
],
|
429 |
+
"AnimateDiff_xl_beta": [
|
430 |
+
("Shanghai_AI_Laboratory/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"),
|
431 |
+
],
|
432 |
+
# RIFE
|
433 |
+
"RIFE": [
|
434 |
+
("Damo_XR_Lab/cv_rife_video-frame-interpolation", "flownet.pkl", "models/RIFE"),
|
435 |
+
],
|
436 |
+
# Qwen Prompt
|
437 |
+
"QwenPrompt": {
|
438 |
+
"file_list": [
|
439 |
+
("qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
440 |
+
("qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
441 |
+
("qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
442 |
+
("qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
443 |
+
("qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
444 |
+
("qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
445 |
+
("qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
446 |
+
("qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
447 |
+
],
|
448 |
+
"load_path": [
|
449 |
+
"models/QwenPrompt/qwen2-1.5b-instruct",
|
450 |
+
],
|
451 |
+
},
|
452 |
+
# Beautiful Prompt
|
453 |
+
"BeautifulPrompt": {
|
454 |
+
"file_list": [
|
455 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
456 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
457 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
458 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
459 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
460 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
461 |
+
],
|
462 |
+
"load_path": [
|
463 |
+
"models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd",
|
464 |
+
],
|
465 |
+
},
|
466 |
+
# Omost prompt
|
467 |
+
"OmostPrompt": {
|
468 |
+
"file_list": [
|
469 |
+
("Omost/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
470 |
+
("Omost/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
471 |
+
("Omost/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
472 |
+
("Omost/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
473 |
+
("Omost/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
474 |
+
("Omost/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
475 |
+
("Omost/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
476 |
+
("Omost/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
477 |
+
],
|
478 |
+
"load_path": [
|
479 |
+
"models/OmostPrompt/omost-llama-3-8b-4bits",
|
480 |
+
],
|
481 |
+
},
|
482 |
+
# Translator
|
483 |
+
"opus-mt-zh-en": {
|
484 |
+
"file_list": [
|
485 |
+
("moxying/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"),
|
486 |
+
("moxying/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"),
|
487 |
+
("moxying/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"),
|
488 |
+
("moxying/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"),
|
489 |
+
("moxying/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"),
|
490 |
+
("moxying/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"),
|
491 |
+
("moxying/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"),
|
492 |
+
("moxying/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"),
|
493 |
+
],
|
494 |
+
"load_path": [
|
495 |
+
"models/translator/opus-mt-zh-en",
|
496 |
+
],
|
497 |
+
},
|
498 |
+
# IP-Adapter
|
499 |
+
"IP-Adapter-SD": [
|
500 |
+
("AI-ModelScope/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"),
|
501 |
+
("AI-ModelScope/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"),
|
502 |
+
],
|
503 |
+
"IP-Adapter-SDXL": [
|
504 |
+
("AI-ModelScope/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"),
|
505 |
+
("AI-ModelScope/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"),
|
506 |
+
],
|
507 |
+
# Kolors
|
508 |
+
"Kolors": {
|
509 |
+
"file_list": [
|
510 |
+
("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"),
|
511 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"),
|
512 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
513 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
514 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
515 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
516 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
517 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
518 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
519 |
+
("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"),
|
520 |
+
("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"),
|
521 |
+
],
|
522 |
+
"load_path": [
|
523 |
+
"models/kolors/Kolors/text_encoder",
|
524 |
+
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
|
525 |
+
"models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors",
|
526 |
+
],
|
527 |
+
},
|
528 |
+
"SDXL-vae-fp16-fix": [
|
529 |
+
("AI-ModelScope/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix")
|
530 |
+
],
|
531 |
+
# FLUX
|
532 |
+
"FLUX.1-dev": {
|
533 |
+
"file_list": [
|
534 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
535 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
536 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
537 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
538 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
539 |
+
("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
540 |
+
("AI-ModelScope/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"),
|
541 |
+
],
|
542 |
+
"load_path": [
|
543 |
+
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
|
544 |
+
"models/FLUX/FLUX.1-dev/text_encoder_2",
|
545 |
+
"models/FLUX/FLUX.1-dev/ae.safetensors",
|
546 |
+
"models/FLUX/FLUX.1-dev/flux1-dev.safetensors"
|
547 |
+
],
|
548 |
+
},
|
549 |
+
"FLUX.1-schnell": {
|
550 |
+
"file_list": [
|
551 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
552 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
553 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
554 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
555 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
556 |
+
("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
557 |
+
("AI-ModelScope/FLUX.1-schnell", "flux1-schnell.safetensors", "models/FLUX/FLUX.1-schnell"),
|
558 |
+
],
|
559 |
+
"load_path": [
|
560 |
+
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
|
561 |
+
"models/FLUX/FLUX.1-dev/text_encoder_2",
|
562 |
+
"models/FLUX/FLUX.1-dev/ae.safetensors",
|
563 |
+
"models/FLUX/FLUX.1-schnell/flux1-schnell.safetensors"
|
564 |
+
],
|
565 |
+
},
|
566 |
+
"InstantX/FLUX.1-dev-Controlnet-Union-alpha": [
|
567 |
+
("InstantX/FLUX.1-dev-Controlnet-Union-alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha"),
|
568 |
+
],
|
569 |
+
"jasperai/Flux.1-dev-Controlnet-Depth": [
|
570 |
+
("jasperai/Flux.1-dev-Controlnet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Depth"),
|
571 |
+
],
|
572 |
+
"jasperai/Flux.1-dev-Controlnet-Surface-Normals": [
|
573 |
+
("jasperai/Flux.1-dev-Controlnet-Surface-Normals", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Surface-Normals"),
|
574 |
+
],
|
575 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler": [
|
576 |
+
("jasperai/Flux.1-dev-Controlnet-Upscaler", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler"),
|
577 |
+
],
|
578 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha": [
|
579 |
+
("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha"),
|
580 |
+
],
|
581 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta": [
|
582 |
+
("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta"),
|
583 |
+
],
|
584 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Depth": [
|
585 |
+
("Shakker-Labs/FLUX.1-dev-ControlNet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Depth"),
|
586 |
+
],
|
587 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro": [
|
588 |
+
("Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"),
|
589 |
+
],
|
590 |
+
"InstantX/FLUX.1-dev-IP-Adapter": {
|
591 |
+
"file_list": [
|
592 |
+
("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"),
|
593 |
+
("AI-ModelScope/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
594 |
+
("AI-ModelScope/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
595 |
+
],
|
596 |
+
"load_path": [
|
597 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin",
|
598 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder",
|
599 |
+
],
|
600 |
+
},
|
601 |
+
# ESRGAN
|
602 |
+
"ESRGAN_x4": [
|
603 |
+
("AI-ModelScope/Real-ESRGAN", "RealESRGAN_x4.pth", "models/ESRGAN"),
|
604 |
+
],
|
605 |
+
# RIFE
|
606 |
+
"RIFE": [
|
607 |
+
("AI-ModelScope/RIFE", "flownet.pkl", "models/RIFE"),
|
608 |
+
],
|
609 |
+
# Omnigen
|
610 |
+
"OmniGen-v1": {
|
611 |
+
"file_list": [
|
612 |
+
("BAAI/OmniGen-v1", "vae/diffusion_pytorch_model.safetensors", "models/OmniGen/OmniGen-v1/vae"),
|
613 |
+
("BAAI/OmniGen-v1", "model.safetensors", "models/OmniGen/OmniGen-v1"),
|
614 |
+
("BAAI/OmniGen-v1", "config.json", "models/OmniGen/OmniGen-v1"),
|
615 |
+
("BAAI/OmniGen-v1", "special_tokens_map.json", "models/OmniGen/OmniGen-v1"),
|
616 |
+
("BAAI/OmniGen-v1", "tokenizer_config.json", "models/OmniGen/OmniGen-v1"),
|
617 |
+
("BAAI/OmniGen-v1", "tokenizer.json", "models/OmniGen/OmniGen-v1"),
|
618 |
+
],
|
619 |
+
"load_path": [
|
620 |
+
"models/OmniGen/OmniGen-v1/vae/diffusion_pytorch_model.safetensors",
|
621 |
+
"models/OmniGen/OmniGen-v1/model.safetensors",
|
622 |
+
]
|
623 |
+
},
|
624 |
+
# CogVideo
|
625 |
+
"CogVideoX-5B": {
|
626 |
+
"file_list": [
|
627 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
628 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
629 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
630 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
631 |
+
("ZhipuAI/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
632 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
633 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
634 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
635 |
+
("ZhipuAI/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"),
|
636 |
+
],
|
637 |
+
"load_path": [
|
638 |
+
"models/CogVideo/CogVideoX-5b/text_encoder",
|
639 |
+
"models/CogVideo/CogVideoX-5b/transformer",
|
640 |
+
"models/CogVideo/CogVideoX-5b/vae/diffusion_pytorch_model.safetensors",
|
641 |
+
],
|
642 |
+
},
|
643 |
+
# Stable Diffusion 3.5
|
644 |
+
"StableDiffusion3.5-large": [
|
645 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"),
|
646 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
647 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
648 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
649 |
+
],
|
650 |
+
"StableDiffusion3.5-medium": [
|
651 |
+
("AI-ModelScope/stable-diffusion-3.5-medium", "sd3.5_medium.safetensors", "models/stable_diffusion_3"),
|
652 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
653 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
654 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
655 |
+
],
|
656 |
+
"StableDiffusion3.5-large-turbo": [
|
657 |
+
("AI-ModelScope/stable-diffusion-3.5-large-turbo", "sd3.5_large_turbo.safetensors", "models/stable_diffusion_3"),
|
658 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
659 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
660 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
661 |
+
],
|
662 |
+
"HunyuanVideo":{
|
663 |
+
"file_list": [
|
664 |
+
("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"),
|
665 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
666 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
667 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
668 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
669 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"),
|
670 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"),
|
671 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"),
|
672 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", "models/HunyuanVideo/transformers")
|
673 |
+
],
|
674 |
+
"load_path": [
|
675 |
+
"models/HunyuanVideo/text_encoder/model.safetensors",
|
676 |
+
"models/HunyuanVideo/text_encoder_2",
|
677 |
+
"models/HunyuanVideo/vae/pytorch_model.pt",
|
678 |
+
"models/HunyuanVideo/transformers/mp_rank_00_model_states.pt"
|
679 |
+
],
|
680 |
+
},
|
681 |
+
"HunyuanVideoI2V":{
|
682 |
+
"file_list": [
|
683 |
+
("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideoI2V/text_encoder"),
|
684 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00001-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"),
|
685 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00002-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"),
|
686 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00003-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"),
|
687 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00004-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"),
|
688 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "config.json", "models/HunyuanVideoI2V/text_encoder_2"),
|
689 |
+
("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model.safetensors.index.json", "models/HunyuanVideoI2V/text_encoder_2"),
|
690 |
+
("AI-ModelScope/HunyuanVideo-I2V", "hunyuan-video-i2v-720p/vae/pytorch_model.pt", "models/HunyuanVideoI2V/vae"),
|
691 |
+
("AI-ModelScope/HunyuanVideo-I2V", "hunyuan-video-i2v-720p/transformers/mp_rank_00_model_states.pt", "models/HunyuanVideoI2V/transformers")
|
692 |
+
],
|
693 |
+
"load_path": [
|
694 |
+
"models/HunyuanVideoI2V/text_encoder/model.safetensors",
|
695 |
+
"models/HunyuanVideoI2V/text_encoder_2",
|
696 |
+
"models/HunyuanVideoI2V/vae/pytorch_model.pt",
|
697 |
+
"models/HunyuanVideoI2V/transformers/mp_rank_00_model_states.pt"
|
698 |
+
],
|
699 |
+
},
|
700 |
+
"HunyuanVideo-fp8":{
|
701 |
+
"file_list": [
|
702 |
+
("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"),
|
703 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
704 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
705 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
706 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
707 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"),
|
708 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"),
|
709 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"),
|
710 |
+
("DiffSynth-Studio/HunyuanVideo-safetensors", "model.fp8.safetensors", "models/HunyuanVideo/transformers")
|
711 |
+
],
|
712 |
+
"load_path": [
|
713 |
+
"models/HunyuanVideo/text_encoder/model.safetensors",
|
714 |
+
"models/HunyuanVideo/text_encoder_2",
|
715 |
+
"models/HunyuanVideo/vae/pytorch_model.pt",
|
716 |
+
"models/HunyuanVideo/transformers/model.fp8.safetensors"
|
717 |
+
],
|
718 |
+
},
|
719 |
+
}
|
720 |
+
Preset_model_id: TypeAlias = Literal[
|
721 |
+
"HunyuanDiT",
|
722 |
+
"stable-video-diffusion-img2vid-xt",
|
723 |
+
"ExVideo-SVD-128f-v1",
|
724 |
+
"ExVideo-CogVideoX-LoRA-129f-v1",
|
725 |
+
"StableDiffusion_v15",
|
726 |
+
"DreamShaper_8",
|
727 |
+
"AingDiffusion_v12",
|
728 |
+
"Flat2DAnimerge_v45Sharp",
|
729 |
+
"TextualInversion_VeryBadImageNegative_v1.3",
|
730 |
+
"StableDiffusionXL_v1",
|
731 |
+
"BluePencilXL_v200",
|
732 |
+
"StableDiffusionXL_Turbo",
|
733 |
+
"ControlNet_v11f1p_sd15_depth",
|
734 |
+
"ControlNet_v11p_sd15_softedge",
|
735 |
+
"ControlNet_v11f1e_sd15_tile",
|
736 |
+
"ControlNet_v11p_sd15_lineart",
|
737 |
+
"AnimateDiff_v2",
|
738 |
+
"AnimateDiff_xl_beta",
|
739 |
+
"RIFE",
|
740 |
+
"BeautifulPrompt",
|
741 |
+
"opus-mt-zh-en",
|
742 |
+
"IP-Adapter-SD",
|
743 |
+
"IP-Adapter-SDXL",
|
744 |
+
"StableDiffusion3",
|
745 |
+
"StableDiffusion3_without_T5",
|
746 |
+
"Kolors",
|
747 |
+
"SDXL-vae-fp16-fix",
|
748 |
+
"ControlNet_union_sdxl_promax",
|
749 |
+
"FLUX.1-dev",
|
750 |
+
"FLUX.1-schnell",
|
751 |
+
"InstantX/FLUX.1-dev-Controlnet-Union-alpha",
|
752 |
+
"jasperai/Flux.1-dev-Controlnet-Depth",
|
753 |
+
"jasperai/Flux.1-dev-Controlnet-Surface-Normals",
|
754 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
755 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha",
|
756 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta",
|
757 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
|
758 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
759 |
+
"InstantX/FLUX.1-dev-IP-Adapter",
|
760 |
+
"SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0",
|
761 |
+
"QwenPrompt",
|
762 |
+
"OmostPrompt",
|
763 |
+
"ESRGAN_x4",
|
764 |
+
"RIFE",
|
765 |
+
"OmniGen-v1",
|
766 |
+
"CogVideoX-5B",
|
767 |
+
"Annotators:Depth",
|
768 |
+
"Annotators:Softedge",
|
769 |
+
"Annotators:Lineart",
|
770 |
+
"Annotators:Normal",
|
771 |
+
"Annotators:Openpose",
|
772 |
+
"StableDiffusion3.5-large",
|
773 |
+
"StableDiffusion3.5-medium",
|
774 |
+
"HunyuanVideo",
|
775 |
+
"HunyuanVideo-fp8",
|
776 |
+
"HunyuanVideoI2V",
|
777 |
+
]
|
diffsynth/controlnets/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .controlnet_unit import ControlNetConfigUnit, ControlNetUnit, MultiControlNetManager, FluxMultiControlNetManager
|
2 |
+
from .processors import Annotator
|
diffsynth/controlnets/controlnet_unit.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from .processors import Processor_id
|
4 |
+
|
5 |
+
|
6 |
+
class ControlNetConfigUnit:
|
7 |
+
def __init__(self, processor_id: Processor_id, model_path, scale=1.0, skip_processor=False):
|
8 |
+
self.processor_id = processor_id
|
9 |
+
self.model_path = model_path
|
10 |
+
self.scale = scale
|
11 |
+
self.skip_processor = skip_processor
|
12 |
+
|
13 |
+
|
14 |
+
class ControlNetUnit:
|
15 |
+
def __init__(self, processor, model, scale=1.0):
|
16 |
+
self.processor = processor
|
17 |
+
self.model = model
|
18 |
+
self.scale = scale
|
19 |
+
|
20 |
+
|
21 |
+
class MultiControlNetManager:
|
22 |
+
def __init__(self, controlnet_units=[]):
|
23 |
+
self.processors = [unit.processor for unit in controlnet_units]
|
24 |
+
self.models = [unit.model for unit in controlnet_units]
|
25 |
+
self.scales = [unit.scale for unit in controlnet_units]
|
26 |
+
|
27 |
+
def cpu(self):
|
28 |
+
for model in self.models:
|
29 |
+
model.cpu()
|
30 |
+
|
31 |
+
def to(self, device):
|
32 |
+
for model in self.models:
|
33 |
+
model.to(device)
|
34 |
+
for processor in self.processors:
|
35 |
+
processor.to(device)
|
36 |
+
|
37 |
+
def process_image(self, image, processor_id=None):
|
38 |
+
if processor_id is None:
|
39 |
+
processed_image = [processor(image) for processor in self.processors]
|
40 |
+
else:
|
41 |
+
processed_image = [self.processors[processor_id](image)]
|
42 |
+
processed_image = torch.concat([
|
43 |
+
torch.Tensor(np.array(image_, dtype=np.float32) / 255).permute(2, 0, 1).unsqueeze(0)
|
44 |
+
for image_ in processed_image
|
45 |
+
], dim=0)
|
46 |
+
return processed_image
|
47 |
+
|
48 |
+
def __call__(
|
49 |
+
self,
|
50 |
+
sample, timestep, encoder_hidden_states, conditionings,
|
51 |
+
tiled=False, tile_size=64, tile_stride=32, **kwargs
|
52 |
+
):
|
53 |
+
res_stack = None
|
54 |
+
for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales):
|
55 |
+
res_stack_ = model(
|
56 |
+
sample, timestep, encoder_hidden_states, conditioning, **kwargs,
|
57 |
+
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
|
58 |
+
processor_id=processor.processor_id
|
59 |
+
)
|
60 |
+
res_stack_ = [res * scale for res in res_stack_]
|
61 |
+
if res_stack is None:
|
62 |
+
res_stack = res_stack_
|
63 |
+
else:
|
64 |
+
res_stack = [i + j for i, j in zip(res_stack, res_stack_)]
|
65 |
+
return res_stack
|
66 |
+
|
67 |
+
|
68 |
+
class FluxMultiControlNetManager(MultiControlNetManager):
|
69 |
+
def __init__(self, controlnet_units=[]):
|
70 |
+
super().__init__(controlnet_units=controlnet_units)
|
71 |
+
|
72 |
+
def process_image(self, image, processor_id=None):
|
73 |
+
if processor_id is None:
|
74 |
+
processed_image = [processor(image) for processor in self.processors]
|
75 |
+
else:
|
76 |
+
processed_image = [self.processors[processor_id](image)]
|
77 |
+
return processed_image
|
78 |
+
|
79 |
+
def __call__(self, conditionings, **kwargs):
|
80 |
+
res_stack, single_res_stack = None, None
|
81 |
+
for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales):
|
82 |
+
res_stack_, single_res_stack_ = model(controlnet_conditioning=conditioning, processor_id=processor.processor_id, **kwargs)
|
83 |
+
res_stack_ = [res * scale for res in res_stack_]
|
84 |
+
single_res_stack_ = [res * scale for res in single_res_stack_]
|
85 |
+
if res_stack is None:
|
86 |
+
res_stack = res_stack_
|
87 |
+
single_res_stack = single_res_stack_
|
88 |
+
else:
|
89 |
+
res_stack = [i + j for i, j in zip(res_stack, res_stack_)]
|
90 |
+
single_res_stack = [i + j for i, j in zip(single_res_stack, single_res_stack_)]
|
91 |
+
return res_stack, single_res_stack
|
diffsynth/controlnets/processors.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import Literal, TypeAlias
|
2 |
+
|
3 |
+
|
4 |
+
Processor_id: TypeAlias = Literal[
|
5 |
+
"canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "normal", "tile", "none", "inpaint"
|
6 |
+
]
|
7 |
+
|
8 |
+
class Annotator:
|
9 |
+
def __init__(self, processor_id: Processor_id, model_path="models/Annotators", detect_resolution=None, device='cuda', skip_processor=False):
|
10 |
+
if not skip_processor:
|
11 |
+
if processor_id == "canny":
|
12 |
+
from controlnet_aux.processor import CannyDetector
|
13 |
+
self.processor = CannyDetector()
|
14 |
+
elif processor_id == "depth":
|
15 |
+
from controlnet_aux.processor import MidasDetector
|
16 |
+
self.processor = MidasDetector.from_pretrained(model_path).to(device)
|
17 |
+
elif processor_id == "softedge":
|
18 |
+
from controlnet_aux.processor import HEDdetector
|
19 |
+
self.processor = HEDdetector.from_pretrained(model_path).to(device)
|
20 |
+
elif processor_id == "lineart":
|
21 |
+
from controlnet_aux.processor import LineartDetector
|
22 |
+
self.processor = LineartDetector.from_pretrained(model_path).to(device)
|
23 |
+
elif processor_id == "lineart_anime":
|
24 |
+
from controlnet_aux.processor import LineartAnimeDetector
|
25 |
+
self.processor = LineartAnimeDetector.from_pretrained(model_path).to(device)
|
26 |
+
elif processor_id == "openpose":
|
27 |
+
from controlnet_aux.processor import OpenposeDetector
|
28 |
+
self.processor = OpenposeDetector.from_pretrained(model_path).to(device)
|
29 |
+
elif processor_id == "normal":
|
30 |
+
from controlnet_aux.processor import NormalBaeDetector
|
31 |
+
self.processor = NormalBaeDetector.from_pretrained(model_path).to(device)
|
32 |
+
elif processor_id == "tile" or processor_id == "none" or processor_id == "inpaint":
|
33 |
+
self.processor = None
|
34 |
+
else:
|
35 |
+
raise ValueError(f"Unsupported processor_id: {processor_id}")
|
36 |
+
else:
|
37 |
+
self.processor = None
|
38 |
+
|
39 |
+
self.processor_id = processor_id
|
40 |
+
self.detect_resolution = detect_resolution
|
41 |
+
|
42 |
+
def to(self,device):
|
43 |
+
if hasattr(self.processor,"model") and hasattr(self.processor.model,"to"):
|
44 |
+
|
45 |
+
self.processor.model.to(device)
|
46 |
+
|
47 |
+
def __call__(self, image, mask=None):
|
48 |
+
width, height = image.size
|
49 |
+
if self.processor_id == "openpose":
|
50 |
+
kwargs = {
|
51 |
+
"include_body": True,
|
52 |
+
"include_hand": True,
|
53 |
+
"include_face": True
|
54 |
+
}
|
55 |
+
else:
|
56 |
+
kwargs = {}
|
57 |
+
if self.processor is not None:
|
58 |
+
detect_resolution = self.detect_resolution if self.detect_resolution is not None else min(width, height)
|
59 |
+
image = self.processor(image, detect_resolution=detect_resolution, image_resolution=min(width, height), **kwargs)
|
60 |
+
image = image.resize((width, height))
|
61 |
+
return image
|
62 |
+
|
diffsynth/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .video import VideoData, save_video, save_frames
|
diffsynth/data/simple_text_image.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os, torchvision
|
2 |
+
from torchvision import transforms
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class TextImageDataset(torch.utils.data.Dataset):
|
9 |
+
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False):
|
10 |
+
self.steps_per_epoch = steps_per_epoch
|
11 |
+
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv"))
|
12 |
+
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]]
|
13 |
+
self.text = metadata["text"].to_list()
|
14 |
+
self.height = height
|
15 |
+
self.width = width
|
16 |
+
self.image_processor = transforms.Compose(
|
17 |
+
[
|
18 |
+
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
|
19 |
+
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize([0.5], [0.5]),
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def __getitem__(self, index):
|
27 |
+
data_id = torch.randint(0, len(self.path), (1,))[0]
|
28 |
+
data_id = (data_id + index) % len(self.path) # For fixed seed.
|
29 |
+
text = self.text[data_id]
|
30 |
+
image = Image.open(self.path[data_id]).convert("RGB")
|
31 |
+
target_height, target_width = self.height, self.width
|
32 |
+
width, height = image.size
|
33 |
+
scale = max(target_width / width, target_height / height)
|
34 |
+
shape = [round(height*scale),round(width*scale)]
|
35 |
+
image = torchvision.transforms.functional.resize(image,shape,interpolation=transforms.InterpolationMode.BILINEAR)
|
36 |
+
image = self.image_processor(image)
|
37 |
+
return {"text": text, "image": image}
|
38 |
+
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return self.steps_per_epoch
|
diffsynth/data/video.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio, os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class LowMemoryVideo:
|
8 |
+
def __init__(self, file_name):
|
9 |
+
self.reader = imageio.get_reader(file_name)
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return self.reader.count_frames()
|
13 |
+
|
14 |
+
def __getitem__(self, item):
|
15 |
+
return Image.fromarray(np.array(self.reader.get_data(item))).convert("RGB")
|
16 |
+
|
17 |
+
def __del__(self):
|
18 |
+
self.reader.close()
|
19 |
+
|
20 |
+
|
21 |
+
def split_file_name(file_name):
|
22 |
+
result = []
|
23 |
+
number = -1
|
24 |
+
for i in file_name:
|
25 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
26 |
+
if number == -1:
|
27 |
+
number = 0
|
28 |
+
number = number*10 + ord(i) - ord("0")
|
29 |
+
else:
|
30 |
+
if number != -1:
|
31 |
+
result.append(number)
|
32 |
+
number = -1
|
33 |
+
result.append(i)
|
34 |
+
if number != -1:
|
35 |
+
result.append(number)
|
36 |
+
result = tuple(result)
|
37 |
+
return result
|
38 |
+
|
39 |
+
|
40 |
+
def search_for_images(folder):
|
41 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")]
|
42 |
+
file_list = [(split_file_name(file_name), file_name) for file_name in file_list]
|
43 |
+
file_list = [i[1] for i in sorted(file_list)]
|
44 |
+
file_list = [os.path.join(folder, i) for i in file_list]
|
45 |
+
return file_list
|
46 |
+
|
47 |
+
|
48 |
+
class LowMemoryImageFolder:
|
49 |
+
def __init__(self, folder, file_list=None):
|
50 |
+
if file_list is None:
|
51 |
+
self.file_list = search_for_images(folder)
|
52 |
+
else:
|
53 |
+
self.file_list = [os.path.join(folder, file_name) for file_name in file_list]
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.file_list)
|
57 |
+
|
58 |
+
def __getitem__(self, item):
|
59 |
+
return Image.open(self.file_list[item]).convert("RGB")
|
60 |
+
|
61 |
+
def __del__(self):
|
62 |
+
pass
|
63 |
+
|
64 |
+
|
65 |
+
def crop_and_resize(image, height, width):
|
66 |
+
image = np.array(image)
|
67 |
+
image_height, image_width, _ = image.shape
|
68 |
+
if image_height / image_width < height / width:
|
69 |
+
croped_width = int(image_height / height * width)
|
70 |
+
left = (image_width - croped_width) // 2
|
71 |
+
image = image[:, left: left+croped_width]
|
72 |
+
image = Image.fromarray(image).resize((width, height))
|
73 |
+
else:
|
74 |
+
croped_height = int(image_width / width * height)
|
75 |
+
left = (image_height - croped_height) // 2
|
76 |
+
image = image[left: left+croped_height, :]
|
77 |
+
image = Image.fromarray(image).resize((width, height))
|
78 |
+
return image
|
79 |
+
|
80 |
+
|
81 |
+
class VideoData:
|
82 |
+
def __init__(self, video_file=None, image_folder=None, height=None, width=None, **kwargs):
|
83 |
+
if video_file is not None:
|
84 |
+
self.data_type = "video"
|
85 |
+
self.data = LowMemoryVideo(video_file, **kwargs)
|
86 |
+
elif image_folder is not None:
|
87 |
+
self.data_type = "images"
|
88 |
+
self.data = LowMemoryImageFolder(image_folder, **kwargs)
|
89 |
+
else:
|
90 |
+
raise ValueError("Cannot open video or image folder")
|
91 |
+
self.length = None
|
92 |
+
self.set_shape(height, width)
|
93 |
+
|
94 |
+
def raw_data(self):
|
95 |
+
frames = []
|
96 |
+
for i in range(self.__len__()):
|
97 |
+
frames.append(self.__getitem__(i))
|
98 |
+
return frames
|
99 |
+
|
100 |
+
def set_length(self, length):
|
101 |
+
self.length = length
|
102 |
+
|
103 |
+
def set_shape(self, height, width):
|
104 |
+
self.height = height
|
105 |
+
self.width = width
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
if self.length is None:
|
109 |
+
return len(self.data)
|
110 |
+
else:
|
111 |
+
return self.length
|
112 |
+
|
113 |
+
def shape(self):
|
114 |
+
if self.height is not None and self.width is not None:
|
115 |
+
return self.height, self.width
|
116 |
+
else:
|
117 |
+
height, width, _ = self.__getitem__(0).shape
|
118 |
+
return height, width
|
119 |
+
|
120 |
+
def __getitem__(self, item):
|
121 |
+
frame = self.data.__getitem__(item)
|
122 |
+
width, height = frame.size
|
123 |
+
if self.height is not None and self.width is not None:
|
124 |
+
if self.height != height or self.width != width:
|
125 |
+
frame = crop_and_resize(frame, self.height, self.width)
|
126 |
+
return frame
|
127 |
+
|
128 |
+
def __del__(self):
|
129 |
+
pass
|
130 |
+
|
131 |
+
def save_images(self, folder):
|
132 |
+
os.makedirs(folder, exist_ok=True)
|
133 |
+
for i in tqdm(range(self.__len__()), desc="Saving images"):
|
134 |
+
frame = self.__getitem__(i)
|
135 |
+
frame.save(os.path.join(folder, f"{i}.png"))
|
136 |
+
|
137 |
+
|
138 |
+
def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None):
|
139 |
+
writer = imageio.get_writer(save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params)
|
140 |
+
for frame in tqdm(frames, desc="Saving video"):
|
141 |
+
frame = np.array(frame)
|
142 |
+
writer.append_data(frame)
|
143 |
+
writer.close()
|
144 |
+
|
145 |
+
def save_frames(frames, save_path):
|
146 |
+
os.makedirs(save_path, exist_ok=True)
|
147 |
+
for i, frame in enumerate(tqdm(frames, desc="Saving images")):
|
148 |
+
frame.save(os.path.join(save_path, f"{i}.png"))
|
diffsynth/extensions/ESRGAN/__init__.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import repeat
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class ResidualDenseBlock(torch.nn.Module):
|
8 |
+
|
9 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
10 |
+
super(ResidualDenseBlock, self).__init__()
|
11 |
+
self.conv1 = torch.nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
12 |
+
self.conv2 = torch.nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
13 |
+
self.conv3 = torch.nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
14 |
+
self.conv4 = torch.nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
15 |
+
self.conv5 = torch.nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
16 |
+
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
x1 = self.lrelu(self.conv1(x))
|
20 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
21 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
22 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
23 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
24 |
+
return x5 * 0.2 + x
|
25 |
+
|
26 |
+
|
27 |
+
class RRDB(torch.nn.Module):
|
28 |
+
|
29 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
30 |
+
super(RRDB, self).__init__()
|
31 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
32 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
33 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
out = self.rdb1(x)
|
37 |
+
out = self.rdb2(out)
|
38 |
+
out = self.rdb3(out)
|
39 |
+
return out * 0.2 + x
|
40 |
+
|
41 |
+
|
42 |
+
class RRDBNet(torch.nn.Module):
|
43 |
+
|
44 |
+
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, **kwargs):
|
45 |
+
super(RRDBNet, self).__init__()
|
46 |
+
self.conv_first = torch.nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
47 |
+
self.body = torch.torch.nn.Sequential(*[RRDB(num_feat=num_feat, num_grow_ch=num_grow_ch) for _ in range(num_block)])
|
48 |
+
self.conv_body = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
49 |
+
# upsample
|
50 |
+
self.conv_up1 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
51 |
+
self.conv_up2 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
52 |
+
self.conv_hr = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
53 |
+
self.conv_last = torch.nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
54 |
+
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
feat = x
|
58 |
+
feat = self.conv_first(feat)
|
59 |
+
body_feat = self.conv_body(self.body(feat))
|
60 |
+
feat = feat + body_feat
|
61 |
+
# upsample
|
62 |
+
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
|
63 |
+
feat = self.lrelu(self.conv_up1(feat))
|
64 |
+
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
|
65 |
+
feat = self.lrelu(self.conv_up2(feat))
|
66 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
67 |
+
return out
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def state_dict_converter():
|
71 |
+
return RRDBNetStateDictConverter()
|
72 |
+
|
73 |
+
|
74 |
+
class RRDBNetStateDictConverter:
|
75 |
+
def __init__(self):
|
76 |
+
pass
|
77 |
+
|
78 |
+
def from_diffusers(self, state_dict):
|
79 |
+
return state_dict, {"upcast_to_float32": True}
|
80 |
+
|
81 |
+
def from_civitai(self, state_dict):
|
82 |
+
return state_dict, {"upcast_to_float32": True}
|
83 |
+
|
84 |
+
|
85 |
+
class ESRGAN(torch.nn.Module):
|
86 |
+
def __init__(self, model):
|
87 |
+
super().__init__()
|
88 |
+
self.model = model
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def from_model_manager(model_manager):
|
92 |
+
return ESRGAN(model_manager.fetch_model("esrgan"))
|
93 |
+
|
94 |
+
def process_image(self, image):
|
95 |
+
image = torch.Tensor(np.array(image, dtype=np.float32) / 255).permute(2, 0, 1)
|
96 |
+
return image
|
97 |
+
|
98 |
+
def process_images(self, images):
|
99 |
+
images = [self.process_image(image) for image in images]
|
100 |
+
images = torch.stack(images)
|
101 |
+
return images
|
102 |
+
|
103 |
+
def decode_images(self, images):
|
104 |
+
images = (images.permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8)
|
105 |
+
images = [Image.fromarray(image) for image in images]
|
106 |
+
return images
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def upscale(self, images, batch_size=4, progress_bar=lambda x:x):
|
110 |
+
if not isinstance(images, list):
|
111 |
+
images = [images]
|
112 |
+
is_single_image = True
|
113 |
+
else:
|
114 |
+
is_single_image = False
|
115 |
+
|
116 |
+
# Preprocess
|
117 |
+
input_tensor = self.process_images(images)
|
118 |
+
|
119 |
+
# Interpolate
|
120 |
+
output_tensor = []
|
121 |
+
for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)):
|
122 |
+
batch_id_ = min(batch_id + batch_size, input_tensor.shape[0])
|
123 |
+
batch_input_tensor = input_tensor[batch_id: batch_id_]
|
124 |
+
batch_input_tensor = batch_input_tensor.to(
|
125 |
+
device=self.model.conv_first.weight.device,
|
126 |
+
dtype=self.model.conv_first.weight.dtype)
|
127 |
+
batch_output_tensor = self.model(batch_input_tensor)
|
128 |
+
output_tensor.append(batch_output_tensor.cpu())
|
129 |
+
|
130 |
+
# Output
|
131 |
+
output_tensor = torch.concat(output_tensor, dim=0)
|
132 |
+
|
133 |
+
# To images
|
134 |
+
output_images = self.decode_images(output_tensor)
|
135 |
+
if is_single_image:
|
136 |
+
output_images = output_images[0]
|
137 |
+
return output_images
|
diffsynth/extensions/FastBlend/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .runners.fast import TableManager, PyramidPatchMatcher
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import cupy as cp
|
5 |
+
|
6 |
+
|
7 |
+
class FastBlendSmoother:
|
8 |
+
def __init__(self):
|
9 |
+
self.batch_size = 8
|
10 |
+
self.window_size = 64
|
11 |
+
self.ebsynth_config = {
|
12 |
+
"minimum_patch_size": 5,
|
13 |
+
"threads_per_block": 8,
|
14 |
+
"num_iter": 5,
|
15 |
+
"gpu_id": 0,
|
16 |
+
"guide_weight": 10.0,
|
17 |
+
"initialize": "identity",
|
18 |
+
"tracking_window_size": 0,
|
19 |
+
}
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def from_model_manager(model_manager):
|
23 |
+
# TODO: fetch GPU ID from model_manager
|
24 |
+
return FastBlendSmoother()
|
25 |
+
|
26 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config):
|
27 |
+
frames_guide = [np.array(frame) for frame in frames_guide]
|
28 |
+
frames_style = [np.array(frame) for frame in frames_style]
|
29 |
+
table_manager = TableManager()
|
30 |
+
patch_match_engine = PyramidPatchMatcher(
|
31 |
+
image_height=frames_style[0].shape[0],
|
32 |
+
image_width=frames_style[0].shape[1],
|
33 |
+
channel=3,
|
34 |
+
**ebsynth_config
|
35 |
+
)
|
36 |
+
# left part
|
37 |
+
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="FastBlend Step 1/4")
|
38 |
+
table_l = table_manager.remapping_table_to_blending_table(table_l)
|
39 |
+
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="FastBlend Step 2/4")
|
40 |
+
# right part
|
41 |
+
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="FastBlend Step 3/4")
|
42 |
+
table_r = table_manager.remapping_table_to_blending_table(table_r)
|
43 |
+
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="FastBlend Step 4/4")[::-1]
|
44 |
+
# merge
|
45 |
+
frames = []
|
46 |
+
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r):
|
47 |
+
weight_m = -1
|
48 |
+
weight = weight_l + weight_m + weight_r
|
49 |
+
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight)
|
50 |
+
frames.append(frame)
|
51 |
+
frames = [Image.fromarray(frame.clip(0, 255).astype("uint8")) for frame in frames]
|
52 |
+
return frames
|
53 |
+
|
54 |
+
def __call__(self, rendered_frames, original_frames=None, **kwargs):
|
55 |
+
frames = self.run(
|
56 |
+
original_frames, rendered_frames,
|
57 |
+
self.batch_size, self.window_size, self.ebsynth_config
|
58 |
+
)
|
59 |
+
mempool = cp.get_default_memory_pool()
|
60 |
+
pinned_mempool = cp.get_default_pinned_memory_pool()
|
61 |
+
mempool.free_all_blocks()
|
62 |
+
pinned_mempool.free_all_blocks()
|
63 |
+
return frames
|
diffsynth/extensions/FastBlend/api.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner
|
2 |
+
from .data import VideoData, get_video_fps, save_video, search_for_images
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder):
|
8 |
+
frames_guide = VideoData(video_guide, video_guide_folder)
|
9 |
+
frames_style = VideoData(video_style, video_style_folder)
|
10 |
+
message = ""
|
11 |
+
if len(frames_guide) < len(frames_style):
|
12 |
+
message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n"
|
13 |
+
frames_style.set_length(len(frames_guide))
|
14 |
+
elif len(frames_guide) > len(frames_style):
|
15 |
+
message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n"
|
16 |
+
frames_guide.set_length(len(frames_style))
|
17 |
+
height_guide, width_guide = frames_guide.shape()
|
18 |
+
height_style, width_style = frames_style.shape()
|
19 |
+
if height_guide != height_style or width_guide != width_style:
|
20 |
+
message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n"
|
21 |
+
frames_style.set_shape(height_guide, width_guide)
|
22 |
+
return frames_guide, frames_style, message
|
23 |
+
|
24 |
+
|
25 |
+
def smooth_video(
|
26 |
+
video_guide,
|
27 |
+
video_guide_folder,
|
28 |
+
video_style,
|
29 |
+
video_style_folder,
|
30 |
+
mode,
|
31 |
+
window_size,
|
32 |
+
batch_size,
|
33 |
+
tracking_window_size,
|
34 |
+
output_path,
|
35 |
+
fps,
|
36 |
+
minimum_patch_size,
|
37 |
+
num_iter,
|
38 |
+
guide_weight,
|
39 |
+
initialize,
|
40 |
+
progress = None,
|
41 |
+
):
|
42 |
+
# input
|
43 |
+
frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder)
|
44 |
+
if len(message) > 0:
|
45 |
+
print(message)
|
46 |
+
# output
|
47 |
+
if output_path == "":
|
48 |
+
if video_style is None:
|
49 |
+
output_path = os.path.join(video_style_folder, "output")
|
50 |
+
else:
|
51 |
+
output_path = os.path.join(os.path.split(video_style)[0], "output")
|
52 |
+
os.makedirs(output_path, exist_ok=True)
|
53 |
+
print("No valid output_path. Your video will be saved here:", output_path)
|
54 |
+
elif not os.path.exists(output_path):
|
55 |
+
os.makedirs(output_path, exist_ok=True)
|
56 |
+
print("Your video will be saved here:", output_path)
|
57 |
+
frames_path = os.path.join(output_path, "frames")
|
58 |
+
video_path = os.path.join(output_path, "video.mp4")
|
59 |
+
os.makedirs(frames_path, exist_ok=True)
|
60 |
+
# process
|
61 |
+
if mode == "Fast" or mode == "Balanced":
|
62 |
+
tracking_window_size = 0
|
63 |
+
ebsynth_config = {
|
64 |
+
"minimum_patch_size": minimum_patch_size,
|
65 |
+
"threads_per_block": 8,
|
66 |
+
"num_iter": num_iter,
|
67 |
+
"gpu_id": 0,
|
68 |
+
"guide_weight": guide_weight,
|
69 |
+
"initialize": initialize,
|
70 |
+
"tracking_window_size": tracking_window_size,
|
71 |
+
}
|
72 |
+
if mode == "Fast":
|
73 |
+
FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
74 |
+
elif mode == "Balanced":
|
75 |
+
BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
76 |
+
elif mode == "Accurate":
|
77 |
+
AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
78 |
+
# output
|
79 |
+
try:
|
80 |
+
fps = int(fps)
|
81 |
+
except:
|
82 |
+
fps = get_video_fps(video_style) if video_style is not None else 30
|
83 |
+
print("Fps:", fps)
|
84 |
+
print("Saving video...")
|
85 |
+
video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps)
|
86 |
+
print("Success!")
|
87 |
+
print("Your frames are here:", frames_path)
|
88 |
+
print("Your video is here:", video_path)
|
89 |
+
return output_path, fps, video_path
|
90 |
+
|
91 |
+
|
92 |
+
class KeyFrameMatcher:
|
93 |
+
def __init__(self):
|
94 |
+
pass
|
95 |
+
|
96 |
+
def extract_number_from_filename(self, file_name):
|
97 |
+
result = []
|
98 |
+
number = -1
|
99 |
+
for i in file_name:
|
100 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
101 |
+
if number == -1:
|
102 |
+
number = 0
|
103 |
+
number = number*10 + ord(i) - ord("0")
|
104 |
+
else:
|
105 |
+
if number != -1:
|
106 |
+
result.append(number)
|
107 |
+
number = -1
|
108 |
+
if number != -1:
|
109 |
+
result.append(number)
|
110 |
+
result = tuple(result)
|
111 |
+
return result
|
112 |
+
|
113 |
+
def extract_number_from_filenames(self, file_names):
|
114 |
+
numbers = [self.extract_number_from_filename(file_name) for file_name in file_names]
|
115 |
+
min_length = min(len(i) for i in numbers)
|
116 |
+
for i in range(min_length-1, -1, -1):
|
117 |
+
if len(set(number[i] for number in numbers))==len(file_names):
|
118 |
+
return [number[i] for number in numbers]
|
119 |
+
return list(range(len(file_names)))
|
120 |
+
|
121 |
+
def match_using_filename(self, file_names_a, file_names_b):
|
122 |
+
file_names_b_set = set(file_names_b)
|
123 |
+
matched_file_name = []
|
124 |
+
for file_name in file_names_a:
|
125 |
+
if file_name not in file_names_b_set:
|
126 |
+
matched_file_name.append(None)
|
127 |
+
else:
|
128 |
+
matched_file_name.append(file_name)
|
129 |
+
return matched_file_name
|
130 |
+
|
131 |
+
def match_using_numbers(self, file_names_a, file_names_b):
|
132 |
+
numbers_a = self.extract_number_from_filenames(file_names_a)
|
133 |
+
numbers_b = self.extract_number_from_filenames(file_names_b)
|
134 |
+
numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)}
|
135 |
+
matched_file_name = []
|
136 |
+
for number in numbers_a:
|
137 |
+
if number in numbers_b_dict:
|
138 |
+
matched_file_name.append(numbers_b_dict[number])
|
139 |
+
else:
|
140 |
+
matched_file_name.append(None)
|
141 |
+
return matched_file_name
|
142 |
+
|
143 |
+
def match_filenames(self, file_names_a, file_names_b):
|
144 |
+
matched_file_name = self.match_using_filename(file_names_a, file_names_b)
|
145 |
+
if sum([i is not None for i in matched_file_name]) > 0:
|
146 |
+
return matched_file_name
|
147 |
+
matched_file_name = self.match_using_numbers(file_names_a, file_names_b)
|
148 |
+
return matched_file_name
|
149 |
+
|
150 |
+
|
151 |
+
def detect_frames(frames_path, keyframes_path):
|
152 |
+
if not os.path.exists(frames_path) and not os.path.exists(keyframes_path):
|
153 |
+
return "Please input the directory of guide video and rendered frames"
|
154 |
+
elif not os.path.exists(frames_path):
|
155 |
+
return "Please input the directory of guide video"
|
156 |
+
elif not os.path.exists(keyframes_path):
|
157 |
+
return "Please input the directory of rendered frames"
|
158 |
+
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
|
159 |
+
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
|
160 |
+
if len(frames)==0:
|
161 |
+
return f"No images detected in {frames_path}"
|
162 |
+
if len(keyframes)==0:
|
163 |
+
return f"No images detected in {keyframes_path}"
|
164 |
+
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
|
165 |
+
max_filename_length = max([len(i) for i in frames])
|
166 |
+
if sum([i is not None for i in matched_keyframes])==0:
|
167 |
+
message = ""
|
168 |
+
for frame, matched_keyframe in zip(frames, matched_keyframes):
|
169 |
+
message += frame + " " * (max_filename_length - len(frame) + 1)
|
170 |
+
message += "--> No matched keyframes\n"
|
171 |
+
else:
|
172 |
+
message = ""
|
173 |
+
for frame, matched_keyframe in zip(frames, matched_keyframes):
|
174 |
+
message += frame + " " * (max_filename_length - len(frame) + 1)
|
175 |
+
if matched_keyframe is None:
|
176 |
+
message += "--> [to be rendered]\n"
|
177 |
+
else:
|
178 |
+
message += f"--> {matched_keyframe}\n"
|
179 |
+
return message
|
180 |
+
|
181 |
+
|
182 |
+
def check_input_for_interpolating(frames_path, keyframes_path):
|
183 |
+
# search for images
|
184 |
+
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
|
185 |
+
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
|
186 |
+
# match frames
|
187 |
+
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
|
188 |
+
file_list = [file_name for file_name in matched_keyframes if file_name is not None]
|
189 |
+
index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None]
|
190 |
+
frames_guide = VideoData(None, frames_path)
|
191 |
+
frames_style = VideoData(None, keyframes_path, file_list=file_list)
|
192 |
+
# match shape
|
193 |
+
message = ""
|
194 |
+
height_guide, width_guide = frames_guide.shape()
|
195 |
+
height_style, width_style = frames_style.shape()
|
196 |
+
if height_guide != height_style or width_guide != width_style:
|
197 |
+
message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n"
|
198 |
+
frames_style.set_shape(height_guide, width_guide)
|
199 |
+
return frames_guide, frames_style, index_style, message
|
200 |
+
|
201 |
+
|
202 |
+
def interpolate_video(
|
203 |
+
frames_path,
|
204 |
+
keyframes_path,
|
205 |
+
output_path,
|
206 |
+
fps,
|
207 |
+
batch_size,
|
208 |
+
tracking_window_size,
|
209 |
+
minimum_patch_size,
|
210 |
+
num_iter,
|
211 |
+
guide_weight,
|
212 |
+
initialize,
|
213 |
+
progress = None,
|
214 |
+
):
|
215 |
+
# input
|
216 |
+
frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path)
|
217 |
+
if len(message) > 0:
|
218 |
+
print(message)
|
219 |
+
# output
|
220 |
+
if output_path == "":
|
221 |
+
output_path = os.path.join(keyframes_path, "output")
|
222 |
+
os.makedirs(output_path, exist_ok=True)
|
223 |
+
print("No valid output_path. Your video will be saved here:", output_path)
|
224 |
+
elif not os.path.exists(output_path):
|
225 |
+
os.makedirs(output_path, exist_ok=True)
|
226 |
+
print("Your video will be saved here:", output_path)
|
227 |
+
output_frames_path = os.path.join(output_path, "frames")
|
228 |
+
output_video_path = os.path.join(output_path, "video.mp4")
|
229 |
+
os.makedirs(output_frames_path, exist_ok=True)
|
230 |
+
# process
|
231 |
+
ebsynth_config = {
|
232 |
+
"minimum_patch_size": minimum_patch_size,
|
233 |
+
"threads_per_block": 8,
|
234 |
+
"num_iter": num_iter,
|
235 |
+
"gpu_id": 0,
|
236 |
+
"guide_weight": guide_weight,
|
237 |
+
"initialize": initialize,
|
238 |
+
"tracking_window_size": tracking_window_size
|
239 |
+
}
|
240 |
+
if len(index_style)==1:
|
241 |
+
InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
|
242 |
+
else:
|
243 |
+
InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
|
244 |
+
try:
|
245 |
+
fps = int(fps)
|
246 |
+
except:
|
247 |
+
fps = 30
|
248 |
+
print("Fps:", fps)
|
249 |
+
print("Saving video...")
|
250 |
+
video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps)
|
251 |
+
print("Success!")
|
252 |
+
print("Your frames are here:", output_frames_path)
|
253 |
+
print("Your video is here:", video_path)
|
254 |
+
return output_path, fps, video_path
|
255 |
+
|
256 |
+
|
257 |
+
def on_ui_tabs():
|
258 |
+
with gr.Blocks(analytics_enabled=False) as ui_component:
|
259 |
+
with gr.Tab("Blend"):
|
260 |
+
gr.Markdown("""
|
261 |
+
# Blend
|
262 |
+
|
263 |
+
Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution.
|
264 |
+
""")
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column():
|
267 |
+
with gr.Tab("Guide video"):
|
268 |
+
video_guide = gr.Video(label="Guide video")
|
269 |
+
with gr.Tab("Guide video (images format)"):
|
270 |
+
video_guide_folder = gr.Textbox(label="Guide video (images format)", value="")
|
271 |
+
with gr.Column():
|
272 |
+
with gr.Tab("Style video"):
|
273 |
+
video_style = gr.Video(label="Style video")
|
274 |
+
with gr.Tab("Style video (images format)"):
|
275 |
+
video_style_folder = gr.Textbox(label="Style video (images format)", value="")
|
276 |
+
with gr.Column():
|
277 |
+
output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video")
|
278 |
+
fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
|
279 |
+
video_output = gr.Video(label="Output video", interactive=False, show_share_button=True)
|
280 |
+
btn = gr.Button(value="Blend")
|
281 |
+
with gr.Row():
|
282 |
+
with gr.Column():
|
283 |
+
gr.Markdown("# Settings")
|
284 |
+
mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True)
|
285 |
+
window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True)
|
286 |
+
batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
|
287 |
+
tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True)
|
288 |
+
gr.Markdown("## Advanced Settings")
|
289 |
+
minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True)
|
290 |
+
num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
|
291 |
+
guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
|
292 |
+
initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
|
293 |
+
with gr.Column():
|
294 |
+
gr.Markdown("""
|
295 |
+
# Reference
|
296 |
+
|
297 |
+
* Output directory: the directory to save the video.
|
298 |
+
* Inference mode
|
299 |
+
|
300 |
+
|Mode|Time|Memory|Quality|Frame by frame output|Description|
|
301 |
+
|-|-|-|-|-|-|
|
302 |
+
|Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.|
|
303 |
+
|Balanced|■■|■|■■|Yes|Blend the frames naively.|
|
304 |
+
|Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.|
|
305 |
+
|
306 |
+
* Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy.
|
307 |
+
* Batch size: a larger batch size makes the program faster but requires more VRAM.
|
308 |
+
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
|
309 |
+
* Advanced settings
|
310 |
+
* Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5)
|
311 |
+
* Number of iterations: the number of iterations of patch matching. (Default: 5)
|
312 |
+
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
|
313 |
+
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
|
314 |
+
""")
|
315 |
+
btn.click(
|
316 |
+
smooth_video,
|
317 |
+
inputs=[
|
318 |
+
video_guide,
|
319 |
+
video_guide_folder,
|
320 |
+
video_style,
|
321 |
+
video_style_folder,
|
322 |
+
mode,
|
323 |
+
window_size,
|
324 |
+
batch_size,
|
325 |
+
tracking_window_size,
|
326 |
+
output_path,
|
327 |
+
fps,
|
328 |
+
minimum_patch_size,
|
329 |
+
num_iter,
|
330 |
+
guide_weight,
|
331 |
+
initialize
|
332 |
+
],
|
333 |
+
outputs=[output_path, fps, video_output]
|
334 |
+
)
|
335 |
+
with gr.Tab("Interpolate"):
|
336 |
+
gr.Markdown("""
|
337 |
+
# Interpolate
|
338 |
+
|
339 |
+
Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution.
|
340 |
+
""")
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column():
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="")
|
346 |
+
with gr.Column():
|
347 |
+
rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="")
|
348 |
+
with gr.Row():
|
349 |
+
detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False)
|
350 |
+
video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
|
351 |
+
rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
|
352 |
+
with gr.Column():
|
353 |
+
output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes")
|
354 |
+
fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
|
355 |
+
video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True)
|
356 |
+
btn_ = gr.Button(value="Interpolate")
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column():
|
359 |
+
gr.Markdown("# Settings")
|
360 |
+
batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
|
361 |
+
tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True)
|
362 |
+
gr.Markdown("## Advanced Settings")
|
363 |
+
minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True)
|
364 |
+
num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
|
365 |
+
guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
|
366 |
+
initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
|
367 |
+
with gr.Column():
|
368 |
+
gr.Markdown("""
|
369 |
+
# Reference
|
370 |
+
|
371 |
+
* Output directory: the directory to save the video.
|
372 |
+
* Batch size: a larger batch size makes the program faster but requires more VRAM.
|
373 |
+
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
|
374 |
+
* Advanced settings
|
375 |
+
* Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)**
|
376 |
+
* Number of iterations: the number of iterations of patch matching. (Default: 5)
|
377 |
+
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
|
378 |
+
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
|
379 |
+
""")
|
380 |
+
btn_.click(
|
381 |
+
interpolate_video,
|
382 |
+
inputs=[
|
383 |
+
video_guide_folder_,
|
384 |
+
rendered_keyframes_,
|
385 |
+
output_path_,
|
386 |
+
fps_,
|
387 |
+
batch_size_,
|
388 |
+
tracking_window_size_,
|
389 |
+
minimum_patch_size_,
|
390 |
+
num_iter_,
|
391 |
+
guide_weight_,
|
392 |
+
initialize_,
|
393 |
+
],
|
394 |
+
outputs=[output_path_, fps_, video_output_]
|
395 |
+
)
|
396 |
+
|
397 |
+
return [(ui_component, "FastBlend", "FastBlend_ui")]
|
diffsynth/extensions/FastBlend/cupy_kernels.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cupy as cp
|
2 |
+
|
3 |
+
remapping_kernel = cp.RawKernel(r'''
|
4 |
+
extern "C" __global__
|
5 |
+
void remap(
|
6 |
+
const int height,
|
7 |
+
const int width,
|
8 |
+
const int channel,
|
9 |
+
const int patch_size,
|
10 |
+
const int pad_size,
|
11 |
+
const float* source_style,
|
12 |
+
const int* nnf,
|
13 |
+
float* target_style
|
14 |
+
) {
|
15 |
+
const int r = (patch_size - 1) / 2;
|
16 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
17 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
18 |
+
if (x >= height or y >= width) return;
|
19 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
20 |
+
const int pid = (x + pad_size) * (width + pad_size * 2) + (y + pad_size);
|
21 |
+
const int min_px = x < r ? -x : -r;
|
22 |
+
const int max_px = x + r > height - 1 ? height - 1 - x : r;
|
23 |
+
const int min_py = y < r ? -y : -r;
|
24 |
+
const int max_py = y + r > width - 1 ? width - 1 - y : r;
|
25 |
+
int num = 0;
|
26 |
+
for (int px = min_px; px <= max_px; px++){
|
27 |
+
for (int py = min_py; py <= max_py; py++){
|
28 |
+
const int nid = (x + px) * width + y + py;
|
29 |
+
const int x_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 0] - px;
|
30 |
+
const int y_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 1] - py;
|
31 |
+
if (x_ < 0 or y_ < 0 or x_ >= height or y_ >= width)continue;
|
32 |
+
const int pid_ = (x_ + pad_size) * (width + pad_size * 2) + (y_ + pad_size);
|
33 |
+
num++;
|
34 |
+
for (int c = 0; c < channel; c++){
|
35 |
+
target_style[z + pid * channel + c] += source_style[z + pid_ * channel + c];
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
39 |
+
for (int c = 0; c < channel; c++){
|
40 |
+
target_style[z + pid * channel + c] /= num;
|
41 |
+
}
|
42 |
+
}
|
43 |
+
''', 'remap')
|
44 |
+
|
45 |
+
|
46 |
+
patch_error_kernel = cp.RawKernel(r'''
|
47 |
+
extern "C" __global__
|
48 |
+
void patch_error(
|
49 |
+
const int height,
|
50 |
+
const int width,
|
51 |
+
const int channel,
|
52 |
+
const int patch_size,
|
53 |
+
const int pad_size,
|
54 |
+
const float* source,
|
55 |
+
const int* nnf,
|
56 |
+
const float* target,
|
57 |
+
float* error
|
58 |
+
) {
|
59 |
+
const int r = (patch_size - 1) / 2;
|
60 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
61 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
62 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
63 |
+
if (x >= height or y >= width) return;
|
64 |
+
const int x_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 0];
|
65 |
+
const int y_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 1];
|
66 |
+
float e = 0;
|
67 |
+
for (int px = -r; px <= r; px++){
|
68 |
+
for (int py = -r; py <= r; py++){
|
69 |
+
const int pid = (x + pad_size + px) * (width + pad_size * 2) + y + pad_size + py;
|
70 |
+
const int pid_ = (x_ + pad_size + px) * (width + pad_size * 2) + y_ + pad_size + py;
|
71 |
+
for (int c = 0; c < channel; c++){
|
72 |
+
const float diff = target[z + pid * channel + c] - source[z + pid_ * channel + c];
|
73 |
+
e += diff * diff;
|
74 |
+
}
|
75 |
+
}
|
76 |
+
}
|
77 |
+
error[blockIdx.z * height * width + x * width + y] = e;
|
78 |
+
}
|
79 |
+
''', 'patch_error')
|
80 |
+
|
81 |
+
|
82 |
+
pairwise_patch_error_kernel = cp.RawKernel(r'''
|
83 |
+
extern "C" __global__
|
84 |
+
void pairwise_patch_error(
|
85 |
+
const int height,
|
86 |
+
const int width,
|
87 |
+
const int channel,
|
88 |
+
const int patch_size,
|
89 |
+
const int pad_size,
|
90 |
+
const float* source_a,
|
91 |
+
const int* nnf_a,
|
92 |
+
const float* source_b,
|
93 |
+
const int* nnf_b,
|
94 |
+
float* error
|
95 |
+
) {
|
96 |
+
const int r = (patch_size - 1) / 2;
|
97 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
98 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
99 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
100 |
+
if (x >= height or y >= width) return;
|
101 |
+
const int z_nnf = blockIdx.z * height * width * 2 + (x * width + y) * 2;
|
102 |
+
const int x_a = nnf_a[z_nnf + 0];
|
103 |
+
const int y_a = nnf_a[z_nnf + 1];
|
104 |
+
const int x_b = nnf_b[z_nnf + 0];
|
105 |
+
const int y_b = nnf_b[z_nnf + 1];
|
106 |
+
float e = 0;
|
107 |
+
for (int px = -r; px <= r; px++){
|
108 |
+
for (int py = -r; py <= r; py++){
|
109 |
+
const int pid_a = (x_a + pad_size + px) * (width + pad_size * 2) + y_a + pad_size + py;
|
110 |
+
const int pid_b = (x_b + pad_size + px) * (width + pad_size * 2) + y_b + pad_size + py;
|
111 |
+
for (int c = 0; c < channel; c++){
|
112 |
+
const float diff = source_a[z + pid_a * channel + c] - source_b[z + pid_b * channel + c];
|
113 |
+
e += diff * diff;
|
114 |
+
}
|
115 |
+
}
|
116 |
+
}
|
117 |
+
error[blockIdx.z * height * width + x * width + y] = e;
|
118 |
+
}
|
119 |
+
''', 'pairwise_patch_error')
|
diffsynth/extensions/FastBlend/data.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio, os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def read_video(file_name):
|
7 |
+
reader = imageio.get_reader(file_name)
|
8 |
+
video = []
|
9 |
+
for frame in reader:
|
10 |
+
frame = np.array(frame)
|
11 |
+
video.append(frame)
|
12 |
+
reader.close()
|
13 |
+
return video
|
14 |
+
|
15 |
+
|
16 |
+
def get_video_fps(file_name):
|
17 |
+
reader = imageio.get_reader(file_name)
|
18 |
+
fps = reader.get_meta_data()["fps"]
|
19 |
+
reader.close()
|
20 |
+
return fps
|
21 |
+
|
22 |
+
|
23 |
+
def save_video(frames_path, video_path, num_frames, fps):
|
24 |
+
writer = imageio.get_writer(video_path, fps=fps, quality=9)
|
25 |
+
for i in range(num_frames):
|
26 |
+
frame = np.array(Image.open(os.path.join(frames_path, "%05d.png" % i)))
|
27 |
+
writer.append_data(frame)
|
28 |
+
writer.close()
|
29 |
+
return video_path
|
30 |
+
|
31 |
+
|
32 |
+
class LowMemoryVideo:
|
33 |
+
def __init__(self, file_name):
|
34 |
+
self.reader = imageio.get_reader(file_name)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self.reader.count_frames()
|
38 |
+
|
39 |
+
def __getitem__(self, item):
|
40 |
+
return np.array(self.reader.get_data(item))
|
41 |
+
|
42 |
+
def __del__(self):
|
43 |
+
self.reader.close()
|
44 |
+
|
45 |
+
|
46 |
+
def split_file_name(file_name):
|
47 |
+
result = []
|
48 |
+
number = -1
|
49 |
+
for i in file_name:
|
50 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
51 |
+
if number == -1:
|
52 |
+
number = 0
|
53 |
+
number = number*10 + ord(i) - ord("0")
|
54 |
+
else:
|
55 |
+
if number != -1:
|
56 |
+
result.append(number)
|
57 |
+
number = -1
|
58 |
+
result.append(i)
|
59 |
+
if number != -1:
|
60 |
+
result.append(number)
|
61 |
+
result = tuple(result)
|
62 |
+
return result
|
63 |
+
|
64 |
+
|
65 |
+
def search_for_images(folder):
|
66 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")]
|
67 |
+
file_list = [(split_file_name(file_name), file_name) for file_name in file_list]
|
68 |
+
file_list = [i[1] for i in sorted(file_list)]
|
69 |
+
file_list = [os.path.join(folder, i) for i in file_list]
|
70 |
+
return file_list
|
71 |
+
|
72 |
+
|
73 |
+
def read_images(folder):
|
74 |
+
file_list = search_for_images(folder)
|
75 |
+
frames = [np.array(Image.open(i)) for i in file_list]
|
76 |
+
return frames
|
77 |
+
|
78 |
+
|
79 |
+
class LowMemoryImageFolder:
|
80 |
+
def __init__(self, folder, file_list=None):
|
81 |
+
if file_list is None:
|
82 |
+
self.file_list = search_for_images(folder)
|
83 |
+
else:
|
84 |
+
self.file_list = [os.path.join(folder, file_name) for file_name in file_list]
|
85 |
+
|
86 |
+
def __len__(self):
|
87 |
+
return len(self.file_list)
|
88 |
+
|
89 |
+
def __getitem__(self, item):
|
90 |
+
return np.array(Image.open(self.file_list[item]))
|
91 |
+
|
92 |
+
def __del__(self):
|
93 |
+
pass
|
94 |
+
|
95 |
+
|
96 |
+
class VideoData:
|
97 |
+
def __init__(self, video_file, image_folder, **kwargs):
|
98 |
+
if video_file is not None:
|
99 |
+
self.data_type = "video"
|
100 |
+
self.data = LowMemoryVideo(video_file, **kwargs)
|
101 |
+
elif image_folder is not None:
|
102 |
+
self.data_type = "images"
|
103 |
+
self.data = LowMemoryImageFolder(image_folder, **kwargs)
|
104 |
+
else:
|
105 |
+
raise ValueError("Cannot open video or image folder")
|
106 |
+
self.length = None
|
107 |
+
self.height = None
|
108 |
+
self.width = None
|
109 |
+
|
110 |
+
def raw_data(self):
|
111 |
+
frames = []
|
112 |
+
for i in range(self.__len__()):
|
113 |
+
frames.append(self.__getitem__(i))
|
114 |
+
return frames
|
115 |
+
|
116 |
+
def set_length(self, length):
|
117 |
+
self.length = length
|
118 |
+
|
119 |
+
def set_shape(self, height, width):
|
120 |
+
self.height = height
|
121 |
+
self.width = width
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
if self.length is None:
|
125 |
+
return len(self.data)
|
126 |
+
else:
|
127 |
+
return self.length
|
128 |
+
|
129 |
+
def shape(self):
|
130 |
+
if self.height is not None and self.width is not None:
|
131 |
+
return self.height, self.width
|
132 |
+
else:
|
133 |
+
height, width, _ = self.__getitem__(0).shape
|
134 |
+
return height, width
|
135 |
+
|
136 |
+
def __getitem__(self, item):
|
137 |
+
frame = self.data.__getitem__(item)
|
138 |
+
height, width, _ = frame.shape
|
139 |
+
if self.height is not None and self.width is not None:
|
140 |
+
if self.height != height or self.width != width:
|
141 |
+
frame = Image.fromarray(frame).resize((self.width, self.height))
|
142 |
+
frame = np.array(frame)
|
143 |
+
return frame
|
144 |
+
|
145 |
+
def __del__(self):
|
146 |
+
pass
|
diffsynth/extensions/FastBlend/patch_match.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cupy_kernels import remapping_kernel, patch_error_kernel, pairwise_patch_error_kernel
|
2 |
+
import numpy as np
|
3 |
+
import cupy as cp
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
class PatchMatcher:
|
8 |
+
def __init__(
|
9 |
+
self, height, width, channel, minimum_patch_size,
|
10 |
+
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
|
11 |
+
random_search_steps=3, random_search_range=4,
|
12 |
+
use_mean_target_style=False, use_pairwise_patch_error=False,
|
13 |
+
tracking_window_size=0
|
14 |
+
):
|
15 |
+
self.height = height
|
16 |
+
self.width = width
|
17 |
+
self.channel = channel
|
18 |
+
self.minimum_patch_size = minimum_patch_size
|
19 |
+
self.threads_per_block = threads_per_block
|
20 |
+
self.num_iter = num_iter
|
21 |
+
self.gpu_id = gpu_id
|
22 |
+
self.guide_weight = guide_weight
|
23 |
+
self.random_search_steps = random_search_steps
|
24 |
+
self.random_search_range = random_search_range
|
25 |
+
self.use_mean_target_style = use_mean_target_style
|
26 |
+
self.use_pairwise_patch_error = use_pairwise_patch_error
|
27 |
+
self.tracking_window_size = tracking_window_size
|
28 |
+
|
29 |
+
self.patch_size_list = [minimum_patch_size + i*2 for i in range(num_iter)][::-1]
|
30 |
+
self.pad_size = self.patch_size_list[0] // 2
|
31 |
+
self.grid = (
|
32 |
+
(height + threads_per_block - 1) // threads_per_block,
|
33 |
+
(width + threads_per_block - 1) // threads_per_block
|
34 |
+
)
|
35 |
+
self.block = (threads_per_block, threads_per_block)
|
36 |
+
|
37 |
+
def pad_image(self, image):
|
38 |
+
return cp.pad(image, ((0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size), (0, 0)))
|
39 |
+
|
40 |
+
def unpad_image(self, image):
|
41 |
+
return image[:, self.pad_size: -self.pad_size, self.pad_size: -self.pad_size, :]
|
42 |
+
|
43 |
+
def apply_nnf_to_image(self, nnf, source):
|
44 |
+
batch_size = source.shape[0]
|
45 |
+
target = cp.zeros((batch_size, self.height + self.pad_size * 2, self.width + self.pad_size * 2, self.channel), dtype=cp.float32)
|
46 |
+
remapping_kernel(
|
47 |
+
self.grid + (batch_size,),
|
48 |
+
self.block,
|
49 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target)
|
50 |
+
)
|
51 |
+
return target
|
52 |
+
|
53 |
+
def get_patch_error(self, source, nnf, target):
|
54 |
+
batch_size = source.shape[0]
|
55 |
+
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
|
56 |
+
patch_error_kernel(
|
57 |
+
self.grid + (batch_size,),
|
58 |
+
self.block,
|
59 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target, error)
|
60 |
+
)
|
61 |
+
return error
|
62 |
+
|
63 |
+
def get_pairwise_patch_error(self, source, nnf):
|
64 |
+
batch_size = source.shape[0]//2
|
65 |
+
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
|
66 |
+
source_a, nnf_a = source[0::2].copy(), nnf[0::2].copy()
|
67 |
+
source_b, nnf_b = source[1::2].copy(), nnf[1::2].copy()
|
68 |
+
pairwise_patch_error_kernel(
|
69 |
+
self.grid + (batch_size,),
|
70 |
+
self.block,
|
71 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source_a, nnf_a, source_b, nnf_b, error)
|
72 |
+
)
|
73 |
+
error = error.repeat(2, axis=0)
|
74 |
+
return error
|
75 |
+
|
76 |
+
def get_error(self, source_guide, target_guide, source_style, target_style, nnf):
|
77 |
+
error_guide = self.get_patch_error(source_guide, nnf, target_guide)
|
78 |
+
if self.use_mean_target_style:
|
79 |
+
target_style = self.apply_nnf_to_image(nnf, source_style)
|
80 |
+
target_style = target_style.mean(axis=0, keepdims=True)
|
81 |
+
target_style = target_style.repeat(source_guide.shape[0], axis=0)
|
82 |
+
if self.use_pairwise_patch_error:
|
83 |
+
error_style = self.get_pairwise_patch_error(source_style, nnf)
|
84 |
+
else:
|
85 |
+
error_style = self.get_patch_error(source_style, nnf, target_style)
|
86 |
+
error = error_guide * self.guide_weight + error_style
|
87 |
+
return error
|
88 |
+
|
89 |
+
def clamp_bound(self, nnf):
|
90 |
+
nnf[:,:,:,0] = cp.clip(nnf[:,:,:,0], 0, self.height-1)
|
91 |
+
nnf[:,:,:,1] = cp.clip(nnf[:,:,:,1], 0, self.width-1)
|
92 |
+
return nnf
|
93 |
+
|
94 |
+
def random_step(self, nnf, r):
|
95 |
+
batch_size = nnf.shape[0]
|
96 |
+
step = cp.random.randint(-r, r+1, size=(batch_size, self.height, self.width, 2), dtype=cp.int32)
|
97 |
+
upd_nnf = self.clamp_bound(nnf + step)
|
98 |
+
return upd_nnf
|
99 |
+
|
100 |
+
def neighboor_step(self, nnf, d):
|
101 |
+
if d==0:
|
102 |
+
upd_nnf = cp.concatenate([nnf[:, :1, :], nnf[:, :-1, :]], axis=1)
|
103 |
+
upd_nnf[:, :, :, 0] += 1
|
104 |
+
elif d==1:
|
105 |
+
upd_nnf = cp.concatenate([nnf[:, :, :1], nnf[:, :, :-1]], axis=2)
|
106 |
+
upd_nnf[:, :, :, 1] += 1
|
107 |
+
elif d==2:
|
108 |
+
upd_nnf = cp.concatenate([nnf[:, 1:, :], nnf[:, -1:, :]], axis=1)
|
109 |
+
upd_nnf[:, :, :, 0] -= 1
|
110 |
+
elif d==3:
|
111 |
+
upd_nnf = cp.concatenate([nnf[:, :, 1:], nnf[:, :, -1:]], axis=2)
|
112 |
+
upd_nnf[:, :, :, 1] -= 1
|
113 |
+
upd_nnf = self.clamp_bound(upd_nnf)
|
114 |
+
return upd_nnf
|
115 |
+
|
116 |
+
def shift_nnf(self, nnf, d):
|
117 |
+
if d>0:
|
118 |
+
d = min(nnf.shape[0], d)
|
119 |
+
upd_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
|
120 |
+
else:
|
121 |
+
d = max(-nnf.shape[0], d)
|
122 |
+
upd_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
|
123 |
+
return upd_nnf
|
124 |
+
|
125 |
+
def track_step(self, nnf, d):
|
126 |
+
if self.use_pairwise_patch_error:
|
127 |
+
upd_nnf = cp.zeros_like(nnf)
|
128 |
+
upd_nnf[0::2] = self.shift_nnf(nnf[0::2], d)
|
129 |
+
upd_nnf[1::2] = self.shift_nnf(nnf[1::2], d)
|
130 |
+
else:
|
131 |
+
upd_nnf = self.shift_nnf(nnf, d)
|
132 |
+
return upd_nnf
|
133 |
+
|
134 |
+
def C(self, n, m):
|
135 |
+
# not used
|
136 |
+
c = 1
|
137 |
+
for i in range(1, n+1):
|
138 |
+
c *= i
|
139 |
+
for i in range(1, m+1):
|
140 |
+
c //= i
|
141 |
+
for i in range(1, n-m+1):
|
142 |
+
c //= i
|
143 |
+
return c
|
144 |
+
|
145 |
+
def bezier_step(self, nnf, r):
|
146 |
+
# not used
|
147 |
+
n = r * 2 - 1
|
148 |
+
upd_nnf = cp.zeros(shape=nnf.shape, dtype=cp.float32)
|
149 |
+
for i, d in enumerate(list(range(-r, 0)) + list(range(1, r+1))):
|
150 |
+
if d>0:
|
151 |
+
ctl_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
|
152 |
+
elif d<0:
|
153 |
+
ctl_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
|
154 |
+
upd_nnf += ctl_nnf * (self.C(n, i) / 2**n)
|
155 |
+
upd_nnf = self.clamp_bound(upd_nnf).astype(nnf.dtype)
|
156 |
+
return upd_nnf
|
157 |
+
|
158 |
+
def update(self, source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf):
|
159 |
+
upd_err = self.get_error(source_guide, target_guide, source_style, target_style, upd_nnf)
|
160 |
+
upd_idx = (upd_err < err)
|
161 |
+
nnf[upd_idx] = upd_nnf[upd_idx]
|
162 |
+
err[upd_idx] = upd_err[upd_idx]
|
163 |
+
return nnf, err
|
164 |
+
|
165 |
+
def propagation(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
166 |
+
for d in cp.random.permutation(4):
|
167 |
+
upd_nnf = self.neighboor_step(nnf, d)
|
168 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
169 |
+
return nnf, err
|
170 |
+
|
171 |
+
def random_search(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
172 |
+
for i in range(self.random_search_steps):
|
173 |
+
upd_nnf = self.random_step(nnf, self.random_search_range)
|
174 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
175 |
+
return nnf, err
|
176 |
+
|
177 |
+
def track(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
178 |
+
for d in range(1, self.tracking_window_size + 1):
|
179 |
+
upd_nnf = self.track_step(nnf, d)
|
180 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
181 |
+
upd_nnf = self.track_step(nnf, -d)
|
182 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
183 |
+
return nnf, err
|
184 |
+
|
185 |
+
def iteration(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
186 |
+
nnf, err = self.propagation(source_guide, target_guide, source_style, target_style, nnf, err)
|
187 |
+
nnf, err = self.random_search(source_guide, target_guide, source_style, target_style, nnf, err)
|
188 |
+
nnf, err = self.track(source_guide, target_guide, source_style, target_style, nnf, err)
|
189 |
+
return nnf, err
|
190 |
+
|
191 |
+
def estimate_nnf(self, source_guide, target_guide, source_style, nnf):
|
192 |
+
with cp.cuda.Device(self.gpu_id):
|
193 |
+
source_guide = self.pad_image(source_guide)
|
194 |
+
target_guide = self.pad_image(target_guide)
|
195 |
+
source_style = self.pad_image(source_style)
|
196 |
+
for it in range(self.num_iter):
|
197 |
+
self.patch_size = self.patch_size_list[it]
|
198 |
+
target_style = self.apply_nnf_to_image(nnf, source_style)
|
199 |
+
err = self.get_error(source_guide, target_guide, source_style, target_style, nnf)
|
200 |
+
nnf, err = self.iteration(source_guide, target_guide, source_style, target_style, nnf, err)
|
201 |
+
target_style = self.unpad_image(self.apply_nnf_to_image(nnf, source_style))
|
202 |
+
return nnf, target_style
|
203 |
+
|
204 |
+
|
205 |
+
class PyramidPatchMatcher:
|
206 |
+
def __init__(
|
207 |
+
self, image_height, image_width, channel, minimum_patch_size,
|
208 |
+
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
|
209 |
+
use_mean_target_style=False, use_pairwise_patch_error=False,
|
210 |
+
tracking_window_size=0,
|
211 |
+
initialize="identity"
|
212 |
+
):
|
213 |
+
maximum_patch_size = minimum_patch_size + (num_iter - 1) * 2
|
214 |
+
self.pyramid_level = int(np.log2(min(image_height, image_width) / maximum_patch_size))
|
215 |
+
self.pyramid_heights = []
|
216 |
+
self.pyramid_widths = []
|
217 |
+
self.patch_matchers = []
|
218 |
+
self.minimum_patch_size = minimum_patch_size
|
219 |
+
self.num_iter = num_iter
|
220 |
+
self.gpu_id = gpu_id
|
221 |
+
self.initialize = initialize
|
222 |
+
for level in range(self.pyramid_level):
|
223 |
+
height = image_height//(2**(self.pyramid_level - 1 - level))
|
224 |
+
width = image_width//(2**(self.pyramid_level - 1 - level))
|
225 |
+
self.pyramid_heights.append(height)
|
226 |
+
self.pyramid_widths.append(width)
|
227 |
+
self.patch_matchers.append(PatchMatcher(
|
228 |
+
height, width, channel, minimum_patch_size=minimum_patch_size,
|
229 |
+
threads_per_block=threads_per_block, num_iter=num_iter, gpu_id=gpu_id, guide_weight=guide_weight,
|
230 |
+
use_mean_target_style=use_mean_target_style, use_pairwise_patch_error=use_pairwise_patch_error,
|
231 |
+
tracking_window_size=tracking_window_size
|
232 |
+
))
|
233 |
+
|
234 |
+
def resample_image(self, images, level):
|
235 |
+
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
|
236 |
+
images = images.get()
|
237 |
+
images_resample = []
|
238 |
+
for image in images:
|
239 |
+
image_resample = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
|
240 |
+
images_resample.append(image_resample)
|
241 |
+
images_resample = cp.array(np.stack(images_resample), dtype=cp.float32)
|
242 |
+
return images_resample
|
243 |
+
|
244 |
+
def initialize_nnf(self, batch_size):
|
245 |
+
if self.initialize == "random":
|
246 |
+
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
|
247 |
+
nnf = cp.stack([
|
248 |
+
cp.random.randint(0, height, (batch_size, height, width), dtype=cp.int32),
|
249 |
+
cp.random.randint(0, width, (batch_size, height, width), dtype=cp.int32)
|
250 |
+
], axis=3)
|
251 |
+
elif self.initialize == "identity":
|
252 |
+
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
|
253 |
+
nnf = cp.stack([
|
254 |
+
cp.repeat(cp.arange(height), width).reshape(height, width),
|
255 |
+
cp.tile(cp.arange(width), height).reshape(height, width)
|
256 |
+
], axis=2)
|
257 |
+
nnf = cp.stack([nnf] * batch_size)
|
258 |
+
else:
|
259 |
+
raise NotImplementedError()
|
260 |
+
return nnf
|
261 |
+
|
262 |
+
def update_nnf(self, nnf, level):
|
263 |
+
# upscale
|
264 |
+
nnf = nnf.repeat(2, axis=1).repeat(2, axis=2) * 2
|
265 |
+
nnf[:,[i for i in range(nnf.shape[0]) if i&1],:,0] += 1
|
266 |
+
nnf[:,:,[i for i in range(nnf.shape[0]) if i&1],1] += 1
|
267 |
+
# check if scale is 2
|
268 |
+
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
|
269 |
+
if height != nnf.shape[0] * 2 or width != nnf.shape[1] * 2:
|
270 |
+
nnf = nnf.get().astype(np.float32)
|
271 |
+
nnf = [cv2.resize(n, (width, height), interpolation=cv2.INTER_LINEAR) for n in nnf]
|
272 |
+
nnf = cp.array(np.stack(nnf), dtype=cp.int32)
|
273 |
+
nnf = self.patch_matchers[level].clamp_bound(nnf)
|
274 |
+
return nnf
|
275 |
+
|
276 |
+
def apply_nnf_to_image(self, nnf, image):
|
277 |
+
with cp.cuda.Device(self.gpu_id):
|
278 |
+
image = self.patch_matchers[-1].pad_image(image)
|
279 |
+
image = self.patch_matchers[-1].apply_nnf_to_image(nnf, image)
|
280 |
+
return image
|
281 |
+
|
282 |
+
def estimate_nnf(self, source_guide, target_guide, source_style):
|
283 |
+
with cp.cuda.Device(self.gpu_id):
|
284 |
+
if not isinstance(source_guide, cp.ndarray):
|
285 |
+
source_guide = cp.array(source_guide, dtype=cp.float32)
|
286 |
+
if not isinstance(target_guide, cp.ndarray):
|
287 |
+
target_guide = cp.array(target_guide, dtype=cp.float32)
|
288 |
+
if not isinstance(source_style, cp.ndarray):
|
289 |
+
source_style = cp.array(source_style, dtype=cp.float32)
|
290 |
+
for level in range(self.pyramid_level):
|
291 |
+
nnf = self.initialize_nnf(source_guide.shape[0]) if level==0 else self.update_nnf(nnf, level)
|
292 |
+
source_guide_ = self.resample_image(source_guide, level)
|
293 |
+
target_guide_ = self.resample_image(target_guide, level)
|
294 |
+
source_style_ = self.resample_image(source_style, level)
|
295 |
+
nnf, target_style = self.patch_matchers[level].estimate_nnf(
|
296 |
+
source_guide_, target_guide_, source_style_, nnf
|
297 |
+
)
|
298 |
+
return nnf.get(), target_style.get()
|
diffsynth/extensions/FastBlend/runners/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .accurate import AccurateModeRunner
|
2 |
+
from .fast import FastModeRunner
|
3 |
+
from .balanced import BalancedModeRunner
|
4 |
+
from .interpolation import InterpolationModeRunner, InterpolationModeSingleFrameRunner
|
diffsynth/extensions/FastBlend/runners/accurate.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class AccurateModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Accurate Mode", save_path=None):
|
13 |
+
patch_match_engine = PyramidPatchMatcher(
|
14 |
+
image_height=frames_style[0].shape[0],
|
15 |
+
image_width=frames_style[0].shape[1],
|
16 |
+
channel=3,
|
17 |
+
use_mean_target_style=True,
|
18 |
+
**ebsynth_config
|
19 |
+
)
|
20 |
+
# run
|
21 |
+
n = len(frames_style)
|
22 |
+
for target in tqdm(range(n), desc=desc):
|
23 |
+
l, r = max(target - window_size, 0), min(target + window_size + 1, n)
|
24 |
+
remapped_frames = []
|
25 |
+
for i in range(l, r, batch_size):
|
26 |
+
j = min(i + batch_size, r)
|
27 |
+
source_guide = np.stack([frames_guide[source] for source in range(i, j)])
|
28 |
+
target_guide = np.stack([frames_guide[target]] * (j - i))
|
29 |
+
source_style = np.stack([frames_style[source] for source in range(i, j)])
|
30 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
31 |
+
remapped_frames.append(target_style)
|
32 |
+
frame = np.concatenate(remapped_frames, axis=0).mean(axis=0)
|
33 |
+
frame = frame.clip(0, 255).astype("uint8")
|
34 |
+
if save_path is not None:
|
35 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
diffsynth/extensions/FastBlend/runners/balanced.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class BalancedModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Balanced Mode", save_path=None):
|
13 |
+
patch_match_engine = PyramidPatchMatcher(
|
14 |
+
image_height=frames_style[0].shape[0],
|
15 |
+
image_width=frames_style[0].shape[1],
|
16 |
+
channel=3,
|
17 |
+
**ebsynth_config
|
18 |
+
)
|
19 |
+
# tasks
|
20 |
+
n = len(frames_style)
|
21 |
+
tasks = []
|
22 |
+
for target in range(n):
|
23 |
+
for source in range(target - window_size, target + window_size + 1):
|
24 |
+
if source >= 0 and source < n and source != target:
|
25 |
+
tasks.append((source, target))
|
26 |
+
# run
|
27 |
+
frames = [(None, 1) for i in range(n)]
|
28 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
29 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
30 |
+
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch])
|
31 |
+
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch])
|
32 |
+
source_style = np.stack([frames_style[source] for source, target in tasks_batch])
|
33 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
34 |
+
for (source, target), result in zip(tasks_batch, target_style):
|
35 |
+
frame, weight = frames[target]
|
36 |
+
if frame is None:
|
37 |
+
frame = frames_style[target]
|
38 |
+
frames[target] = (
|
39 |
+
frame * (weight / (weight + 1)) + result / (weight + 1),
|
40 |
+
weight + 1
|
41 |
+
)
|
42 |
+
if weight + 1 == min(n, target + window_size + 1) - max(0, target - window_size):
|
43 |
+
frame = frame.clip(0, 255).astype("uint8")
|
44 |
+
if save_path is not None:
|
45 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
46 |
+
frames[target] = (None, 1)
|
diffsynth/extensions/FastBlend/runners/fast.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import functools, os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class TableManager:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def task_list(self, n):
|
13 |
+
tasks = []
|
14 |
+
max_level = 1
|
15 |
+
while (1<<max_level)<=n:
|
16 |
+
max_level += 1
|
17 |
+
for i in range(n):
|
18 |
+
j = i
|
19 |
+
for level in range(max_level):
|
20 |
+
if i&(1<<level):
|
21 |
+
continue
|
22 |
+
j |= 1<<level
|
23 |
+
if j>=n:
|
24 |
+
break
|
25 |
+
meta_data = {
|
26 |
+
"source": i,
|
27 |
+
"target": j,
|
28 |
+
"level": level + 1
|
29 |
+
}
|
30 |
+
tasks.append(meta_data)
|
31 |
+
tasks.sort(key=functools.cmp_to_key(lambda u, v: u["level"]-v["level"]))
|
32 |
+
return tasks
|
33 |
+
|
34 |
+
def build_remapping_table(self, frames_guide, frames_style, patch_match_engine, batch_size, desc=""):
|
35 |
+
n = len(frames_guide)
|
36 |
+
tasks = self.task_list(n)
|
37 |
+
remapping_table = [[(frames_style[i], 1)] for i in range(n)]
|
38 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
39 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
40 |
+
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch])
|
41 |
+
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch])
|
42 |
+
source_style = np.stack([frames_style[task["source"]] for task in tasks_batch])
|
43 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
44 |
+
for task, result in zip(tasks_batch, target_style):
|
45 |
+
target, level = task["target"], task["level"]
|
46 |
+
if len(remapping_table[target])==level:
|
47 |
+
remapping_table[target].append((result, 1))
|
48 |
+
else:
|
49 |
+
frame, weight = remapping_table[target][level]
|
50 |
+
remapping_table[target][level] = (
|
51 |
+
frame * (weight / (weight + 1)) + result / (weight + 1),
|
52 |
+
weight + 1
|
53 |
+
)
|
54 |
+
return remapping_table
|
55 |
+
|
56 |
+
def remapping_table_to_blending_table(self, table):
|
57 |
+
for i in range(len(table)):
|
58 |
+
for j in range(1, len(table[i])):
|
59 |
+
frame_1, weight_1 = table[i][j-1]
|
60 |
+
frame_2, weight_2 = table[i][j]
|
61 |
+
frame = (frame_1 + frame_2) / 2
|
62 |
+
weight = weight_1 + weight_2
|
63 |
+
table[i][j] = (frame, weight)
|
64 |
+
return table
|
65 |
+
|
66 |
+
def tree_query(self, leftbound, rightbound):
|
67 |
+
node_list = []
|
68 |
+
node_index = rightbound
|
69 |
+
while node_index>=leftbound:
|
70 |
+
node_level = 0
|
71 |
+
while (1<<node_level)&node_index and node_index-(1<<node_level+1)+1>=leftbound:
|
72 |
+
node_level += 1
|
73 |
+
node_list.append((node_index, node_level))
|
74 |
+
node_index -= 1<<node_level
|
75 |
+
return node_list
|
76 |
+
|
77 |
+
def process_window_sum(self, frames_guide, blending_table, patch_match_engine, window_size, batch_size, desc=""):
|
78 |
+
n = len(blending_table)
|
79 |
+
tasks = []
|
80 |
+
frames_result = []
|
81 |
+
for target in range(n):
|
82 |
+
node_list = self.tree_query(max(target-window_size, 0), target)
|
83 |
+
for source, level in node_list:
|
84 |
+
if source!=target:
|
85 |
+
meta_data = {
|
86 |
+
"source": source,
|
87 |
+
"target": target,
|
88 |
+
"level": level
|
89 |
+
}
|
90 |
+
tasks.append(meta_data)
|
91 |
+
else:
|
92 |
+
frames_result.append(blending_table[target][level])
|
93 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
94 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
95 |
+
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch])
|
96 |
+
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch])
|
97 |
+
source_style = np.stack([blending_table[task["source"]][task["level"]][0] for task in tasks_batch])
|
98 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
99 |
+
for task, frame_2 in zip(tasks_batch, target_style):
|
100 |
+
source, target, level = task["source"], task["target"], task["level"]
|
101 |
+
frame_1, weight_1 = frames_result[target]
|
102 |
+
weight_2 = blending_table[source][level][1]
|
103 |
+
weight = weight_1 + weight_2
|
104 |
+
frame = frame_1 * (weight_1 / weight) + frame_2 * (weight_2 / weight)
|
105 |
+
frames_result[target] = (frame, weight)
|
106 |
+
return frames_result
|
107 |
+
|
108 |
+
|
109 |
+
class FastModeRunner:
|
110 |
+
def __init__(self):
|
111 |
+
pass
|
112 |
+
|
113 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, save_path=None):
|
114 |
+
frames_guide = frames_guide.raw_data()
|
115 |
+
frames_style = frames_style.raw_data()
|
116 |
+
table_manager = TableManager()
|
117 |
+
patch_match_engine = PyramidPatchMatcher(
|
118 |
+
image_height=frames_style[0].shape[0],
|
119 |
+
image_width=frames_style[0].shape[1],
|
120 |
+
channel=3,
|
121 |
+
**ebsynth_config
|
122 |
+
)
|
123 |
+
# left part
|
124 |
+
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="Fast Mode Step 1/4")
|
125 |
+
table_l = table_manager.remapping_table_to_blending_table(table_l)
|
126 |
+
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 2/4")
|
127 |
+
# right part
|
128 |
+
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="Fast Mode Step 3/4")
|
129 |
+
table_r = table_manager.remapping_table_to_blending_table(table_r)
|
130 |
+
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 4/4")[::-1]
|
131 |
+
# merge
|
132 |
+
frames = []
|
133 |
+
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r):
|
134 |
+
weight_m = -1
|
135 |
+
weight = weight_l + weight_m + weight_r
|
136 |
+
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight)
|
137 |
+
frames.append(frame)
|
138 |
+
frames = [frame.clip(0, 255).astype("uint8") for frame in frames]
|
139 |
+
if save_path is not None:
|
140 |
+
for target, frame in enumerate(frames):
|
141 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
diffsynth/extensions/FastBlend/runners/interpolation.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class InterpolationModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def get_index_dict(self, index_style):
|
13 |
+
index_dict = {}
|
14 |
+
for i, index in enumerate(index_style):
|
15 |
+
index_dict[index] = i
|
16 |
+
return index_dict
|
17 |
+
|
18 |
+
def get_weight(self, l, m, r):
|
19 |
+
weight_l, weight_r = abs(m - r), abs(m - l)
|
20 |
+
if weight_l + weight_r == 0:
|
21 |
+
weight_l, weight_r = 0.5, 0.5
|
22 |
+
else:
|
23 |
+
weight_l, weight_r = weight_l / (weight_l + weight_r), weight_r / (weight_l + weight_r)
|
24 |
+
return weight_l, weight_r
|
25 |
+
|
26 |
+
def get_task_group(self, index_style, n):
|
27 |
+
task_group = []
|
28 |
+
index_style = sorted(index_style)
|
29 |
+
# first frame
|
30 |
+
if index_style[0]>0:
|
31 |
+
tasks = []
|
32 |
+
for m in range(index_style[0]):
|
33 |
+
tasks.append((index_style[0], m, index_style[0]))
|
34 |
+
task_group.append(tasks)
|
35 |
+
# middle frames
|
36 |
+
for l, r in zip(index_style[:-1], index_style[1:]):
|
37 |
+
tasks = []
|
38 |
+
for m in range(l, r):
|
39 |
+
tasks.append((l, m, r))
|
40 |
+
task_group.append(tasks)
|
41 |
+
# last frame
|
42 |
+
tasks = []
|
43 |
+
for m in range(index_style[-1], n):
|
44 |
+
tasks.append((index_style[-1], m, index_style[-1]))
|
45 |
+
task_group.append(tasks)
|
46 |
+
return task_group
|
47 |
+
|
48 |
+
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
|
49 |
+
patch_match_engine = PyramidPatchMatcher(
|
50 |
+
image_height=frames_style[0].shape[0],
|
51 |
+
image_width=frames_style[0].shape[1],
|
52 |
+
channel=3,
|
53 |
+
use_mean_target_style=False,
|
54 |
+
use_pairwise_patch_error=True,
|
55 |
+
**ebsynth_config
|
56 |
+
)
|
57 |
+
# task
|
58 |
+
index_dict = self.get_index_dict(index_style)
|
59 |
+
task_group = self.get_task_group(index_style, len(frames_guide))
|
60 |
+
# run
|
61 |
+
for tasks in task_group:
|
62 |
+
index_start, index_end = min([i[1] for i in tasks]), max([i[1] for i in tasks])
|
63 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=f"Rendering frames {index_start}...{index_end}"):
|
64 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
65 |
+
source_guide, target_guide, source_style = [], [], []
|
66 |
+
for l, m, r in tasks_batch:
|
67 |
+
# l -> m
|
68 |
+
source_guide.append(frames_guide[l])
|
69 |
+
target_guide.append(frames_guide[m])
|
70 |
+
source_style.append(frames_style[index_dict[l]])
|
71 |
+
# r -> m
|
72 |
+
source_guide.append(frames_guide[r])
|
73 |
+
target_guide.append(frames_guide[m])
|
74 |
+
source_style.append(frames_style[index_dict[r]])
|
75 |
+
source_guide = np.stack(source_guide)
|
76 |
+
target_guide = np.stack(target_guide)
|
77 |
+
source_style = np.stack(source_style)
|
78 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
79 |
+
if save_path is not None:
|
80 |
+
for frame_l, frame_r, (l, m, r) in zip(target_style[0::2], target_style[1::2], tasks_batch):
|
81 |
+
weight_l, weight_r = self.get_weight(l, m, r)
|
82 |
+
frame = frame_l * weight_l + frame_r * weight_r
|
83 |
+
frame = frame.clip(0, 255).astype("uint8")
|
84 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % m))
|
85 |
+
|
86 |
+
|
87 |
+
class InterpolationModeSingleFrameRunner:
|
88 |
+
def __init__(self):
|
89 |
+
pass
|
90 |
+
|
91 |
+
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
|
92 |
+
# check input
|
93 |
+
tracking_window_size = ebsynth_config["tracking_window_size"]
|
94 |
+
if tracking_window_size * 2 >= batch_size:
|
95 |
+
raise ValueError("batch_size should be larger than track_window_size * 2")
|
96 |
+
frame_style = frames_style[0]
|
97 |
+
frame_guide = frames_guide[index_style[0]]
|
98 |
+
patch_match_engine = PyramidPatchMatcher(
|
99 |
+
image_height=frame_style.shape[0],
|
100 |
+
image_width=frame_style.shape[1],
|
101 |
+
channel=3,
|
102 |
+
**ebsynth_config
|
103 |
+
)
|
104 |
+
# run
|
105 |
+
frame_id, n = 0, len(frames_guide)
|
106 |
+
for i in tqdm(range(0, n, batch_size - tracking_window_size * 2), desc=f"Rendering frames 0...{n}"):
|
107 |
+
if i + batch_size > n:
|
108 |
+
l, r = max(n - batch_size, 0), n
|
109 |
+
else:
|
110 |
+
l, r = i, i + batch_size
|
111 |
+
source_guide = np.stack([frame_guide] * (r-l))
|
112 |
+
target_guide = np.stack([frames_guide[i] for i in range(l, r)])
|
113 |
+
source_style = np.stack([frame_style] * (r-l))
|
114 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
115 |
+
for i, frame in zip(range(l, r), target_style):
|
116 |
+
if i==frame_id:
|
117 |
+
frame = frame.clip(0, 255).astype("uint8")
|
118 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % frame_id))
|
119 |
+
frame_id += 1
|
120 |
+
if r < n and r-frame_id <= tracking_window_size:
|
121 |
+
break
|
diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .blip_pretrain import *
|
diffsynth/extensions/ImageQualityMetric/BLIP/blip.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
'''
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
from urllib.parse import urlparse
|
11 |
+
from timm.models.hub import download_cached_file
|
12 |
+
from transformers import BertTokenizer
|
13 |
+
from .vit import VisionTransformer, interpolate_pos_embed
|
14 |
+
|
15 |
+
|
16 |
+
def default_bert():
|
17 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
project_root = os.path.abspath(os.path.join(current_dir, '../../../../'))
|
19 |
+
model_path = os.path.join(project_root, 'models', 'QualityMetric')
|
20 |
+
return os.path.join(model_path, "bert-base-uncased")
|
21 |
+
|
22 |
+
|
23 |
+
def init_tokenizer(bert_model_path):
|
24 |
+
tokenizer = BertTokenizer.from_pretrained(bert_model_path)
|
25 |
+
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
26 |
+
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
27 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
28 |
+
return tokenizer
|
29 |
+
|
30 |
+
|
31 |
+
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
32 |
+
|
33 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
34 |
+
if vit=='base':
|
35 |
+
vision_width = 768
|
36 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
37 |
+
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
38 |
+
drop_path_rate=0 or drop_path_rate
|
39 |
+
)
|
40 |
+
elif vit=='large':
|
41 |
+
vision_width = 1024
|
42 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
43 |
+
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
44 |
+
drop_path_rate=0.1 or drop_path_rate
|
45 |
+
)
|
46 |
+
return visual_encoder, vision_width
|
47 |
+
|
48 |
+
|
49 |
+
def is_url(url_or_filename):
|
50 |
+
parsed = urlparse(url_or_filename)
|
51 |
+
return parsed.scheme in ("http", "https")
|
52 |
+
|
53 |
+
def load_checkpoint(model,url_or_filename):
|
54 |
+
if is_url(url_or_filename):
|
55 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
56 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
57 |
+
elif os.path.isfile(url_or_filename):
|
58 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
59 |
+
else:
|
60 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
61 |
+
|
62 |
+
state_dict = checkpoint['model']
|
63 |
+
|
64 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
65 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
66 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
67 |
+
model.visual_encoder_m)
|
68 |
+
for key in model.state_dict().keys():
|
69 |
+
if key in state_dict.keys():
|
70 |
+
if state_dict[key].shape!=model.state_dict()[key].shape:
|
71 |
+
print(key, ": ", state_dict[key].shape, ', ', model.state_dict()[key].shape)
|
72 |
+
del state_dict[key]
|
73 |
+
|
74 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
75 |
+
print('load checkpoint from %s'%url_or_filename)
|
76 |
+
return model,msg
|
77 |
+
|
diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
'''
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
transformers.logging.set_verbosity_error()
|
7 |
+
|
8 |
+
from torch import nn
|
9 |
+
import os
|
10 |
+
from .med import BertConfig, BertModel
|
11 |
+
from .blip import create_vit, init_tokenizer
|
12 |
+
|
13 |
+
class BLIP_Pretrain(nn.Module):
|
14 |
+
def __init__(self,
|
15 |
+
med_config = "med_config.json",
|
16 |
+
image_size = 224,
|
17 |
+
vit = 'base',
|
18 |
+
vit_grad_ckpt = False,
|
19 |
+
vit_ckpt_layer = 0,
|
20 |
+
embed_dim = 256,
|
21 |
+
queue_size = 57600,
|
22 |
+
momentum = 0.995,
|
23 |
+
bert_model_path = ""
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
Args:
|
27 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
28 |
+
image_size (int): input image size
|
29 |
+
vit (str): model size of vision transformer
|
30 |
+
"""
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
|
34 |
+
|
35 |
+
self.tokenizer = init_tokenizer(bert_model_path)
|
36 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
37 |
+
encoder_config.encoder_width = vision_width
|
38 |
+
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
39 |
+
|
40 |
+
text_width = self.text_encoder.config.hidden_size
|
41 |
+
|
42 |
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
43 |
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
44 |
+
|
diffsynth/extensions/ImageQualityMetric/BLIP/med.py
ADDED
@@ -0,0 +1,947 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
* Based on huggingface code base
|
4 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
5 |
+
'''
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import Tensor, device, nn
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn import CrossEntropyLoss
|
15 |
+
|
16 |
+
from transformers.activations import ACT2FN
|
17 |
+
from transformers.file_utils import (
|
18 |
+
ModelOutput,
|
19 |
+
)
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
CausalLMOutputWithCrossAttentions,
|
24 |
+
MaskedLMOutput,
|
25 |
+
MultipleChoiceModelOutput,
|
26 |
+
NextSentencePredictorOutput,
|
27 |
+
QuestionAnsweringModelOutput,
|
28 |
+
SequenceClassifierOutput,
|
29 |
+
TokenClassifierOutput,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import (
|
32 |
+
PreTrainedModel,
|
33 |
+
apply_chunking_to_forward,
|
34 |
+
find_pruneable_heads_and_indices,
|
35 |
+
prune_linear_layer,
|
36 |
+
)
|
37 |
+
from transformers.utils import logging
|
38 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
class BertEmbeddings(nn.Module):
|
45 |
+
"""Construct the embeddings from word and position embeddings."""
|
46 |
+
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__()
|
49 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
50 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
51 |
+
|
52 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
53 |
+
# any TensorFlow checkpoint file
|
54 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
55 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
56 |
+
|
57 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
58 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
59 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
60 |
+
|
61 |
+
self.config = config
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
65 |
+
):
|
66 |
+
if input_ids is not None:
|
67 |
+
input_shape = input_ids.size()
|
68 |
+
else:
|
69 |
+
input_shape = inputs_embeds.size()[:-1]
|
70 |
+
|
71 |
+
seq_length = input_shape[1]
|
72 |
+
|
73 |
+
if position_ids is None:
|
74 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
75 |
+
|
76 |
+
if inputs_embeds is None:
|
77 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
78 |
+
|
79 |
+
embeddings = inputs_embeds
|
80 |
+
|
81 |
+
if self.position_embedding_type == "absolute":
|
82 |
+
position_embeddings = self.position_embeddings(position_ids)
|
83 |
+
embeddings += position_embeddings
|
84 |
+
embeddings = self.LayerNorm(embeddings)
|
85 |
+
embeddings = self.dropout(embeddings)
|
86 |
+
return embeddings
|
87 |
+
|
88 |
+
|
89 |
+
class BertSelfAttention(nn.Module):
|
90 |
+
def __init__(self, config, is_cross_attention):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
94 |
+
raise ValueError(
|
95 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
96 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
97 |
+
)
|
98 |
+
|
99 |
+
self.num_attention_heads = config.num_attention_heads
|
100 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
101 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
102 |
+
|
103 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
104 |
+
if is_cross_attention:
|
105 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
106 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
107 |
+
else:
|
108 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
109 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
110 |
+
|
111 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
112 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
113 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
114 |
+
self.max_position_embeddings = config.max_position_embeddings
|
115 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
116 |
+
self.save_attention = False
|
117 |
+
|
118 |
+
def save_attn_gradients(self, attn_gradients):
|
119 |
+
self.attn_gradients = attn_gradients
|
120 |
+
|
121 |
+
def get_attn_gradients(self):
|
122 |
+
return self.attn_gradients
|
123 |
+
|
124 |
+
def save_attention_map(self, attention_map):
|
125 |
+
self.attention_map = attention_map
|
126 |
+
|
127 |
+
def get_attention_map(self):
|
128 |
+
return self.attention_map
|
129 |
+
|
130 |
+
def transpose_for_scores(self, x):
|
131 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
132 |
+
x = x.view(*new_x_shape)
|
133 |
+
return x.permute(0, 2, 1, 3)
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
hidden_states,
|
138 |
+
attention_mask=None,
|
139 |
+
head_mask=None,
|
140 |
+
encoder_hidden_states=None,
|
141 |
+
encoder_attention_mask=None,
|
142 |
+
past_key_value=None,
|
143 |
+
output_attentions=False,
|
144 |
+
):
|
145 |
+
mixed_query_layer = self.query(hidden_states)
|
146 |
+
|
147 |
+
# If this is instantiated as a cross-attention module, the keys
|
148 |
+
# and values come from an encoder; the attention mask needs to be
|
149 |
+
# such that the encoder's padding tokens are not attended to.
|
150 |
+
is_cross_attention = encoder_hidden_states is not None
|
151 |
+
|
152 |
+
if is_cross_attention:
|
153 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
154 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
155 |
+
attention_mask = encoder_attention_mask
|
156 |
+
elif past_key_value is not None:
|
157 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
158 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
159 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
160 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
161 |
+
else:
|
162 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
163 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
164 |
+
|
165 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
166 |
+
|
167 |
+
past_key_value = (key_layer, value_layer)
|
168 |
+
|
169 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
170 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
171 |
+
|
172 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
173 |
+
seq_length = hidden_states.size()[1]
|
174 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
175 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
176 |
+
distance = position_ids_l - position_ids_r
|
177 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
178 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
179 |
+
|
180 |
+
if self.position_embedding_type == "relative_key":
|
181 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
182 |
+
attention_scores = attention_scores + relative_position_scores
|
183 |
+
elif self.position_embedding_type == "relative_key_query":
|
184 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
185 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
186 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
187 |
+
|
188 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
189 |
+
if attention_mask is not None:
|
190 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
191 |
+
attention_scores = attention_scores + attention_mask
|
192 |
+
|
193 |
+
# Normalize the attention scores to probabilities.
|
194 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
195 |
+
|
196 |
+
if is_cross_attention and self.save_attention:
|
197 |
+
self.save_attention_map(attention_probs)
|
198 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
199 |
+
|
200 |
+
# This is actually dropping out entire tokens to attend to, which might
|
201 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
202 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
203 |
+
|
204 |
+
# Mask heads if we want to
|
205 |
+
if head_mask is not None:
|
206 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
207 |
+
|
208 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
209 |
+
|
210 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
211 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
212 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
213 |
+
|
214 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
215 |
+
|
216 |
+
outputs = outputs + (past_key_value,)
|
217 |
+
return outputs
|
218 |
+
|
219 |
+
|
220 |
+
class BertSelfOutput(nn.Module):
|
221 |
+
def __init__(self, config):
|
222 |
+
super().__init__()
|
223 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
224 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
225 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
226 |
+
|
227 |
+
def forward(self, hidden_states, input_tensor):
|
228 |
+
hidden_states = self.dense(hidden_states)
|
229 |
+
hidden_states = self.dropout(hidden_states)
|
230 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
231 |
+
return hidden_states
|
232 |
+
|
233 |
+
|
234 |
+
class BertAttention(nn.Module):
|
235 |
+
def __init__(self, config, is_cross_attention=False):
|
236 |
+
super().__init__()
|
237 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
238 |
+
self.output = BertSelfOutput(config)
|
239 |
+
self.pruned_heads = set()
|
240 |
+
|
241 |
+
def prune_heads(self, heads):
|
242 |
+
if len(heads) == 0:
|
243 |
+
return
|
244 |
+
heads, index = find_pruneable_heads_and_indices(
|
245 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
246 |
+
)
|
247 |
+
|
248 |
+
# Prune linear layers
|
249 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
250 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
251 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
252 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
253 |
+
|
254 |
+
# Update hyper params and store pruned heads
|
255 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
256 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
257 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_states,
|
262 |
+
attention_mask=None,
|
263 |
+
head_mask=None,
|
264 |
+
encoder_hidden_states=None,
|
265 |
+
encoder_attention_mask=None,
|
266 |
+
past_key_value=None,
|
267 |
+
output_attentions=False,
|
268 |
+
):
|
269 |
+
self_outputs = self.self(
|
270 |
+
hidden_states,
|
271 |
+
attention_mask,
|
272 |
+
head_mask,
|
273 |
+
encoder_hidden_states,
|
274 |
+
encoder_attention_mask,
|
275 |
+
past_key_value,
|
276 |
+
output_attentions,
|
277 |
+
)
|
278 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
279 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
280 |
+
return outputs
|
281 |
+
|
282 |
+
|
283 |
+
class BertIntermediate(nn.Module):
|
284 |
+
def __init__(self, config):
|
285 |
+
super().__init__()
|
286 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
287 |
+
if isinstance(config.hidden_act, str):
|
288 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
289 |
+
else:
|
290 |
+
self.intermediate_act_fn = config.hidden_act
|
291 |
+
|
292 |
+
def forward(self, hidden_states):
|
293 |
+
hidden_states = self.dense(hidden_states)
|
294 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class BertOutput(nn.Module):
|
299 |
+
def __init__(self, config):
|
300 |
+
super().__init__()
|
301 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
302 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
303 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
304 |
+
|
305 |
+
def forward(self, hidden_states, input_tensor):
|
306 |
+
hidden_states = self.dense(hidden_states)
|
307 |
+
hidden_states = self.dropout(hidden_states)
|
308 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
309 |
+
return hidden_states
|
310 |
+
|
311 |
+
|
312 |
+
class BertLayer(nn.Module):
|
313 |
+
def __init__(self, config, layer_num):
|
314 |
+
super().__init__()
|
315 |
+
self.config = config
|
316 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
317 |
+
self.seq_len_dim = 1
|
318 |
+
self.attention = BertAttention(config)
|
319 |
+
self.layer_num = layer_num
|
320 |
+
if self.config.add_cross_attention:
|
321 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
322 |
+
self.intermediate = BertIntermediate(config)
|
323 |
+
self.output = BertOutput(config)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=None,
|
329 |
+
head_mask=None,
|
330 |
+
encoder_hidden_states=None,
|
331 |
+
encoder_attention_mask=None,
|
332 |
+
past_key_value=None,
|
333 |
+
output_attentions=False,
|
334 |
+
mode=None,
|
335 |
+
):
|
336 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
337 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
338 |
+
self_attention_outputs = self.attention(
|
339 |
+
hidden_states,
|
340 |
+
attention_mask,
|
341 |
+
head_mask,
|
342 |
+
output_attentions=output_attentions,
|
343 |
+
past_key_value=self_attn_past_key_value,
|
344 |
+
)
|
345 |
+
attention_output = self_attention_outputs[0]
|
346 |
+
|
347 |
+
outputs = self_attention_outputs[1:-1]
|
348 |
+
present_key_value = self_attention_outputs[-1]
|
349 |
+
|
350 |
+
if mode=='multimodal':
|
351 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
352 |
+
|
353 |
+
cross_attention_outputs = self.crossattention(
|
354 |
+
attention_output,
|
355 |
+
attention_mask,
|
356 |
+
head_mask,
|
357 |
+
encoder_hidden_states,
|
358 |
+
encoder_attention_mask,
|
359 |
+
output_attentions=output_attentions,
|
360 |
+
)
|
361 |
+
attention_output = cross_attention_outputs[0]
|
362 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
363 |
+
layer_output = apply_chunking_to_forward(
|
364 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
365 |
+
)
|
366 |
+
outputs = (layer_output,) + outputs
|
367 |
+
|
368 |
+
outputs = outputs + (present_key_value,)
|
369 |
+
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
def feed_forward_chunk(self, attention_output):
|
373 |
+
intermediate_output = self.intermediate(attention_output)
|
374 |
+
layer_output = self.output(intermediate_output, attention_output)
|
375 |
+
return layer_output
|
376 |
+
|
377 |
+
|
378 |
+
class BertEncoder(nn.Module):
|
379 |
+
def __init__(self, config):
|
380 |
+
super().__init__()
|
381 |
+
self.config = config
|
382 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
383 |
+
self.gradient_checkpointing = False
|
384 |
+
|
385 |
+
def forward(
|
386 |
+
self,
|
387 |
+
hidden_states,
|
388 |
+
attention_mask=None,
|
389 |
+
head_mask=None,
|
390 |
+
encoder_hidden_states=None,
|
391 |
+
encoder_attention_mask=None,
|
392 |
+
past_key_values=None,
|
393 |
+
use_cache=None,
|
394 |
+
output_attentions=False,
|
395 |
+
output_hidden_states=False,
|
396 |
+
return_dict=True,
|
397 |
+
mode='multimodal',
|
398 |
+
):
|
399 |
+
all_hidden_states = () if output_hidden_states else None
|
400 |
+
all_self_attentions = () if output_attentions else None
|
401 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
402 |
+
|
403 |
+
next_decoder_cache = () if use_cache else None
|
404 |
+
|
405 |
+
for i in range(self.config.num_hidden_layers):
|
406 |
+
layer_module = self.layer[i]
|
407 |
+
if output_hidden_states:
|
408 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
409 |
+
|
410 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
411 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
412 |
+
|
413 |
+
if self.gradient_checkpointing and self.training:
|
414 |
+
|
415 |
+
if use_cache:
|
416 |
+
logger.warn(
|
417 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
418 |
+
)
|
419 |
+
use_cache = False
|
420 |
+
|
421 |
+
def create_custom_forward(module):
|
422 |
+
def custom_forward(*inputs):
|
423 |
+
return module(*inputs, past_key_value, output_attentions)
|
424 |
+
|
425 |
+
return custom_forward
|
426 |
+
|
427 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
428 |
+
create_custom_forward(layer_module),
|
429 |
+
hidden_states,
|
430 |
+
attention_mask,
|
431 |
+
layer_head_mask,
|
432 |
+
encoder_hidden_states,
|
433 |
+
encoder_attention_mask,
|
434 |
+
mode=mode,
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
layer_outputs = layer_module(
|
438 |
+
hidden_states,
|
439 |
+
attention_mask,
|
440 |
+
layer_head_mask,
|
441 |
+
encoder_hidden_states,
|
442 |
+
encoder_attention_mask,
|
443 |
+
past_key_value,
|
444 |
+
output_attentions,
|
445 |
+
mode=mode,
|
446 |
+
)
|
447 |
+
|
448 |
+
hidden_states = layer_outputs[0]
|
449 |
+
if use_cache:
|
450 |
+
next_decoder_cache += (layer_outputs[-1],)
|
451 |
+
if output_attentions:
|
452 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
453 |
+
|
454 |
+
if output_hidden_states:
|
455 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return tuple(
|
459 |
+
v
|
460 |
+
for v in [
|
461 |
+
hidden_states,
|
462 |
+
next_decoder_cache,
|
463 |
+
all_hidden_states,
|
464 |
+
all_self_attentions,
|
465 |
+
all_cross_attentions,
|
466 |
+
]
|
467 |
+
if v is not None
|
468 |
+
)
|
469 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
470 |
+
last_hidden_state=hidden_states,
|
471 |
+
past_key_values=next_decoder_cache,
|
472 |
+
hidden_states=all_hidden_states,
|
473 |
+
attentions=all_self_attentions,
|
474 |
+
cross_attentions=all_cross_attentions,
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
class BertPooler(nn.Module):
|
479 |
+
def __init__(self, config):
|
480 |
+
super().__init__()
|
481 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
482 |
+
self.activation = nn.Tanh()
|
483 |
+
|
484 |
+
def forward(self, hidden_states):
|
485 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
486 |
+
# to the first token.
|
487 |
+
first_token_tensor = hidden_states[:, 0]
|
488 |
+
pooled_output = self.dense(first_token_tensor)
|
489 |
+
pooled_output = self.activation(pooled_output)
|
490 |
+
return pooled_output
|
491 |
+
|
492 |
+
|
493 |
+
class BertPredictionHeadTransform(nn.Module):
|
494 |
+
def __init__(self, config):
|
495 |
+
super().__init__()
|
496 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
497 |
+
if isinstance(config.hidden_act, str):
|
498 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
499 |
+
else:
|
500 |
+
self.transform_act_fn = config.hidden_act
|
501 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
502 |
+
|
503 |
+
def forward(self, hidden_states):
|
504 |
+
hidden_states = self.dense(hidden_states)
|
505 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
506 |
+
hidden_states = self.LayerNorm(hidden_states)
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class BertLMPredictionHead(nn.Module):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__()
|
513 |
+
self.transform = BertPredictionHeadTransform(config)
|
514 |
+
|
515 |
+
# The output weights are the same as the input embeddings, but there is
|
516 |
+
# an output-only bias for each token.
|
517 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
518 |
+
|
519 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
520 |
+
|
521 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
522 |
+
self.decoder.bias = self.bias
|
523 |
+
|
524 |
+
def forward(self, hidden_states):
|
525 |
+
hidden_states = self.transform(hidden_states)
|
526 |
+
hidden_states = self.decoder(hidden_states)
|
527 |
+
return hidden_states
|
528 |
+
|
529 |
+
|
530 |
+
class BertOnlyMLMHead(nn.Module):
|
531 |
+
def __init__(self, config):
|
532 |
+
super().__init__()
|
533 |
+
self.predictions = BertLMPredictionHead(config)
|
534 |
+
|
535 |
+
def forward(self, sequence_output):
|
536 |
+
prediction_scores = self.predictions(sequence_output)
|
537 |
+
return prediction_scores
|
538 |
+
|
539 |
+
|
540 |
+
class BertPreTrainedModel(PreTrainedModel):
|
541 |
+
"""
|
542 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
543 |
+
models.
|
544 |
+
"""
|
545 |
+
|
546 |
+
config_class = BertConfig
|
547 |
+
base_model_prefix = "bert"
|
548 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
549 |
+
|
550 |
+
def _init_weights(self, module):
|
551 |
+
""" Initialize the weights """
|
552 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
553 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
554 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
555 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
556 |
+
elif isinstance(module, nn.LayerNorm):
|
557 |
+
module.bias.data.zero_()
|
558 |
+
module.weight.data.fill_(1.0)
|
559 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
560 |
+
module.bias.data.zero_()
|
561 |
+
|
562 |
+
|
563 |
+
class BertModel(BertPreTrainedModel):
|
564 |
+
"""
|
565 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
566 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
567 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
568 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
569 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
570 |
+
input to the forward pass.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, config, add_pooling_layer=True):
|
574 |
+
super().__init__(config)
|
575 |
+
self.config = config
|
576 |
+
|
577 |
+
self.embeddings = BertEmbeddings(config)
|
578 |
+
|
579 |
+
self.encoder = BertEncoder(config)
|
580 |
+
|
581 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
582 |
+
|
583 |
+
self.init_weights()
|
584 |
+
|
585 |
+
|
586 |
+
def get_input_embeddings(self):
|
587 |
+
return self.embeddings.word_embeddings
|
588 |
+
|
589 |
+
def set_input_embeddings(self, value):
|
590 |
+
self.embeddings.word_embeddings = value
|
591 |
+
|
592 |
+
def _prune_heads(self, heads_to_prune):
|
593 |
+
"""
|
594 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
595 |
+
class PreTrainedModel
|
596 |
+
"""
|
597 |
+
for layer, heads in heads_to_prune.items():
|
598 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
599 |
+
|
600 |
+
|
601 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
602 |
+
"""
|
603 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
604 |
+
|
605 |
+
Arguments:
|
606 |
+
attention_mask (:obj:`torch.Tensor`):
|
607 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
608 |
+
input_shape (:obj:`Tuple[int]`):
|
609 |
+
The shape of the input to the model.
|
610 |
+
device: (:obj:`torch.device`):
|
611 |
+
The device of the input to the model.
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
615 |
+
"""
|
616 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
617 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
618 |
+
if attention_mask.dim() == 3:
|
619 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
620 |
+
elif attention_mask.dim() == 2:
|
621 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
622 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
623 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
624 |
+
if is_decoder:
|
625 |
+
batch_size, seq_length = input_shape
|
626 |
+
|
627 |
+
seq_ids = torch.arange(seq_length, device=device)
|
628 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
629 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
630 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
631 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
632 |
+
|
633 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
634 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
635 |
+
causal_mask = torch.cat(
|
636 |
+
[
|
637 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
638 |
+
causal_mask,
|
639 |
+
],
|
640 |
+
axis=-1,
|
641 |
+
)
|
642 |
+
|
643 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
644 |
+
else:
|
645 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
646 |
+
else:
|
647 |
+
raise ValueError(
|
648 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
649 |
+
input_shape, attention_mask.shape
|
650 |
+
)
|
651 |
+
)
|
652 |
+
|
653 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
654 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
655 |
+
# positions we want to attend and -10000.0 for masked positions.
|
656 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
657 |
+
# effectively the same as removing these entirely.
|
658 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
659 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
660 |
+
return extended_attention_mask
|
661 |
+
|
662 |
+
def forward(
|
663 |
+
self,
|
664 |
+
input_ids=None,
|
665 |
+
attention_mask=None,
|
666 |
+
position_ids=None,
|
667 |
+
head_mask=None,
|
668 |
+
inputs_embeds=None,
|
669 |
+
encoder_embeds=None,
|
670 |
+
encoder_hidden_states=None,
|
671 |
+
encoder_attention_mask=None,
|
672 |
+
past_key_values=None,
|
673 |
+
use_cache=None,
|
674 |
+
output_attentions=None,
|
675 |
+
output_hidden_states=None,
|
676 |
+
return_dict=None,
|
677 |
+
is_decoder=False,
|
678 |
+
mode='multimodal',
|
679 |
+
):
|
680 |
+
r"""
|
681 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
682 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
683 |
+
the model is configured as a decoder.
|
684 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
685 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
686 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
687 |
+
- 1 for tokens that are **not masked**,
|
688 |
+
- 0 for tokens that are **masked**.
|
689 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
690 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
691 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
692 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
693 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
694 |
+
use_cache (:obj:`bool`, `optional`):
|
695 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
696 |
+
decoding (see :obj:`past_key_values`).
|
697 |
+
"""
|
698 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
699 |
+
output_hidden_states = (
|
700 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
701 |
+
)
|
702 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
703 |
+
|
704 |
+
if is_decoder:
|
705 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
706 |
+
else:
|
707 |
+
use_cache = False
|
708 |
+
|
709 |
+
if input_ids is not None and inputs_embeds is not None:
|
710 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
711 |
+
elif input_ids is not None:
|
712 |
+
input_shape = input_ids.size()
|
713 |
+
batch_size, seq_length = input_shape
|
714 |
+
device = input_ids.device
|
715 |
+
elif inputs_embeds is not None:
|
716 |
+
input_shape = inputs_embeds.size()[:-1]
|
717 |
+
batch_size, seq_length = input_shape
|
718 |
+
device = inputs_embeds.device
|
719 |
+
elif encoder_embeds is not None:
|
720 |
+
input_shape = encoder_embeds.size()[:-1]
|
721 |
+
batch_size, seq_length = input_shape
|
722 |
+
device = encoder_embeds.device
|
723 |
+
else:
|
724 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
725 |
+
|
726 |
+
# past_key_values_length
|
727 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
728 |
+
|
729 |
+
if attention_mask is None:
|
730 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
731 |
+
|
732 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
733 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
734 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
735 |
+
device, is_decoder)
|
736 |
+
|
737 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
738 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
739 |
+
if encoder_hidden_states is not None:
|
740 |
+
if type(encoder_hidden_states) == list:
|
741 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
742 |
+
else:
|
743 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
744 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
745 |
+
|
746 |
+
if type(encoder_attention_mask) == list:
|
747 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
748 |
+
elif encoder_attention_mask is None:
|
749 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
750 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
751 |
+
else:
|
752 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
753 |
+
else:
|
754 |
+
encoder_extended_attention_mask = None
|
755 |
+
|
756 |
+
# Prepare head mask if needed
|
757 |
+
# 1.0 in head_mask indicate we keep the head
|
758 |
+
# attention_probs has shape bsz x n_heads x N x N
|
759 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
760 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
761 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
762 |
+
|
763 |
+
if encoder_embeds is None:
|
764 |
+
embedding_output = self.embeddings(
|
765 |
+
input_ids=input_ids,
|
766 |
+
position_ids=position_ids,
|
767 |
+
inputs_embeds=inputs_embeds,
|
768 |
+
past_key_values_length=past_key_values_length,
|
769 |
+
)
|
770 |
+
else:
|
771 |
+
embedding_output = encoder_embeds
|
772 |
+
|
773 |
+
encoder_outputs = self.encoder(
|
774 |
+
embedding_output,
|
775 |
+
attention_mask=extended_attention_mask,
|
776 |
+
head_mask=head_mask,
|
777 |
+
encoder_hidden_states=encoder_hidden_states,
|
778 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
779 |
+
past_key_values=past_key_values,
|
780 |
+
use_cache=use_cache,
|
781 |
+
output_attentions=output_attentions,
|
782 |
+
output_hidden_states=output_hidden_states,
|
783 |
+
return_dict=return_dict,
|
784 |
+
mode=mode,
|
785 |
+
)
|
786 |
+
sequence_output = encoder_outputs[0]
|
787 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
788 |
+
|
789 |
+
if not return_dict:
|
790 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
791 |
+
|
792 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
793 |
+
last_hidden_state=sequence_output,
|
794 |
+
pooler_output=pooled_output,
|
795 |
+
past_key_values=encoder_outputs.past_key_values,
|
796 |
+
hidden_states=encoder_outputs.hidden_states,
|
797 |
+
attentions=encoder_outputs.attentions,
|
798 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
799 |
+
)
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
804 |
+
|
805 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
806 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
807 |
+
|
808 |
+
def __init__(self, config):
|
809 |
+
super().__init__(config)
|
810 |
+
|
811 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
812 |
+
self.cls = BertOnlyMLMHead(config)
|
813 |
+
|
814 |
+
self.init_weights()
|
815 |
+
|
816 |
+
def get_output_embeddings(self):
|
817 |
+
return self.cls.predictions.decoder
|
818 |
+
|
819 |
+
def set_output_embeddings(self, new_embeddings):
|
820 |
+
self.cls.predictions.decoder = new_embeddings
|
821 |
+
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
input_ids=None,
|
825 |
+
attention_mask=None,
|
826 |
+
position_ids=None,
|
827 |
+
head_mask=None,
|
828 |
+
inputs_embeds=None,
|
829 |
+
encoder_hidden_states=None,
|
830 |
+
encoder_attention_mask=None,
|
831 |
+
labels=None,
|
832 |
+
past_key_values=None,
|
833 |
+
use_cache=None,
|
834 |
+
output_attentions=None,
|
835 |
+
output_hidden_states=None,
|
836 |
+
return_dict=None,
|
837 |
+
return_logits=False,
|
838 |
+
is_decoder=True,
|
839 |
+
reduction='mean',
|
840 |
+
mode='multimodal',
|
841 |
+
):
|
842 |
+
r"""
|
843 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
844 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
845 |
+
the model is configured as a decoder.
|
846 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
847 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
848 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
849 |
+
- 1 for tokens that are **not masked**,
|
850 |
+
- 0 for tokens that are **masked**.
|
851 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
852 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
853 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
854 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
855 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
856 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
857 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
858 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
859 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
860 |
+
use_cache (:obj:`bool`, `optional`):
|
861 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
862 |
+
decoding (see :obj:`past_key_values`).
|
863 |
+
Returns:
|
864 |
+
Example::
|
865 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
866 |
+
>>> import torch
|
867 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
868 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
869 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
870 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
871 |
+
>>> outputs = model(**inputs)
|
872 |
+
>>> prediction_logits = outputs.logits
|
873 |
+
"""
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
if labels is not None:
|
876 |
+
use_cache = False
|
877 |
+
|
878 |
+
outputs = self.bert(
|
879 |
+
input_ids,
|
880 |
+
attention_mask=attention_mask,
|
881 |
+
position_ids=position_ids,
|
882 |
+
head_mask=head_mask,
|
883 |
+
inputs_embeds=inputs_embeds,
|
884 |
+
encoder_hidden_states=encoder_hidden_states,
|
885 |
+
encoder_attention_mask=encoder_attention_mask,
|
886 |
+
past_key_values=past_key_values,
|
887 |
+
use_cache=use_cache,
|
888 |
+
output_attentions=output_attentions,
|
889 |
+
output_hidden_states=output_hidden_states,
|
890 |
+
return_dict=return_dict,
|
891 |
+
is_decoder=is_decoder,
|
892 |
+
mode=mode,
|
893 |
+
)
|
894 |
+
|
895 |
+
sequence_output = outputs[0]
|
896 |
+
prediction_scores = self.cls(sequence_output)
|
897 |
+
|
898 |
+
if return_logits:
|
899 |
+
return prediction_scores[:, :-1, :].contiguous()
|
900 |
+
|
901 |
+
lm_loss = None
|
902 |
+
if labels is not None:
|
903 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
904 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
905 |
+
labels = labels[:, 1:].contiguous()
|
906 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
907 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
908 |
+
if reduction=='none':
|
909 |
+
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
910 |
+
|
911 |
+
if not return_dict:
|
912 |
+
output = (prediction_scores,) + outputs[2:]
|
913 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
914 |
+
|
915 |
+
return CausalLMOutputWithCrossAttentions(
|
916 |
+
loss=lm_loss,
|
917 |
+
logits=prediction_scores,
|
918 |
+
past_key_values=outputs.past_key_values,
|
919 |
+
hidden_states=outputs.hidden_states,
|
920 |
+
attentions=outputs.attentions,
|
921 |
+
cross_attentions=outputs.cross_attentions,
|
922 |
+
)
|
923 |
+
|
924 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
925 |
+
input_shape = input_ids.shape
|
926 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
927 |
+
if attention_mask is None:
|
928 |
+
attention_mask = input_ids.new_ones(input_shape)
|
929 |
+
|
930 |
+
# cut decoder_input_ids if past is used
|
931 |
+
if past is not None:
|
932 |
+
input_ids = input_ids[:, -1:]
|
933 |
+
|
934 |
+
return {
|
935 |
+
"input_ids": input_ids,
|
936 |
+
"attention_mask": attention_mask,
|
937 |
+
"past_key_values": past,
|
938 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
939 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
940 |
+
"is_decoder": True,
|
941 |
+
}
|
942 |
+
|
943 |
+
def _reorder_cache(self, past, beam_idx):
|
944 |
+
reordered_past = ()
|
945 |
+
for layer_past in past:
|
946 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
947 |
+
return reordered_past
|
diffsynth/extensions/ImageQualityMetric/BLIP/vit.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
* Based on timm code base
|
4 |
+
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
5 |
+
'''
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
from timm.models.vision_transformer import _cfg, PatchEmbed
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
from timm.models.layers import trunc_normal_, DropPath
|
15 |
+
from timm.models.helpers import named_apply, adapt_input_conv
|
16 |
+
|
17 |
+
# from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
18 |
+
|
19 |
+
class Mlp(nn.Module):
|
20 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
21 |
+
"""
|
22 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
23 |
+
super().__init__()
|
24 |
+
out_features = out_features or in_features
|
25 |
+
hidden_features = hidden_features or in_features
|
26 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
27 |
+
self.act = act_layer()
|
28 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
29 |
+
self.drop = nn.Dropout(drop)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.fc1(x)
|
33 |
+
x = self.act(x)
|
34 |
+
x = self.drop(x)
|
35 |
+
x = self.fc2(x)
|
36 |
+
x = self.drop(x)
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class Attention(nn.Module):
|
41 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
42 |
+
super().__init__()
|
43 |
+
self.num_heads = num_heads
|
44 |
+
head_dim = dim // num_heads
|
45 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
46 |
+
self.scale = qk_scale or head_dim ** -0.5
|
47 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
48 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
49 |
+
self.proj = nn.Linear(dim, dim)
|
50 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
51 |
+
self.attn_gradients = None
|
52 |
+
self.attention_map = None
|
53 |
+
|
54 |
+
def save_attn_gradients(self, attn_gradients):
|
55 |
+
self.attn_gradients = attn_gradients
|
56 |
+
|
57 |
+
def get_attn_gradients(self):
|
58 |
+
return self.attn_gradients
|
59 |
+
|
60 |
+
def save_attention_map(self, attention_map):
|
61 |
+
self.attention_map = attention_map
|
62 |
+
|
63 |
+
def get_attention_map(self):
|
64 |
+
return self.attention_map
|
65 |
+
|
66 |
+
def forward(self, x, register_hook=False):
|
67 |
+
B, N, C = x.shape
|
68 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
69 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
70 |
+
|
71 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
72 |
+
attn = attn.softmax(dim=-1)
|
73 |
+
attn = self.attn_drop(attn)
|
74 |
+
|
75 |
+
if register_hook:
|
76 |
+
self.save_attention_map(attn)
|
77 |
+
attn.register_hook(self.save_attn_gradients)
|
78 |
+
|
79 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
80 |
+
x = self.proj(x)
|
81 |
+
x = self.proj_drop(x)
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class Block(nn.Module):
|
86 |
+
|
87 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
88 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
89 |
+
super().__init__()
|
90 |
+
self.norm1 = norm_layer(dim)
|
91 |
+
self.attn = Attention(
|
92 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
93 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
94 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
95 |
+
self.norm2 = norm_layer(dim)
|
96 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
97 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
98 |
+
|
99 |
+
# if use_grad_checkpointing:
|
100 |
+
# self.attn = checkpoint_wrapper(self.attn)
|
101 |
+
# self.mlp = checkpoint_wrapper(self.mlp)
|
102 |
+
|
103 |
+
def forward(self, x, register_hook=False):
|
104 |
+
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
105 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class VisionTransformer(nn.Module):
|
110 |
+
""" Vision Transformer
|
111 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
112 |
+
https://arxiv.org/abs/2010.11929
|
113 |
+
"""
|
114 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
115 |
+
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
116 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
117 |
+
use_grad_checkpointing=False, ckpt_layer=0):
|
118 |
+
"""
|
119 |
+
Args:
|
120 |
+
img_size (int, tuple): input image size
|
121 |
+
patch_size (int, tuple): patch size
|
122 |
+
in_chans (int): number of input channels
|
123 |
+
num_classes (int): number of classes for classification head
|
124 |
+
embed_dim (int): embedding dimension
|
125 |
+
depth (int): depth of transformer
|
126 |
+
num_heads (int): number of attention heads
|
127 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
128 |
+
qkv_bias (bool): enable bias for qkv if True
|
129 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
130 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
131 |
+
drop_rate (float): dropout rate
|
132 |
+
attn_drop_rate (float): attention dropout rate
|
133 |
+
drop_path_rate (float): stochastic depth rate
|
134 |
+
norm_layer: (nn.Module): normalization layer
|
135 |
+
"""
|
136 |
+
super().__init__()
|
137 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
138 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
139 |
+
|
140 |
+
self.patch_embed = PatchEmbed(
|
141 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
142 |
+
|
143 |
+
num_patches = self.patch_embed.num_patches
|
144 |
+
|
145 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
146 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
147 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
148 |
+
|
149 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
150 |
+
self.blocks = nn.ModuleList([
|
151 |
+
Block(
|
152 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
153 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
154 |
+
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
155 |
+
)
|
156 |
+
for i in range(depth)])
|
157 |
+
self.norm = norm_layer(embed_dim)
|
158 |
+
|
159 |
+
trunc_normal_(self.pos_embed, std=.02)
|
160 |
+
trunc_normal_(self.cls_token, std=.02)
|
161 |
+
self.apply(self._init_weights)
|
162 |
+
|
163 |
+
def _init_weights(self, m):
|
164 |
+
if isinstance(m, nn.Linear):
|
165 |
+
trunc_normal_(m.weight, std=.02)
|
166 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
167 |
+
nn.init.constant_(m.bias, 0)
|
168 |
+
elif isinstance(m, nn.LayerNorm):
|
169 |
+
nn.init.constant_(m.bias, 0)
|
170 |
+
nn.init.constant_(m.weight, 1.0)
|
171 |
+
|
172 |
+
@torch.jit.ignore
|
173 |
+
def no_weight_decay(self):
|
174 |
+
return {'pos_embed', 'cls_token'}
|
175 |
+
|
176 |
+
def forward(self, x, register_blk=-1):
|
177 |
+
B = x.shape[0]
|
178 |
+
x = self.patch_embed(x)
|
179 |
+
|
180 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
181 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
182 |
+
|
183 |
+
x = x + self.pos_embed[:,:x.size(1),:]
|
184 |
+
x = self.pos_drop(x)
|
185 |
+
|
186 |
+
for i,blk in enumerate(self.blocks):
|
187 |
+
x = blk(x, register_blk==i)
|
188 |
+
x = self.norm(x)
|
189 |
+
|
190 |
+
return x
|
191 |
+
|
192 |
+
@torch.jit.ignore()
|
193 |
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
194 |
+
_load_weights(self, checkpoint_path, prefix)
|
195 |
+
|
196 |
+
|
197 |
+
@torch.no_grad()
|
198 |
+
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
199 |
+
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
200 |
+
"""
|
201 |
+
import numpy as np
|
202 |
+
|
203 |
+
def _n2p(w, t=True):
|
204 |
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
205 |
+
w = w.flatten()
|
206 |
+
if t:
|
207 |
+
if w.ndim == 4:
|
208 |
+
w = w.transpose([3, 2, 0, 1])
|
209 |
+
elif w.ndim == 3:
|
210 |
+
w = w.transpose([2, 0, 1])
|
211 |
+
elif w.ndim == 2:
|
212 |
+
w = w.transpose([1, 0])
|
213 |
+
return torch.from_numpy(w)
|
214 |
+
|
215 |
+
w = np.load(checkpoint_path)
|
216 |
+
if not prefix and 'opt/target/embedding/kernel' in w:
|
217 |
+
prefix = 'opt/target/'
|
218 |
+
|
219 |
+
if hasattr(model.patch_embed, 'backbone'):
|
220 |
+
# hybrid
|
221 |
+
backbone = model.patch_embed.backbone
|
222 |
+
stem_only = not hasattr(backbone, 'stem')
|
223 |
+
stem = backbone if stem_only else backbone.stem
|
224 |
+
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
225 |
+
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
226 |
+
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
227 |
+
if not stem_only:
|
228 |
+
for i, stage in enumerate(backbone.stages):
|
229 |
+
for j, block in enumerate(stage.blocks):
|
230 |
+
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
231 |
+
for r in range(3):
|
232 |
+
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
233 |
+
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
234 |
+
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
235 |
+
if block.downsample is not None:
|
236 |
+
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
237 |
+
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
238 |
+
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
239 |
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
240 |
+
else:
|
241 |
+
embed_conv_w = adapt_input_conv(
|
242 |
+
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
243 |
+
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
244 |
+
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
245 |
+
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
246 |
+
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
247 |
+
if pos_embed_w.shape != model.pos_embed.shape:
|
248 |
+
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
249 |
+
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
250 |
+
model.pos_embed.copy_(pos_embed_w)
|
251 |
+
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
252 |
+
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
253 |
+
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
254 |
+
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
255 |
+
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
256 |
+
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
257 |
+
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
258 |
+
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
259 |
+
for i, block in enumerate(model.blocks.children()):
|
260 |
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
261 |
+
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
262 |
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
263 |
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
264 |
+
block.attn.qkv.weight.copy_(torch.cat([
|
265 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
266 |
+
block.attn.qkv.bias.copy_(torch.cat([
|
267 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
268 |
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
269 |
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
270 |
+
for r in range(2):
|
271 |
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
272 |
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
273 |
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
274 |
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
275 |
+
|
276 |
+
|
277 |
+
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
278 |
+
# interpolate position embedding
|
279 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
280 |
+
num_patches = visual_encoder.patch_embed.num_patches
|
281 |
+
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
282 |
+
# height (== width) for the checkpoint position embedding
|
283 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
284 |
+
# height (== width) for the new position embedding
|
285 |
+
new_size = int(num_patches ** 0.5)
|
286 |
+
|
287 |
+
if orig_size!=new_size:
|
288 |
+
# class_token and dist_token are kept unchanged
|
289 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
290 |
+
# only the position tokens are interpolated
|
291 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
292 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
293 |
+
pos_tokens = torch.nn.functional.interpolate(
|
294 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
295 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
296 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
297 |
+
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
298 |
+
|
299 |
+
return new_pos_embed
|
300 |
+
else:
|
301 |
+
return pos_embed_checkpoint
|
diffsynth/extensions/ImageQualityMetric/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modelscope import snapshot_download
|
2 |
+
from typing_extensions import Literal, TypeAlias
|
3 |
+
import os
|
4 |
+
from diffsynth.extensions.ImageQualityMetric.aesthetic import AestheticScore
|
5 |
+
from diffsynth.extensions.ImageQualityMetric.imagereward import ImageRewardScore
|
6 |
+
from diffsynth.extensions.ImageQualityMetric.pickscore import PickScore
|
7 |
+
from diffsynth.extensions.ImageQualityMetric.clip import CLIPScore
|
8 |
+
from diffsynth.extensions.ImageQualityMetric.hps import HPScore_v2
|
9 |
+
from diffsynth.extensions.ImageQualityMetric.mps import MPScore
|
10 |
+
|
11 |
+
|
12 |
+
preference_model_id: TypeAlias = Literal[
|
13 |
+
"ImageReward",
|
14 |
+
"Aesthetic",
|
15 |
+
"PickScore",
|
16 |
+
"CLIP",
|
17 |
+
"HPSv2",
|
18 |
+
"HPSv2.1",
|
19 |
+
"MPS",
|
20 |
+
]
|
21 |
+
model_dict = {
|
22 |
+
"ImageReward": {
|
23 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
24 |
+
"allow_file_pattern": [
|
25 |
+
"ImageReward/ImageReward.safetensors",
|
26 |
+
"ImageReward/med_config.json",
|
27 |
+
"bert-base-uncased/config.json",
|
28 |
+
"bert-base-uncased/model.safetensors",
|
29 |
+
"bert-base-uncased/tokenizer.json",
|
30 |
+
"bert-base-uncased/tokenizer_config.json",
|
31 |
+
"bert-base-uncased/vocab.txt",
|
32 |
+
],
|
33 |
+
"load_path": {
|
34 |
+
"imagereward": "ImageReward/ImageReward.safetensors",
|
35 |
+
"med_config": "ImageReward/med_config.json",
|
36 |
+
"bert_model_path": "bert-base-uncased",
|
37 |
+
},
|
38 |
+
"model_class": ImageRewardScore
|
39 |
+
},
|
40 |
+
"Aesthetic": {
|
41 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
42 |
+
"allow_file_pattern": [
|
43 |
+
"aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
|
44 |
+
"clip-vit-large-patch14/config.json",
|
45 |
+
"clip-vit-large-patch14/merges.txt",
|
46 |
+
"clip-vit-large-patch14/model.safetensors",
|
47 |
+
"clip-vit-large-patch14/preprocessor_config.json",
|
48 |
+
"clip-vit-large-patch14/special_tokens_map.json",
|
49 |
+
"clip-vit-large-patch14/tokenizer.json",
|
50 |
+
"clip-vit-large-patch14/tokenizer_config.json",
|
51 |
+
"clip-vit-large-patch14/vocab.json",
|
52 |
+
],
|
53 |
+
"load_path": {
|
54 |
+
"aesthetic_predictor": "aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
|
55 |
+
"clip-large": "clip-vit-large-patch14",
|
56 |
+
},
|
57 |
+
"model_class": AestheticScore
|
58 |
+
},
|
59 |
+
"PickScore": {
|
60 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
61 |
+
"allow_file_pattern": [
|
62 |
+
"PickScore_v1/*",
|
63 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
|
64 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
|
65 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
|
66 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
|
67 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
|
68 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
|
69 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
|
70 |
+
],
|
71 |
+
"load_path": {
|
72 |
+
"pickscore": "PickScore_v1",
|
73 |
+
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
|
74 |
+
},
|
75 |
+
"model_class": PickScore
|
76 |
+
},
|
77 |
+
"CLIP": {
|
78 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
79 |
+
"allow_file_pattern": [
|
80 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
|
81 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
82 |
+
],
|
83 |
+
"load_path": {
|
84 |
+
"open_clip": "CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
|
85 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
86 |
+
},
|
87 |
+
"model_class": CLIPScore
|
88 |
+
},
|
89 |
+
"HPSv2": {
|
90 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
91 |
+
"allow_file_pattern": [
|
92 |
+
"HPS_v2/HPS_v2_compressed.safetensors",
|
93 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
94 |
+
],
|
95 |
+
"load_path": {
|
96 |
+
"hpsv2": "HPS_v2/HPS_v2_compressed.safetensors",
|
97 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
98 |
+
},
|
99 |
+
"model_class": HPScore_v2,
|
100 |
+
"extra_kwargs": {"model_version": "v2"}
|
101 |
+
},
|
102 |
+
"HPSv2.1": {
|
103 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
104 |
+
"allow_file_pattern": [
|
105 |
+
"HPS_v2/HPS_v2.1_compressed.safetensors",
|
106 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
107 |
+
],
|
108 |
+
"load_path": {
|
109 |
+
"hpsv2.1": "HPS_v2/HPS_v2.1_compressed.safetensors",
|
110 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
111 |
+
},
|
112 |
+
"model_class": HPScore_v2,
|
113 |
+
"extra_kwargs": {"model_version": "v21"}
|
114 |
+
},
|
115 |
+
"MPS": {
|
116 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
117 |
+
"allow_file_pattern": [
|
118 |
+
"MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
|
119 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
|
120 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
|
121 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
|
122 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
|
123 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
|
124 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
|
125 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
|
126 |
+
],
|
127 |
+
"load_path": {
|
128 |
+
"mps": "MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
|
129 |
+
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
|
130 |
+
},
|
131 |
+
"model_class": MPScore
|
132 |
+
},
|
133 |
+
}
|
134 |
+
|
135 |
+
|
136 |
+
def download_preference_model(model_name: preference_model_id, cache_dir="models"):
|
137 |
+
metadata = model_dict[model_name]
|
138 |
+
snapshot_download(model_id=metadata["model_id"], allow_file_pattern=metadata["allow_file_pattern"], cache_dir=cache_dir)
|
139 |
+
load_path = metadata["load_path"]
|
140 |
+
load_path = {key: os.path.join(cache_dir, metadata["model_id"], path) for key, path in load_path.items()}
|
141 |
+
return load_path
|
142 |
+
|
143 |
+
|
144 |
+
def load_preference_model(model_name: preference_model_id, device = "cuda", path = None):
|
145 |
+
model_class = model_dict[model_name]["model_class"]
|
146 |
+
extra_kwargs = model_dict[model_name].get("extra_kwargs", {})
|
147 |
+
preference_model = model_class(device=device, path=path, **extra_kwargs)
|
148 |
+
return preference_model
|
diffsynth/extensions/ImageQualityMetric/aesthetic.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import os
|
7 |
+
from typing import Union, List
|
8 |
+
from .config import MODEL_PATHS
|
9 |
+
|
10 |
+
class MLP(torch.nn.Module):
|
11 |
+
def __init__(self, input_size: int, xcol: str = "emb", ycol: str = "avg_rating"):
|
12 |
+
super().__init__()
|
13 |
+
self.input_size = input_size
|
14 |
+
self.xcol = xcol
|
15 |
+
self.ycol = ycol
|
16 |
+
self.layers = torch.nn.Sequential(
|
17 |
+
torch.nn.Linear(self.input_size, 1024),
|
18 |
+
#torch.nn.ReLU(),
|
19 |
+
torch.nn.Dropout(0.2),
|
20 |
+
torch.nn.Linear(1024, 128),
|
21 |
+
#torch.nn.ReLU(),
|
22 |
+
torch.nn.Dropout(0.2),
|
23 |
+
torch.nn.Linear(128, 64),
|
24 |
+
#torch.nn.ReLU(),
|
25 |
+
torch.nn.Dropout(0.1),
|
26 |
+
torch.nn.Linear(64, 16),
|
27 |
+
#torch.nn.ReLU(),
|
28 |
+
torch.nn.Linear(16, 1),
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
32 |
+
return self.layers(x)
|
33 |
+
|
34 |
+
def training_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
|
35 |
+
x = batch[self.xcol]
|
36 |
+
y = batch[self.ycol].reshape(-1, 1)
|
37 |
+
x_hat = self.layers(x)
|
38 |
+
loss = torch.nn.functional.mse_loss(x_hat, y)
|
39 |
+
return loss
|
40 |
+
|
41 |
+
def validation_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
|
42 |
+
x = batch[self.xcol]
|
43 |
+
y = batch[self.ycol].reshape(-1, 1)
|
44 |
+
x_hat = self.layers(x)
|
45 |
+
loss = torch.nn.functional.mse_loss(x_hat, y)
|
46 |
+
return loss
|
47 |
+
|
48 |
+
def configure_optimizers(self) -> torch.optim.Optimizer:
|
49 |
+
return torch.optim.Adam(self.parameters(), lr=1e-3)
|
50 |
+
|
51 |
+
|
52 |
+
class AestheticScore(torch.nn.Module):
|
53 |
+
def __init__(self, device: torch.device, path: str = MODEL_PATHS):
|
54 |
+
super().__init__()
|
55 |
+
self.device = device
|
56 |
+
self.aes_model_path = path.get("aesthetic_predictor")
|
57 |
+
# Load the MLP model
|
58 |
+
self.model = MLP(768)
|
59 |
+
try:
|
60 |
+
if self.aes_model_path.endswith(".safetensors"):
|
61 |
+
state_dict = load_file(self.aes_model_path)
|
62 |
+
else:
|
63 |
+
state_dict = torch.load(self.aes_model_path)
|
64 |
+
self.model.load_state_dict(state_dict)
|
65 |
+
except Exception as e:
|
66 |
+
raise ValueError(f"Error loading model weights from {self.aes_model_path}: {e}")
|
67 |
+
|
68 |
+
self.model.to(device)
|
69 |
+
self.model.eval()
|
70 |
+
|
71 |
+
# Load the CLIP model and processor
|
72 |
+
clip_model_name = path.get('clip-large')
|
73 |
+
self.model2 = AutoModel.from_pretrained(clip_model_name).eval().to(device)
|
74 |
+
self.processor = AutoProcessor.from_pretrained(clip_model_name)
|
75 |
+
|
76 |
+
def _calculate_score(self, image: torch.Tensor) -> float:
|
77 |
+
"""Calculate the aesthetic score for a single image.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
image (torch.Tensor): The processed image tensor.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
float: The aesthetic score.
|
84 |
+
"""
|
85 |
+
with torch.no_grad():
|
86 |
+
# Get image embeddings
|
87 |
+
image_embs = self.model2.get_image_features(image)
|
88 |
+
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
|
89 |
+
|
90 |
+
# Compute score
|
91 |
+
score = self.model(image_embs).cpu().flatten().item()
|
92 |
+
|
93 |
+
return score
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]:
|
97 |
+
"""Score the images based on their aesthetic quality.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
List[float]: List of scores for the images.
|
104 |
+
"""
|
105 |
+
try:
|
106 |
+
if isinstance(images, (str, Image.Image)):
|
107 |
+
# Single image
|
108 |
+
if isinstance(images, str):
|
109 |
+
pil_image = Image.open(images)
|
110 |
+
else:
|
111 |
+
pil_image = images
|
112 |
+
|
113 |
+
# Prepare image inputs
|
114 |
+
image_inputs = self.processor(
|
115 |
+
images=pil_image,
|
116 |
+
padding=True,
|
117 |
+
truncation=True,
|
118 |
+
max_length=77,
|
119 |
+
return_tensors="pt",
|
120 |
+
).to(self.device)
|
121 |
+
|
122 |
+
return [self._calculate_score(image_inputs["pixel_values"])]
|
123 |
+
elif isinstance(images, list):
|
124 |
+
# Multiple images
|
125 |
+
scores = []
|
126 |
+
for one_image in images:
|
127 |
+
if isinstance(one_image, str):
|
128 |
+
pil_image = Image.open(one_image)
|
129 |
+
elif isinstance(one_image, Image.Image):
|
130 |
+
pil_image = one_image
|
131 |
+
else:
|
132 |
+
raise TypeError("The type of parameter images is illegal.")
|
133 |
+
|
134 |
+
# Prepare image inputs
|
135 |
+
image_inputs = self.processor(
|
136 |
+
images=pil_image,
|
137 |
+
padding=True,
|
138 |
+
truncation=True,
|
139 |
+
max_length=77,
|
140 |
+
return_tensors="pt",
|
141 |
+
).to(self.device)
|
142 |
+
|
143 |
+
scores.append(self._calculate_score(image_inputs["pixel_values"]))
|
144 |
+
return scores
|
145 |
+
else:
|
146 |
+
raise TypeError("The type of parameter images is illegal.")
|
147 |
+
except Exception as e:
|
148 |
+
raise RuntimeError(f"Error in scoring images: {e}")
|
diffsynth/extensions/ImageQualityMetric/clip.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from .open_clip import create_model_and_transforms, get_tokenizer
|
5 |
+
from .config import MODEL_PATHS
|
6 |
+
|
7 |
+
class CLIPScore(torch.nn.Module):
|
8 |
+
def __init__(self, device: torch.device, path: str = MODEL_PATHS):
|
9 |
+
super().__init__()
|
10 |
+
"""Initialize the CLIPScore with a model and tokenizer.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
device (torch.device): The device to load the model on.
|
14 |
+
"""
|
15 |
+
self.device = device
|
16 |
+
|
17 |
+
# Create model and transforms
|
18 |
+
self.model, _, self.preprocess_val = create_model_and_transforms(
|
19 |
+
"ViT-H-14",
|
20 |
+
# "laion2B-s32B-b79K",
|
21 |
+
pretrained=path.get("open_clip"),
|
22 |
+
precision="amp",
|
23 |
+
device=device,
|
24 |
+
jit=False,
|
25 |
+
force_quick_gelu=False,
|
26 |
+
force_custom_text=False,
|
27 |
+
force_patch_dropout=False,
|
28 |
+
force_image_size=None,
|
29 |
+
pretrained_image=False,
|
30 |
+
image_mean=None,
|
31 |
+
image_std=None,
|
32 |
+
light_augmentation=True,
|
33 |
+
aug_cfg={},
|
34 |
+
output_dict=True,
|
35 |
+
with_score_predictor=False,
|
36 |
+
with_region_predictor=False,
|
37 |
+
)
|
38 |
+
|
39 |
+
# Initialize tokenizer
|
40 |
+
self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"])
|
41 |
+
self.model = self.model.to(device)
|
42 |
+
self.model.eval()
|
43 |
+
|
44 |
+
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float:
|
45 |
+
"""Calculate the CLIP score for a single image and prompt.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
image (torch.Tensor): The processed image tensor.
|
49 |
+
prompt (str): The prompt text.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
float: The CLIP score.
|
53 |
+
"""
|
54 |
+
with torch.no_grad():
|
55 |
+
# Process the prompt
|
56 |
+
text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True)
|
57 |
+
|
58 |
+
# Calculate the CLIP score
|
59 |
+
outputs = self.model(image, text)
|
60 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
61 |
+
logits_per_image = image_features @ text_features.T
|
62 |
+
clip_score = torch.diagonal(logits_per_image).cpu().numpy()
|
63 |
+
|
64 |
+
return clip_score[0].item()
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]:
|
68 |
+
"""Score the images based on the prompt.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
72 |
+
prompt (str): The prompt text.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
List[float]: List of CLIP scores for the images.
|
76 |
+
"""
|
77 |
+
if isinstance(images, (str, Image.Image)):
|
78 |
+
# Single image
|
79 |
+
if isinstance(images, str):
|
80 |
+
image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True)
|
81 |
+
else:
|
82 |
+
image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True)
|
83 |
+
return [self._calculate_score(image, prompt)]
|
84 |
+
elif isinstance(images, list):
|
85 |
+
# Multiple images
|
86 |
+
scores = []
|
87 |
+
for one_images in images:
|
88 |
+
if isinstance(one_images, str):
|
89 |
+
image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True)
|
90 |
+
elif isinstance(one_images, Image.Image):
|
91 |
+
image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True)
|
92 |
+
else:
|
93 |
+
raise TypeError("The type of parameter images is illegal.")
|
94 |
+
scores.append(self._calculate_score(image, prompt))
|
95 |
+
return scores
|
96 |
+
else:
|
97 |
+
raise TypeError("The type of parameter images is illegal.")
|
diffsynth/extensions/ImageQualityMetric/config.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
4 |
+
project_root = os.path.abspath(os.path.join(current_dir, '../../../'))
|
5 |
+
model_path = os.path.join(project_root, 'models', 'QualityMetric')
|
6 |
+
|
7 |
+
|
8 |
+
def get_model_path(model_name):
|
9 |
+
return os.path.join(model_path, model_name)
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_PATHS = {
|
13 |
+
"aesthetic_predictor": get_model_path("aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors"),
|
14 |
+
"open_clip": get_model_path("CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin"),
|
15 |
+
"hpsv2": get_model_path("HPS_v2/HPS_v2_compressed.safetensors"),
|
16 |
+
"hpsv2.1": get_model_path("HPS_v2/HPS_v2.1_compressed.safetensors"),
|
17 |
+
"imagereward": get_model_path("ImageReward/ImageReward.safetensors"),
|
18 |
+
"med_config": get_model_path("ImageReward/med_config.json"),
|
19 |
+
"clip": get_model_path("CLIP-ViT-H-14-laion2B-s32B-b79K"),
|
20 |
+
"clip-large": get_model_path("clip-vit-large-patch14"),
|
21 |
+
"mps": get_model_path("MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors"),
|
22 |
+
"pickscore": get_model_path("PickScore_v1")
|
23 |
+
}
|
diffsynth/extensions/ImageQualityMetric/hps.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from .open_clip import create_model_and_transforms, get_tokenizer
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import os
|
7 |
+
from .config import MODEL_PATHS
|
8 |
+
|
9 |
+
class HPScore_v2(torch.nn.Module):
|
10 |
+
def __init__(self, device: torch.device, path: str = MODEL_PATHS, model_version: str = "v2"):
|
11 |
+
super().__init__()
|
12 |
+
"""Initialize the Selector with a model and tokenizer.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
device (torch.device): The device to load the model on.
|
16 |
+
model_version (str): The version of the model to load. Supports "v2" or "v21". Default is "v2".
|
17 |
+
"""
|
18 |
+
self.device = device
|
19 |
+
|
20 |
+
if model_version == "v2":
|
21 |
+
safetensors_path = path.get("hpsv2")
|
22 |
+
elif model_version == "v21":
|
23 |
+
safetensors_path = path.get("hpsv2.1")
|
24 |
+
else:
|
25 |
+
raise ValueError(f"Unsupported model version: {model_version}. Choose 'v2' or 'v21'.")
|
26 |
+
|
27 |
+
# Create model and transforms
|
28 |
+
model, _, self.preprocess_val = create_model_and_transforms(
|
29 |
+
"ViT-H-14",
|
30 |
+
# "laion2B-s32B-b79K",
|
31 |
+
pretrained=path.get("open_clip"),
|
32 |
+
precision="amp",
|
33 |
+
device=device,
|
34 |
+
jit=False,
|
35 |
+
force_quick_gelu=False,
|
36 |
+
force_custom_text=False,
|
37 |
+
force_patch_dropout=False,
|
38 |
+
force_image_size=None,
|
39 |
+
pretrained_image=False,
|
40 |
+
image_mean=None,
|
41 |
+
image_std=None,
|
42 |
+
light_augmentation=True,
|
43 |
+
aug_cfg={},
|
44 |
+
output_dict=True,
|
45 |
+
with_score_predictor=False,
|
46 |
+
with_region_predictor=False,
|
47 |
+
)
|
48 |
+
|
49 |
+
# Load model weights
|
50 |
+
try:
|
51 |
+
state_dict = load_file(safetensors_path)
|
52 |
+
model.load_state_dict(state_dict)
|
53 |
+
except Exception as e:
|
54 |
+
raise ValueError(f"Error loading model weights from {safetensors_path}: {e}")
|
55 |
+
|
56 |
+
# Initialize tokenizer and model
|
57 |
+
self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"])
|
58 |
+
model = model.to(device)
|
59 |
+
model.eval()
|
60 |
+
self.model = model
|
61 |
+
|
62 |
+
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float:
|
63 |
+
"""Calculate the HPS score for a single image and prompt.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
image (torch.Tensor): The processed image tensor.
|
67 |
+
prompt (str): The prompt text.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
float: The HPS score.
|
71 |
+
"""
|
72 |
+
with torch.no_grad():
|
73 |
+
# Process the prompt
|
74 |
+
text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True)
|
75 |
+
|
76 |
+
# Calculate the HPS score
|
77 |
+
outputs = self.model(image, text)
|
78 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
79 |
+
logits_per_image = image_features @ text_features.T
|
80 |
+
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
|
81 |
+
|
82 |
+
return hps_score[0].item()
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]:
|
86 |
+
"""Score the images based on the prompt.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
90 |
+
prompt (str): The prompt text.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
List[float]: List of HPS scores for the images.
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
if isinstance(images, (str, Image.Image)):
|
97 |
+
# Single image
|
98 |
+
if isinstance(images, str):
|
99 |
+
image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True)
|
100 |
+
else:
|
101 |
+
image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True)
|
102 |
+
return [self._calculate_score(image, prompt)]
|
103 |
+
elif isinstance(images, list):
|
104 |
+
# Multiple images
|
105 |
+
scores = []
|
106 |
+
for one_images in images:
|
107 |
+
if isinstance(one_images, str):
|
108 |
+
image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True)
|
109 |
+
elif isinstance(one_images, Image.Image):
|
110 |
+
image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True)
|
111 |
+
else:
|
112 |
+
raise TypeError("The type of parameter images is illegal.")
|
113 |
+
scores.append(self._calculate_score(image, prompt))
|
114 |
+
return scores
|
115 |
+
else:
|
116 |
+
raise TypeError("The type of parameter images is illegal.")
|
117 |
+
except Exception as e:
|
118 |
+
raise RuntimeError(f"Error in scoring images: {e}")
|
diffsynth/extensions/ImageQualityMetric/imagereward.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from typing import List, Union
|
5 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
6 |
+
from .BLIP.blip_pretrain import BLIP_Pretrain
|
7 |
+
from torchvision.transforms import InterpolationMode
|
8 |
+
from safetensors.torch import load_file
|
9 |
+
from .config import MODEL_PATHS
|
10 |
+
BICUBIC = InterpolationMode.BICUBIC
|
11 |
+
|
12 |
+
def _convert_image_to_rgb(image):
|
13 |
+
return image.convert("RGB")
|
14 |
+
|
15 |
+
def _transform(n_px):
|
16 |
+
return Compose([
|
17 |
+
Resize(n_px, interpolation=BICUBIC),
|
18 |
+
CenterCrop(n_px),
|
19 |
+
_convert_image_to_rgb,
|
20 |
+
ToTensor(),
|
21 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
22 |
+
])
|
23 |
+
|
24 |
+
class MLP(torch.nn.Module):
|
25 |
+
def __init__(self, input_size):
|
26 |
+
super().__init__()
|
27 |
+
self.input_size = input_size
|
28 |
+
|
29 |
+
self.layers = torch.nn.Sequential(
|
30 |
+
torch.nn.Linear(self.input_size, 1024),
|
31 |
+
#nn.ReLU(),
|
32 |
+
torch.nn.Dropout(0.2),
|
33 |
+
torch.nn.Linear(1024, 128),
|
34 |
+
#nn.ReLU(),
|
35 |
+
torch.nn.Dropout(0.2),
|
36 |
+
torch.nn.Linear(128, 64),
|
37 |
+
#nn.ReLU(),
|
38 |
+
torch.nn.Dropout(0.1),
|
39 |
+
torch.nn.Linear(64, 16),
|
40 |
+
#nn.ReLU(),
|
41 |
+
torch.nn.Linear(16, 1)
|
42 |
+
)
|
43 |
+
|
44 |
+
# initial MLP param
|
45 |
+
for name, param in self.layers.named_parameters():
|
46 |
+
if 'weight' in name:
|
47 |
+
torch.nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
|
48 |
+
if 'bias' in name:
|
49 |
+
torch.nn.init.constant_(param, val=0)
|
50 |
+
|
51 |
+
def forward(self, input):
|
52 |
+
return self.layers(input)
|
53 |
+
|
54 |
+
class ImageReward(torch.nn.Module):
|
55 |
+
def __init__(self, med_config, device='cpu', bert_model_path=""):
|
56 |
+
super().__init__()
|
57 |
+
self.device = device
|
58 |
+
|
59 |
+
self.blip = BLIP_Pretrain(image_size=224, vit='large', med_config=med_config, bert_model_path=bert_model_path)
|
60 |
+
self.preprocess = _transform(224)
|
61 |
+
self.mlp = MLP(768)
|
62 |
+
|
63 |
+
self.mean = 0.16717362830052426
|
64 |
+
self.std = 1.0333394966054072
|
65 |
+
|
66 |
+
def score_grad(self, prompt_ids, prompt_attention_mask, image):
|
67 |
+
"""Calculate the score with gradient for a single image and prompt.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
prompt_ids (torch.Tensor): Tokenized prompt IDs.
|
71 |
+
prompt_attention_mask (torch.Tensor): Attention mask for the prompt.
|
72 |
+
image (torch.Tensor): The processed image tensor.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
torch.Tensor: The reward score.
|
76 |
+
"""
|
77 |
+
image_embeds = self.blip.visual_encoder(image)
|
78 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
|
79 |
+
text_output = self.blip.text_encoder(
|
80 |
+
prompt_ids,
|
81 |
+
attention_mask=prompt_attention_mask,
|
82 |
+
encoder_hidden_states=image_embeds,
|
83 |
+
encoder_attention_mask=image_atts,
|
84 |
+
return_dict=True,
|
85 |
+
)
|
86 |
+
txt_features = text_output.last_hidden_state[:, 0, :]
|
87 |
+
rewards = self.mlp(txt_features)
|
88 |
+
rewards = (rewards - self.mean) / self.std
|
89 |
+
return rewards
|
90 |
+
|
91 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]:
|
92 |
+
"""Score the images based on the prompt.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
prompt (str): The prompt text.
|
96 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
List[float]: List of scores for the images.
|
100 |
+
"""
|
101 |
+
if isinstance(images, (str, Image.Image)):
|
102 |
+
# Single image
|
103 |
+
if isinstance(images, str):
|
104 |
+
pil_image = Image.open(images)
|
105 |
+
else:
|
106 |
+
pil_image = images
|
107 |
+
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
|
108 |
+
return [self._calculate_score(prompt, image).item()]
|
109 |
+
elif isinstance(images, list):
|
110 |
+
# Multiple images
|
111 |
+
scores = []
|
112 |
+
for one_image in images:
|
113 |
+
if isinstance(one_image, str):
|
114 |
+
pil_image = Image.open(one_image)
|
115 |
+
elif isinstance(one_image, Image.Image):
|
116 |
+
pil_image = one_image
|
117 |
+
else:
|
118 |
+
raise TypeError("The type of parameter images is illegal.")
|
119 |
+
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
|
120 |
+
scores.append(self._calculate_score(prompt, image).item())
|
121 |
+
return scores
|
122 |
+
else:
|
123 |
+
raise TypeError("The type of parameter images is illegal.")
|
124 |
+
|
125 |
+
def _calculate_score(self, prompt: str, image: torch.Tensor) -> torch.Tensor:
|
126 |
+
"""Calculate the score for a single image and prompt.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
prompt (str): The prompt text.
|
130 |
+
image (torch.Tensor): The processed image tensor.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
torch.Tensor: The reward score.
|
134 |
+
"""
|
135 |
+
text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(self.device)
|
136 |
+
image_embeds = self.blip.visual_encoder(image)
|
137 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
|
138 |
+
text_output = self.blip.text_encoder(
|
139 |
+
text_input.input_ids,
|
140 |
+
attention_mask=text_input.attention_mask,
|
141 |
+
encoder_hidden_states=image_embeds,
|
142 |
+
encoder_attention_mask=image_atts,
|
143 |
+
return_dict=True,
|
144 |
+
)
|
145 |
+
txt_features = text_output.last_hidden_state[:, 0, :].float()
|
146 |
+
rewards = self.mlp(txt_features)
|
147 |
+
rewards = (rewards - self.mean) / self.std
|
148 |
+
return rewards
|
149 |
+
|
150 |
+
def inference_rank(self, prompt: str, generations_list: List[Union[str, Image.Image]]) -> tuple:
|
151 |
+
"""Rank the images based on the prompt.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
prompt (str): The prompt text.
|
155 |
+
generations_list (List[Union[str, Image.Image]]): List of image paths or PIL images.
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
tuple: (indices, rewards) where indices are the ranks and rewards are the scores.
|
159 |
+
"""
|
160 |
+
text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(self.device)
|
161 |
+
txt_set = []
|
162 |
+
for generation in generations_list:
|
163 |
+
if isinstance(generation, str):
|
164 |
+
pil_image = Image.open(generation)
|
165 |
+
elif isinstance(generation, Image.Image):
|
166 |
+
pil_image = generation
|
167 |
+
else:
|
168 |
+
raise TypeError("The type of parameter generations_list is illegal.")
|
169 |
+
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
|
170 |
+
image_embeds = self.blip.visual_encoder(image)
|
171 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
|
172 |
+
text_output = self.blip.text_encoder(
|
173 |
+
text_input.input_ids,
|
174 |
+
attention_mask=text_input.attention_mask,
|
175 |
+
encoder_hidden_states=image_embeds,
|
176 |
+
encoder_attention_mask=image_atts,
|
177 |
+
return_dict=True,
|
178 |
+
)
|
179 |
+
txt_set.append(text_output.last_hidden_state[:, 0, :])
|
180 |
+
txt_features = torch.cat(txt_set, 0).float()
|
181 |
+
rewards = self.mlp(txt_features)
|
182 |
+
rewards = (rewards - self.mean) / self.std
|
183 |
+
rewards = torch.squeeze(rewards)
|
184 |
+
_, rank = torch.sort(rewards, dim=0, descending=True)
|
185 |
+
_, indices = torch.sort(rank, dim=0)
|
186 |
+
indices = indices + 1
|
187 |
+
return indices.detach().cpu().numpy().tolist(), rewards.detach().cpu().numpy().tolist()
|
188 |
+
|
189 |
+
|
190 |
+
class ImageRewardScore(torch.nn.Module):
|
191 |
+
def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS):
|
192 |
+
super().__init__()
|
193 |
+
self.device = device if isinstance(device, torch.device) else torch.device(device)
|
194 |
+
model_path = path.get("imagereward")
|
195 |
+
med_config = path.get("med_config")
|
196 |
+
state_dict = load_file(model_path)
|
197 |
+
self.model = ImageReward(device=self.device, med_config=med_config, bert_model_path=path.get("bert_model_path")).to(self.device)
|
198 |
+
self.model.load_state_dict(state_dict, strict=False)
|
199 |
+
self.model.eval()
|
200 |
+
|
201 |
+
@torch.no_grad()
|
202 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]:
|
203 |
+
"""Score the images based on the prompt.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
207 |
+
prompt (str): The prompt text.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
List[float]: List of scores for the images.
|
211 |
+
"""
|
212 |
+
return self.model.score(images, prompt)
|
diffsynth/extensions/ImageQualityMetric/mps.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
from transformers import CLIPFeatureExtractor, CLIPImageProcessor
|
7 |
+
from transformers import CLIPConfig
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from transformers import CLIPModel as HFCLIPModel
|
10 |
+
from safetensors.torch import load_file
|
11 |
+
from torch import nn, einsum
|
12 |
+
|
13 |
+
from .trainer.models.base_model import BaseModelConfig
|
14 |
+
|
15 |
+
from transformers import CLIPConfig
|
16 |
+
from transformers import AutoProcessor, AutoModel, AutoTokenizer
|
17 |
+
from typing import Any, Optional, Tuple, Union, List
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from .trainer.models.cross_modeling import Cross_model
|
21 |
+
from .trainer.models import clip_model
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import gc
|
24 |
+
import json
|
25 |
+
from .config import MODEL_PATHS
|
26 |
+
|
27 |
+
class MPScore(torch.nn.Module):
|
28 |
+
def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS, condition: str = 'overall'):
|
29 |
+
super().__init__()
|
30 |
+
"""Initialize the MPSModel with a processor, tokenizer, and model.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
device (Union[str, torch.device]): The device to load the model on.
|
34 |
+
"""
|
35 |
+
self.device = device
|
36 |
+
processor_name_or_path = path.get("clip")
|
37 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(processor_name_or_path)
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(processor_name_or_path, trust_remote_code=True)
|
39 |
+
self.model = clip_model.CLIPModel(processor_name_or_path, config_file=True)
|
40 |
+
state_dict = load_file(path.get("mps"))
|
41 |
+
self.model.load_state_dict(state_dict, strict=False)
|
42 |
+
self.model.to(device)
|
43 |
+
self.condition = condition
|
44 |
+
|
45 |
+
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float:
|
46 |
+
"""Calculate the reward score for a single image and prompt.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
image (torch.Tensor): The processed image tensor.
|
50 |
+
prompt (str): The prompt text.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
float: The reward score.
|
54 |
+
"""
|
55 |
+
def _tokenize(caption):
|
56 |
+
input_ids = self.tokenizer(
|
57 |
+
caption,
|
58 |
+
max_length=self.tokenizer.model_max_length,
|
59 |
+
padding="max_length",
|
60 |
+
truncation=True,
|
61 |
+
return_tensors="pt"
|
62 |
+
).input_ids
|
63 |
+
return input_ids
|
64 |
+
|
65 |
+
text_input = _tokenize(prompt).to(self.device)
|
66 |
+
if self.condition == 'overall':
|
67 |
+
condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry, shape, face, hair, hands, limbs, structure, instance, texture, quantity, attributes, position, number, location, word, things'
|
68 |
+
elif self.condition == 'aesthetics':
|
69 |
+
condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry'
|
70 |
+
elif self.condition == 'quality':
|
71 |
+
condition_prompt = 'shape, face, hair, hands, limbs, structure, instance, texture'
|
72 |
+
elif self.condition == 'semantic':
|
73 |
+
condition_prompt = 'quantity, attributes, position, number, location'
|
74 |
+
else:
|
75 |
+
raise ValueError(
|
76 |
+
f"Unsupported condition: {self.condition}. Choose 'overall', 'aesthetics', 'quality', or 'semantic'.")
|
77 |
+
condition_batch = _tokenize(condition_prompt).repeat(text_input.shape[0], 1).to(self.device)
|
78 |
+
|
79 |
+
with torch.no_grad():
|
80 |
+
text_f, text_features = self.model.model.get_text_features(text_input)
|
81 |
+
|
82 |
+
image_f = self.model.model.get_image_features(image.half())
|
83 |
+
condition_f, _ = self.model.model.get_text_features(condition_batch)
|
84 |
+
|
85 |
+
sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f)
|
86 |
+
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0]
|
87 |
+
sim_text_condition = sim_text_condition / sim_text_condition.max()
|
88 |
+
mask = torch.where(sim_text_condition > 0.3, 0, float('-inf'))
|
89 |
+
mask = mask.repeat(1, image_f.shape[1], 1)
|
90 |
+
image_features = self.model.cross_model(image_f, text_f, mask.half())[:, 0, :]
|
91 |
+
|
92 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
93 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
94 |
+
image_score = self.model.logit_scale.exp() * text_features @ image_features.T
|
95 |
+
|
96 |
+
return image_score[0].cpu().numpy().item()
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]:
|
100 |
+
"""Score the images based on the prompt.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
104 |
+
prompt (str): The prompt text.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
List[float]: List of reward scores for the images.
|
108 |
+
"""
|
109 |
+
if isinstance(images, (str, Image.Image)):
|
110 |
+
# Single image
|
111 |
+
if isinstance(images, str):
|
112 |
+
image = self.image_processor(Image.open(images), return_tensors="pt")["pixel_values"].to(self.device)
|
113 |
+
else:
|
114 |
+
image = self.image_processor(images, return_tensors="pt")["pixel_values"].to(self.device)
|
115 |
+
return [self._calculate_score(image, prompt)]
|
116 |
+
elif isinstance(images, list):
|
117 |
+
# Multiple images
|
118 |
+
scores = []
|
119 |
+
for one_images in images:
|
120 |
+
if isinstance(one_images, str):
|
121 |
+
image = self.image_processor(Image.open(one_images), return_tensors="pt")["pixel_values"].to(self.device)
|
122 |
+
elif isinstance(one_images, Image.Image):
|
123 |
+
image = self.image_processor(one_images, return_tensors="pt")["pixel_values"].to(self.device)
|
124 |
+
else:
|
125 |
+
raise TypeError("The type of parameter images is illegal.")
|
126 |
+
scores.append(self._calculate_score(image, prompt))
|
127 |
+
return scores
|
128 |
+
else:
|
129 |
+
raise TypeError("The type of parameter images is illegal.")
|
diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .coca_model import CoCa
|
2 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
3 |
+
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_loss
|
4 |
+
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
5 |
+
from .loss import ClipLoss, DistillClipLoss, CoCaLoss
|
6 |
+
from .model import CLIP, CustomTextCLIP, CLIPTextCfg, CLIPVisionCfg, \
|
7 |
+
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
8 |
+
from .openai import load_openai_model, list_openai_models
|
9 |
+
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model, \
|
10 |
+
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
11 |
+
from .push_to_hf_hub import push_pretrained_to_hf_hub, push_to_hf_hub
|
12 |
+
from .tokenizer import SimpleTokenizer
|
13 |
+
from .transform import image_transform, AugmentationCfg
|
14 |
+
from .utils import freeze_batch_norm_2d
|
diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import numpy as np
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
from .transformer import (
|
10 |
+
LayerNormFp32,
|
11 |
+
LayerNorm,
|
12 |
+
QuickGELU,
|
13 |
+
MultimodalTransformer,
|
14 |
+
)
|
15 |
+
from .model import CLIPTextCfg, CLIPVisionCfg, _build_vision_tower, _build_text_tower
|
16 |
+
|
17 |
+
try:
|
18 |
+
from transformers import (
|
19 |
+
BeamSearchScorer,
|
20 |
+
LogitsProcessorList,
|
21 |
+
TopPLogitsWarper,
|
22 |
+
TopKLogitsWarper,
|
23 |
+
RepetitionPenaltyLogitsProcessor,
|
24 |
+
MinLengthLogitsProcessor,
|
25 |
+
MaxLengthCriteria,
|
26 |
+
StoppingCriteriaList
|
27 |
+
)
|
28 |
+
|
29 |
+
GENERATION_TYPES = {
|
30 |
+
"top_k": TopKLogitsWarper,
|
31 |
+
"top_p": TopPLogitsWarper,
|
32 |
+
"beam_search": "beam_search"
|
33 |
+
}
|
34 |
+
_has_transformers = True
|
35 |
+
except ImportError as e:
|
36 |
+
GENERATION_TYPES = {
|
37 |
+
"top_k": None,
|
38 |
+
"top_p": None,
|
39 |
+
"beam_search": "beam_search"
|
40 |
+
}
|
41 |
+
_has_transformers = False
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class MultimodalCfg(CLIPTextCfg):
|
46 |
+
mlp_ratio: int = 4
|
47 |
+
dim_head: int = 64
|
48 |
+
heads: int = 8
|
49 |
+
n_queries: int = 256
|
50 |
+
attn_pooler_heads: int = 8
|
51 |
+
|
52 |
+
|
53 |
+
def _build_text_decoder_tower(
|
54 |
+
embed_dim,
|
55 |
+
multimodal_cfg,
|
56 |
+
quick_gelu: bool = False,
|
57 |
+
cast_dtype: Optional[torch.dtype] = None,
|
58 |
+
):
|
59 |
+
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
|
60 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
61 |
+
norm_layer = (
|
62 |
+
LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
63 |
+
)
|
64 |
+
|
65 |
+
decoder = MultimodalTransformer(
|
66 |
+
context_length=multimodal_cfg.context_length,
|
67 |
+
width=multimodal_cfg.width,
|
68 |
+
heads=multimodal_cfg.heads,
|
69 |
+
layers=multimodal_cfg.layers,
|
70 |
+
ls_init_value=multimodal_cfg.ls_init_value,
|
71 |
+
output_dim=embed_dim,
|
72 |
+
act_layer=act_layer,
|
73 |
+
norm_layer=norm_layer,
|
74 |
+
)
|
75 |
+
|
76 |
+
return decoder
|
77 |
+
|
78 |
+
|
79 |
+
class CoCa(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
embed_dim,
|
83 |
+
multimodal_cfg: MultimodalCfg,
|
84 |
+
text_cfg: CLIPTextCfg,
|
85 |
+
vision_cfg: CLIPVisionCfg,
|
86 |
+
quick_gelu: bool = False,
|
87 |
+
cast_dtype: Optional[torch.dtype] = None,
|
88 |
+
pad_id: int = 0,
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
|
92 |
+
text_cfg = CLIPTextCfg(**text_cfg) if isinstance(text_cfg, dict) else text_cfg
|
93 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg) if isinstance(vision_cfg, dict) else vision_cfg
|
94 |
+
|
95 |
+
self.text = _build_text_tower(
|
96 |
+
embed_dim=embed_dim,
|
97 |
+
text_cfg=text_cfg,
|
98 |
+
quick_gelu=quick_gelu,
|
99 |
+
cast_dtype=cast_dtype,
|
100 |
+
)
|
101 |
+
|
102 |
+
vocab_size = (
|
103 |
+
text_cfg.vocab_size # for hf models
|
104 |
+
if hasattr(text_cfg, "hf_model_name") and text_cfg.hf_model_name is not None
|
105 |
+
else text_cfg.vocab_size
|
106 |
+
)
|
107 |
+
|
108 |
+
self.visual = _build_vision_tower(
|
109 |
+
embed_dim=embed_dim,
|
110 |
+
vision_cfg=vision_cfg,
|
111 |
+
quick_gelu=quick_gelu,
|
112 |
+
cast_dtype=cast_dtype,
|
113 |
+
)
|
114 |
+
|
115 |
+
self.text_decoder = _build_text_decoder_tower(
|
116 |
+
vocab_size,
|
117 |
+
multimodal_cfg=multimodal_cfg,
|
118 |
+
quick_gelu=quick_gelu,
|
119 |
+
cast_dtype=cast_dtype,
|
120 |
+
)
|
121 |
+
|
122 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
123 |
+
self.pad_id = pad_id
|
124 |
+
|
125 |
+
@torch.jit.ignore
|
126 |
+
def set_grad_checkpointing(self, enable=True):
|
127 |
+
self.visual.set_grad_checkpointing(enable)
|
128 |
+
self.text.set_grad_checkpointing(enable)
|
129 |
+
self.text_decoder.set_grad_checkpointing(enable)
|
130 |
+
|
131 |
+
def _encode_image(self, images, normalize=True):
|
132 |
+
image_latent, tokens_embs = self.visual(images)
|
133 |
+
image_latent = F.normalize(image_latent, dim=-1) if normalize else image_latent
|
134 |
+
return image_latent, tokens_embs
|
135 |
+
|
136 |
+
def _encode_text(self, text, normalize=True, embed_cls=True):
|
137 |
+
text = text[:, :-1] if embed_cls else text # make space for CLS token
|
138 |
+
text_latent, token_emb = self.text(text)
|
139 |
+
text_latent = F.normalize(text_latent, dim=-1) if normalize else text_latent
|
140 |
+
return text_latent, token_emb
|
141 |
+
|
142 |
+
def encode_image(self, images, normalize=True):
|
143 |
+
image_latent, _ = self._encode_image(images, normalize=normalize)
|
144 |
+
return image_latent
|
145 |
+
|
146 |
+
def encode_text(self, text, normalize=True, embed_cls=True):
|
147 |
+
text_latent, _ = self._encode_text(text, normalize=normalize, embed_cls=embed_cls)
|
148 |
+
return text_latent
|
149 |
+
|
150 |
+
def forward(self, image, text, embed_cls=True, image_latent=None, image_embs=None):
|
151 |
+
text_latent, token_embs = self._encode_text(text, embed_cls=embed_cls)
|
152 |
+
if image_latent is None or image_embs is None:
|
153 |
+
image_latent, image_embs = self._encode_image(image)
|
154 |
+
|
155 |
+
# TODO: add assertion to avoid bugs?
|
156 |
+
labels = text[:, -token_embs.shape[1]:]
|
157 |
+
|
158 |
+
logits = self.text_decoder(image_embs, token_embs)
|
159 |
+
return {
|
160 |
+
"image_features": image_latent,
|
161 |
+
"text_features": text_latent,
|
162 |
+
"logits": logits,
|
163 |
+
"labels": labels,
|
164 |
+
"logit_scale": self.logit_scale.exp()
|
165 |
+
}
|
166 |
+
|
167 |
+
def generate(
|
168 |
+
self,
|
169 |
+
image,
|
170 |
+
text=None,
|
171 |
+
seq_len=30,
|
172 |
+
max_seq_len=77,
|
173 |
+
temperature=1.,
|
174 |
+
generation_type="beam_search",
|
175 |
+
top_p=0.1, # keep tokens in the 1 - top_p quantile
|
176 |
+
top_k=1, # keeps the top_k most probable tokens
|
177 |
+
pad_token_id=None,
|
178 |
+
eos_token_id=None,
|
179 |
+
sot_token_id=None,
|
180 |
+
num_beams=6,
|
181 |
+
num_beam_groups=3,
|
182 |
+
min_seq_len=5,
|
183 |
+
stopping_criteria=None,
|
184 |
+
repetition_penalty=1.0,
|
185 |
+
fixed_output_length=False # if True output.shape == (batch_size, seq_len)
|
186 |
+
):
|
187 |
+
# taking many ideas and components from HuggingFace GenerationMixin
|
188 |
+
# https://huggingface.co/docs/transformers/main/en/main_classes/text_generation
|
189 |
+
assert _has_transformers, "Please install transformers for generate functionality. `pip install transformers`."
|
190 |
+
assert seq_len > min_seq_len, "seq_len must be larger than min_seq_len"
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
sot_token_id = 49406 if sot_token_id is None else sot_token_id
|
194 |
+
eos_token_id = 49407 if eos_token_id is None else eos_token_id
|
195 |
+
pad_token_id = self.pad_id if pad_token_id is None else pad_token_id
|
196 |
+
logit_processor = LogitsProcessorList(
|
197 |
+
[
|
198 |
+
MinLengthLogitsProcessor(min_seq_len, eos_token_id),
|
199 |
+
RepetitionPenaltyLogitsProcessor(repetition_penalty),
|
200 |
+
]
|
201 |
+
)
|
202 |
+
|
203 |
+
if stopping_criteria is None:
|
204 |
+
stopping_criteria = [MaxLengthCriteria(max_length=seq_len)]
|
205 |
+
|
206 |
+
stopping_criteria = StoppingCriteriaList(
|
207 |
+
stopping_criteria
|
208 |
+
)
|
209 |
+
|
210 |
+
device = image.device
|
211 |
+
|
212 |
+
if generation_type == "beam_search":
|
213 |
+
output = self._generate_beamsearch(
|
214 |
+
image_inputs = image,
|
215 |
+
pad_token_id=pad_token_id,
|
216 |
+
eos_token_id=eos_token_id,
|
217 |
+
sot_token_id=sot_token_id,
|
218 |
+
num_beams=num_beams,
|
219 |
+
num_beam_groups=num_beam_groups,
|
220 |
+
min_seq_len=min_seq_len,
|
221 |
+
stopping_criteria=stopping_criteria,
|
222 |
+
logit_processor=logit_processor,
|
223 |
+
)
|
224 |
+
if fixed_output_length and output.shape[1] < seq_len:
|
225 |
+
return torch.cat(
|
226 |
+
(output, torch.ones(output.shape[0], seq_len-output.shape[1], device=device, dtype=output.dtype) * self.pad_id),
|
227 |
+
dim=1
|
228 |
+
)
|
229 |
+
return output
|
230 |
+
|
231 |
+
elif generation_type == "top_p":
|
232 |
+
logit_warper = GENERATION_TYPES[generation_type](top_p)
|
233 |
+
elif generation_type == "top_k":
|
234 |
+
logit_warper = GENERATION_TYPES[generation_type](top_k)
|
235 |
+
else:
|
236 |
+
raise ValueError(
|
237 |
+
f"generation_type has to be one of "
|
238 |
+
f"{'| ' + ' | '.join(list(GENERATION_TYPES.keys())) + ' |'}."
|
239 |
+
)
|
240 |
+
|
241 |
+
image_latent, image_embs = self._encode_image(image)
|
242 |
+
|
243 |
+
if text is None:
|
244 |
+
text = torch.ones((image.shape[0], 1), device=device, dtype=torch.long) * sot_token_id
|
245 |
+
|
246 |
+
was_training = self.training
|
247 |
+
num_dims = len(text.shape)
|
248 |
+
|
249 |
+
if num_dims == 1:
|
250 |
+
text = text[None, :]
|
251 |
+
|
252 |
+
cur_len = text.shape[1]
|
253 |
+
self.eval()
|
254 |
+
out = text
|
255 |
+
|
256 |
+
while True:
|
257 |
+
x = out[:, -max_seq_len:]
|
258 |
+
cur_len = x.shape[1]
|
259 |
+
logits = self(image, x, image_latent=image_latent, image_embs=image_embs, embed_cls=False)["logits"][:, -1]
|
260 |
+
mask = (out[:, -1] == eos_token_id) | (out[:, -1] == pad_token_id)
|
261 |
+
sample = torch.ones((out.shape[0], 1), device=device, dtype=torch.long) * pad_token_id
|
262 |
+
|
263 |
+
if mask.all():
|
264 |
+
if not fixed_output_length:
|
265 |
+
break
|
266 |
+
else:
|
267 |
+
logits = logits[~mask, :]
|
268 |
+
filtered_logits = logit_processor(x[~mask, :], logits)
|
269 |
+
filtered_logits = logit_warper(x[~mask, :], filtered_logits)
|
270 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
271 |
+
|
272 |
+
if (cur_len + 1 == seq_len):
|
273 |
+
sample[~mask, :] = torch.ones((sum(~mask), 1), device=device, dtype=torch.long) * eos_token_id
|
274 |
+
else:
|
275 |
+
sample[~mask, :] = torch.multinomial(probs, 1)
|
276 |
+
|
277 |
+
out = torch.cat((out, sample), dim=-1)
|
278 |
+
|
279 |
+
cur_len += 1
|
280 |
+
|
281 |
+
if stopping_criteria(out, None):
|
282 |
+
break
|
283 |
+
|
284 |
+
if num_dims == 1:
|
285 |
+
out = out.squeeze(0)
|
286 |
+
|
287 |
+
self.train(was_training)
|
288 |
+
return out
|
289 |
+
|
290 |
+
def _generate_beamsearch(
|
291 |
+
self,
|
292 |
+
image_inputs,
|
293 |
+
pad_token_id=None,
|
294 |
+
eos_token_id=None,
|
295 |
+
sot_token_id=None,
|
296 |
+
num_beams=6,
|
297 |
+
num_beam_groups=3,
|
298 |
+
min_seq_len=5,
|
299 |
+
stopping_criteria=None,
|
300 |
+
logit_processor=None,
|
301 |
+
logit_warper=None,
|
302 |
+
):
|
303 |
+
device = image_inputs.device
|
304 |
+
batch_size = image_inputs.shape[0]
|
305 |
+
image_inputs = torch.repeat_interleave(image_inputs, num_beams, dim=0)
|
306 |
+
image_latent, image_embs = self._encode_image(image_inputs)
|
307 |
+
|
308 |
+
input_ids = torch.ones((batch_size * num_beams, 1), device=device, dtype=torch.long)
|
309 |
+
input_ids = input_ids * sot_token_id
|
310 |
+
beam_scorer = BeamSearchScorer(
|
311 |
+
batch_size=batch_size,
|
312 |
+
num_beams=num_beams,
|
313 |
+
device=device,
|
314 |
+
num_beam_groups=num_beam_groups,
|
315 |
+
)
|
316 |
+
# instantiate logits processors
|
317 |
+
logits_processor = (
|
318 |
+
LogitsProcessorList([MinLengthLogitsProcessor(min_seq_len, eos_token_id=eos_token_id)])
|
319 |
+
if logit_processor is None
|
320 |
+
else logit_processor
|
321 |
+
)
|
322 |
+
|
323 |
+
batch_size = len(beam_scorer._beam_hyps)
|
324 |
+
num_beams = beam_scorer.num_beams
|
325 |
+
num_beam_groups = beam_scorer.num_beam_groups
|
326 |
+
num_sub_beams = num_beams // num_beam_groups
|
327 |
+
batch_beam_size, cur_len = input_ids.shape
|
328 |
+
beam_indices = None
|
329 |
+
|
330 |
+
if num_beams * batch_size != batch_beam_size:
|
331 |
+
raise ValueError(
|
332 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
333 |
+
)
|
334 |
+
|
335 |
+
beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
|
336 |
+
# initialise score of first beam of each group with 0 and the rest with 1e-9. This ensures that the beams in
|
337 |
+
# the same group don't produce same tokens everytime.
|
338 |
+
beam_scores[:, ::num_sub_beams] = 0
|
339 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
340 |
+
|
341 |
+
while True:
|
342 |
+
|
343 |
+
# predicted tokens in cur_len step
|
344 |
+
current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)
|
345 |
+
|
346 |
+
# indices which will form the beams in the next time step
|
347 |
+
reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
|
348 |
+
|
349 |
+
# do one decoder step on all beams of all sentences in batch
|
350 |
+
model_inputs = prepare_inputs_for_generation(input_ids=input_ids, image_inputs=image_inputs)
|
351 |
+
outputs = self(
|
352 |
+
model_inputs['images'],
|
353 |
+
model_inputs['text'],
|
354 |
+
embed_cls=False,
|
355 |
+
image_latent=image_latent,
|
356 |
+
image_embs=image_embs
|
357 |
+
)
|
358 |
+
|
359 |
+
for beam_group_idx in range(num_beam_groups):
|
360 |
+
group_start_idx = beam_group_idx * num_sub_beams
|
361 |
+
group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
|
362 |
+
group_size = group_end_idx - group_start_idx
|
363 |
+
|
364 |
+
# indices of beams of current group among all sentences in batch
|
365 |
+
batch_group_indices = []
|
366 |
+
|
367 |
+
for batch_idx in range(batch_size):
|
368 |
+
batch_group_indices.extend(
|
369 |
+
[batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
|
370 |
+
)
|
371 |
+
group_input_ids = input_ids[batch_group_indices]
|
372 |
+
|
373 |
+
# select outputs of beams of currentg group only
|
374 |
+
next_token_logits = outputs['logits'][batch_group_indices, -1, :]
|
375 |
+
vocab_size = next_token_logits.shape[-1]
|
376 |
+
|
377 |
+
next_token_scores_processed = logits_processor(
|
378 |
+
group_input_ids, next_token_logits, current_tokens=current_tokens, beam_group_idx=beam_group_idx
|
379 |
+
)
|
380 |
+
next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
|
381 |
+
next_token_scores = next_token_scores.expand_as(next_token_scores_processed)
|
382 |
+
|
383 |
+
# reshape for beam search
|
384 |
+
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
|
385 |
+
|
386 |
+
next_token_scores, next_tokens = torch.topk(
|
387 |
+
next_token_scores, 2 * group_size, dim=1, largest=True, sorted=True
|
388 |
+
)
|
389 |
+
|
390 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
391 |
+
next_tokens = next_tokens % vocab_size
|
392 |
+
|
393 |
+
# stateless
|
394 |
+
process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
|
395 |
+
beam_outputs = beam_scorer.process(
|
396 |
+
group_input_ids,
|
397 |
+
next_token_scores,
|
398 |
+
next_tokens,
|
399 |
+
next_indices,
|
400 |
+
pad_token_id=pad_token_id,
|
401 |
+
eos_token_id=eos_token_id,
|
402 |
+
beam_indices=process_beam_indices,
|
403 |
+
)
|
404 |
+
beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
|
405 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
406 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
407 |
+
|
408 |
+
input_ids[batch_group_indices] = group_input_ids[beam_idx]
|
409 |
+
group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
410 |
+
current_tokens[batch_group_indices] = group_input_ids[:, -1]
|
411 |
+
|
412 |
+
# (beam_idx // group_size) -> batch_idx
|
413 |
+
# (beam_idx % group_size) -> offset of idx inside the group
|
414 |
+
reordering_indices[batch_group_indices] = (
|
415 |
+
num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size)
|
416 |
+
)
|
417 |
+
|
418 |
+
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
|
419 |
+
|
420 |
+
# increase cur_len
|
421 |
+
cur_len = cur_len + 1
|
422 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, None):
|
423 |
+
break
|
424 |
+
|
425 |
+
final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
|
426 |
+
sequence_outputs = beam_scorer.finalize(
|
427 |
+
input_ids,
|
428 |
+
beam_scores,
|
429 |
+
next_tokens,
|
430 |
+
next_indices,
|
431 |
+
pad_token_id=pad_token_id,
|
432 |
+
eos_token_id=eos_token_id,
|
433 |
+
max_length=stopping_criteria.max_length,
|
434 |
+
beam_indices=final_beam_indices,
|
435 |
+
)
|
436 |
+
return sequence_outputs['sequences']
|
437 |
+
|
438 |
+
|
439 |
+
def prepare_inputs_for_generation(input_ids, image_inputs, past=None, **kwargs):
|
440 |
+
if past:
|
441 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
442 |
+
|
443 |
+
attention_mask = kwargs.get("attention_mask", None)
|
444 |
+
position_ids = kwargs.get("position_ids", None)
|
445 |
+
|
446 |
+
if attention_mask is not None and position_ids is None:
|
447 |
+
# create position_ids on the fly for batch generation
|
448 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
449 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
450 |
+
else:
|
451 |
+
position_ids = None
|
452 |
+
return {
|
453 |
+
"text": input_ids,
|
454 |
+
"images": image_inputs,
|
455 |
+
"past_key_values": past,
|
456 |
+
"position_ids": position_ids,
|
457 |
+
"attention_mask": attention_mask,
|
458 |
+
}
|
diffsynth/extensions/ImageQualityMetric/open_clip/constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
diffsynth/extensions/ImageQualityMetric/open_clip/factory.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import re
|
6 |
+
from copy import deepcopy
|
7 |
+
from pathlib import Path
|
8 |
+
# from turtle import forward
|
9 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
14 |
+
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
15 |
+
resize_pos_embed, get_cast_dtype
|
16 |
+
from .coca_model import CoCa
|
17 |
+
from .loss import ClipLoss, DistillClipLoss, CoCaLoss
|
18 |
+
from .openai import load_openai_model
|
19 |
+
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model, download_pretrained_from_hf
|
20 |
+
from .transform import image_transform, AugmentationCfg
|
21 |
+
from .tokenizer import HFTokenizer, SimpleTokenizer
|
22 |
+
|
23 |
+
|
24 |
+
HF_HUB_PREFIX = 'hf-hub:'
|
25 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
26 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
27 |
+
|
28 |
+
|
29 |
+
def _natural_key(string_):
|
30 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
31 |
+
|
32 |
+
|
33 |
+
def _rescan_model_configs():
|
34 |
+
global _MODEL_CONFIGS
|
35 |
+
|
36 |
+
config_ext = ('.json',)
|
37 |
+
config_files = []
|
38 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
39 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
40 |
+
config_files.append(config_path)
|
41 |
+
elif config_path.is_dir():
|
42 |
+
for ext in config_ext:
|
43 |
+
config_files.extend(config_path.glob(f'*{ext}'))
|
44 |
+
|
45 |
+
for cf in config_files:
|
46 |
+
with open(cf, 'r') as f:
|
47 |
+
model_cfg = json.load(f)
|
48 |
+
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
49 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
50 |
+
|
51 |
+
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
|
52 |
+
|
53 |
+
|
54 |
+
_rescan_model_configs() # initial populate of model config registry
|
55 |
+
|
56 |
+
|
57 |
+
def list_models():
|
58 |
+
""" enumerate available model architectures based on config files """
|
59 |
+
return list(_MODEL_CONFIGS.keys())
|
60 |
+
|
61 |
+
|
62 |
+
def add_model_config(path):
|
63 |
+
""" add model config path or file and update registry """
|
64 |
+
if not isinstance(path, Path):
|
65 |
+
path = Path(path)
|
66 |
+
_MODEL_CONFIG_PATHS.append(path)
|
67 |
+
_rescan_model_configs()
|
68 |
+
|
69 |
+
|
70 |
+
def get_model_config(model_name):
|
71 |
+
if model_name in _MODEL_CONFIGS:
|
72 |
+
return deepcopy(_MODEL_CONFIGS[model_name])
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
|
77 |
+
def get_tokenizer(model_name, open_clip_bpe_path=None):
|
78 |
+
if model_name.startswith(HF_HUB_PREFIX):
|
79 |
+
tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):])
|
80 |
+
else:
|
81 |
+
config = get_model_config(model_name)
|
82 |
+
tokenizer = HFTokenizer(
|
83 |
+
config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else SimpleTokenizer(open_clip_bpe_path)
|
84 |
+
return tokenizer
|
85 |
+
|
86 |
+
|
87 |
+
def load_state_dict(checkpoint_path: str, map_location='cpu'):
|
88 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
89 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
90 |
+
state_dict = checkpoint['state_dict']
|
91 |
+
else:
|
92 |
+
state_dict = checkpoint
|
93 |
+
if next(iter(state_dict.items()))[0].startswith('module'):
|
94 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
95 |
+
return state_dict
|
96 |
+
|
97 |
+
|
98 |
+
def load_checkpoint(model, checkpoint_path, strict=True):
|
99 |
+
state_dict = load_state_dict(checkpoint_path)
|
100 |
+
# detect old format and make compatible with new format
|
101 |
+
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
102 |
+
state_dict = convert_to_custom_text_state_dict(state_dict)
|
103 |
+
resize_pos_embed(state_dict, model)
|
104 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
105 |
+
return incompatible_keys
|
106 |
+
|
107 |
+
|
108 |
+
def create_model(
|
109 |
+
model_name: str,
|
110 |
+
pretrained: Optional[str] = None,
|
111 |
+
precision: str = 'fp32',
|
112 |
+
device: Union[str, torch.device] = 'cpu',
|
113 |
+
jit: bool = False,
|
114 |
+
force_quick_gelu: bool = False,
|
115 |
+
force_custom_text: bool = False,
|
116 |
+
force_patch_dropout: Optional[float] = None,
|
117 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
118 |
+
pretrained_image: bool = False,
|
119 |
+
pretrained_hf: bool = True,
|
120 |
+
cache_dir: Optional[str] = None,
|
121 |
+
output_dict: Optional[bool] = None,
|
122 |
+
require_pretrained: bool = False,
|
123 |
+
):
|
124 |
+
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
|
125 |
+
if has_hf_hub_prefix:
|
126 |
+
model_id = model_name[len(HF_HUB_PREFIX):]
|
127 |
+
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
128 |
+
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)
|
129 |
+
|
130 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
131 |
+
config = json.load(f)
|
132 |
+
pretrained_cfg = config['preprocess_cfg']
|
133 |
+
model_cfg = config['model_cfg']
|
134 |
+
else:
|
135 |
+
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
136 |
+
checkpoint_path = None
|
137 |
+
pretrained_cfg = {}
|
138 |
+
model_cfg = None
|
139 |
+
|
140 |
+
if isinstance(device, str):
|
141 |
+
device = torch.device(device)
|
142 |
+
|
143 |
+
if pretrained and pretrained.lower() == 'openai':
|
144 |
+
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
145 |
+
model = load_openai_model(
|
146 |
+
model_name,
|
147 |
+
precision=precision,
|
148 |
+
device=device,
|
149 |
+
jit=jit,
|
150 |
+
cache_dir=cache_dir,
|
151 |
+
)
|
152 |
+
|
153 |
+
# to always output dict even if it is clip
|
154 |
+
if output_dict and hasattr(model, "output_dict"):
|
155 |
+
model.output_dict = True
|
156 |
+
else:
|
157 |
+
model_cfg = model_cfg or get_model_config(model_name)
|
158 |
+
if model_cfg is not None:
|
159 |
+
logging.info(f'Loaded {model_name} model config.')
|
160 |
+
else:
|
161 |
+
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
162 |
+
raise RuntimeError(f'Model config for {model_name} not found.')
|
163 |
+
|
164 |
+
if force_quick_gelu:
|
165 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
166 |
+
model_cfg["quick_gelu"] = True
|
167 |
+
|
168 |
+
if force_patch_dropout is not None:
|
169 |
+
# override the default patch dropout value
|
170 |
+
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout
|
171 |
+
|
172 |
+
if force_image_size is not None:
|
173 |
+
# override model config's image size
|
174 |
+
model_cfg["vision_cfg"]["image_size"] = force_image_size
|
175 |
+
|
176 |
+
if pretrained_image:
|
177 |
+
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
178 |
+
# pretrained weight loading for timm models set via vision_cfg
|
179 |
+
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
180 |
+
else:
|
181 |
+
assert False, 'pretrained image towers currently only supported for timm models'
|
182 |
+
|
183 |
+
cast_dtype = get_cast_dtype(precision)
|
184 |
+
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
|
185 |
+
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model
|
186 |
+
|
187 |
+
if custom_text:
|
188 |
+
if is_hf_model:
|
189 |
+
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
190 |
+
if "coca" in model_name:
|
191 |
+
model = CoCa(**model_cfg, cast_dtype=cast_dtype)
|
192 |
+
else:
|
193 |
+
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
|
194 |
+
else:
|
195 |
+
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
196 |
+
|
197 |
+
pretrained_loaded = False
|
198 |
+
if pretrained:
|
199 |
+
checkpoint_path = ''
|
200 |
+
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
201 |
+
if pretrained_cfg:
|
202 |
+
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
203 |
+
elif os.path.exists(pretrained):
|
204 |
+
checkpoint_path = pretrained
|
205 |
+
|
206 |
+
if checkpoint_path:
|
207 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
208 |
+
load_checkpoint(model, checkpoint_path)
|
209 |
+
else:
|
210 |
+
error_str = (
|
211 |
+
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
212 |
+
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
213 |
+
logging.warning(error_str)
|
214 |
+
raise RuntimeError(error_str)
|
215 |
+
pretrained_loaded = True
|
216 |
+
elif has_hf_hub_prefix:
|
217 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
218 |
+
load_checkpoint(model, checkpoint_path)
|
219 |
+
pretrained_loaded = True
|
220 |
+
|
221 |
+
if require_pretrained and not pretrained_loaded:
|
222 |
+
# callers of create_model_from_pretrained always expect pretrained weights
|
223 |
+
raise RuntimeError(
|
224 |
+
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')
|
225 |
+
|
226 |
+
model.to(device=device)
|
227 |
+
if precision in ("fp16", "bf16"):
|
228 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16 if precision == 'bf16' else torch.float16)
|
229 |
+
|
230 |
+
# set image / mean metadata from pretrained_cfg if available, or use default
|
231 |
+
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
232 |
+
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
233 |
+
|
234 |
+
# to always output dict even if it is clip
|
235 |
+
if output_dict and hasattr(model, "output_dict"):
|
236 |
+
model.output_dict = True
|
237 |
+
|
238 |
+
if jit:
|
239 |
+
model = torch.jit.script(model)
|
240 |
+
|
241 |
+
return model
|
242 |
+
|
243 |
+
|
244 |
+
def create_loss(args):
|
245 |
+
if args.distill:
|
246 |
+
return DistillClipLoss(
|
247 |
+
local_loss=args.local_loss,
|
248 |
+
gather_with_grad=args.gather_with_grad,
|
249 |
+
cache_labels=True,
|
250 |
+
rank=args.rank,
|
251 |
+
world_size=args.world_size,
|
252 |
+
use_horovod=args.horovod,
|
253 |
+
)
|
254 |
+
elif "coca" in args.model.lower():
|
255 |
+
return CoCaLoss(
|
256 |
+
caption_loss_weight=args.coca_caption_loss_weight,
|
257 |
+
clip_loss_weight=args.coca_contrastive_loss_weight,
|
258 |
+
local_loss=args.local_loss,
|
259 |
+
gather_with_grad=args.gather_with_grad,
|
260 |
+
cache_labels=True,
|
261 |
+
rank=args.rank,
|
262 |
+
world_size=args.world_size,
|
263 |
+
use_horovod=args.horovod,
|
264 |
+
)
|
265 |
+
return ClipLoss(
|
266 |
+
local_loss=args.local_loss,
|
267 |
+
gather_with_grad=args.gather_with_grad,
|
268 |
+
cache_labels=True,
|
269 |
+
rank=args.rank,
|
270 |
+
world_size=args.world_size,
|
271 |
+
use_horovod=args.horovod,
|
272 |
+
)
|
273 |
+
|
274 |
+
class MLP(torch.nn.Module):
|
275 |
+
def __init__(self, input_size):
|
276 |
+
super().__init__()
|
277 |
+
self.input_size = input_size
|
278 |
+
self.layers = torch.nn.Sequential(
|
279 |
+
torch.nn.Linear(self.input_size, 1024),
|
280 |
+
torch.nn.Dropout(0.2),
|
281 |
+
torch.nn.Linear(1024, 128),
|
282 |
+
torch.nn.Dropout(0.2),
|
283 |
+
torch.nn.Linear(128, 64),
|
284 |
+
torch.nn.Dropout(0.1),
|
285 |
+
torch.nn.Linear(64, 16),
|
286 |
+
torch.nn.Linear(16, 1)
|
287 |
+
)
|
288 |
+
|
289 |
+
def forward(self, x):
|
290 |
+
return self.layers(x)
|
291 |
+
|
292 |
+
# class semantic_head(torch.nn.Module):
|
293 |
+
# def __init__(self, input_size):
|
294 |
+
# super().__init__()
|
295 |
+
# self.input_size = input_size # for ViT-L-14 is 1024
|
296 |
+
# self.seg_head = torch.nn.Sequential(
|
297 |
+
# torch.nn.Linear(input_size, 128),
|
298 |
+
# torch.nn.Dropout(0.2),
|
299 |
+
# torch.nn.Linear(128, 64),
|
300 |
+
# torch.nn.Dropout(0.1),
|
301 |
+
# torch.nn.Linear(64, 16),
|
302 |
+
# torch.nn.Linear(16, 1),
|
303 |
+
# )
|
304 |
+
# self.sigmoid = torch.nn.Sigmoid()
|
305 |
+
|
306 |
+
# def forward(self, x):
|
307 |
+
# return self.sigmoid(self.seg_head(x))
|
308 |
+
|
309 |
+
def create_model_and_transforms(
|
310 |
+
model_name: str,
|
311 |
+
pretrained: Optional[str] = None,
|
312 |
+
precision: str = 'fp32',
|
313 |
+
device: Union[str, torch.device] = 'cpu',
|
314 |
+
jit: bool = False,
|
315 |
+
force_quick_gelu: bool = False,
|
316 |
+
force_custom_text: bool = False,
|
317 |
+
force_patch_dropout: Optional[float] = None,
|
318 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
319 |
+
pretrained_image: bool = False,
|
320 |
+
pretrained_hf: bool = True,
|
321 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
322 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
323 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
324 |
+
cache_dir: Optional[str] = None,
|
325 |
+
light_augmentation = False,
|
326 |
+
output_dict: Optional[bool] = None,
|
327 |
+
with_score_predictor: bool = False,
|
328 |
+
with_region_predictor: bool = False
|
329 |
+
):
|
330 |
+
model = create_model(
|
331 |
+
model_name,
|
332 |
+
pretrained,
|
333 |
+
precision=precision,
|
334 |
+
device=device,
|
335 |
+
jit=jit,
|
336 |
+
force_quick_gelu=force_quick_gelu,
|
337 |
+
force_custom_text=force_custom_text,
|
338 |
+
force_patch_dropout=force_patch_dropout,
|
339 |
+
force_image_size=force_image_size,
|
340 |
+
pretrained_image=pretrained_image,
|
341 |
+
pretrained_hf=pretrained_hf,
|
342 |
+
cache_dir=cache_dir,
|
343 |
+
output_dict=output_dict,
|
344 |
+
)
|
345 |
+
|
346 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
347 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
348 |
+
|
349 |
+
if with_score_predictor:
|
350 |
+
model.score_predictor = MLP(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype)
|
351 |
+
|
352 |
+
if with_region_predictor:
|
353 |
+
# model.region_predictor = semantic_head(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype)
|
354 |
+
model.region_predictor = torch.nn.Linear(model.visual.proj.size(0), 1).to(device=device, dtype=model.visual.proj.dtype)
|
355 |
+
# preprocess_train = image_transform_region(
|
356 |
+
# model.visual.image_size,
|
357 |
+
# is_train=True,
|
358 |
+
# mean=image_mean,
|
359 |
+
# std=image_std
|
360 |
+
# )
|
361 |
+
# preprocess_val = image_transform_region(
|
362 |
+
# model.visual.image_size,
|
363 |
+
# is_train=False,
|
364 |
+
# mean=image_mean,
|
365 |
+
# std=image_std
|
366 |
+
# )
|
367 |
+
|
368 |
+
if light_augmentation:
|
369 |
+
preprocess_val = image_transform(
|
370 |
+
model.visual.image_size,
|
371 |
+
is_train=False,
|
372 |
+
mean=image_mean,
|
373 |
+
std=image_std,
|
374 |
+
resize_longest_max=True,
|
375 |
+
)
|
376 |
+
preprocess_train = preprocess_val
|
377 |
+
else:
|
378 |
+
preprocess_train = image_transform(
|
379 |
+
model.visual.image_size,
|
380 |
+
is_train=True,
|
381 |
+
mean=image_mean,
|
382 |
+
std=image_std
|
383 |
+
)
|
384 |
+
preprocess_val = image_transform(
|
385 |
+
model.visual.image_size,
|
386 |
+
is_train=False,
|
387 |
+
mean=image_mean,
|
388 |
+
std=image_std
|
389 |
+
)
|
390 |
+
|
391 |
+
return model, preprocess_train, preprocess_val
|
392 |
+
|
393 |
+
|
394 |
+
def create_model_from_pretrained(
|
395 |
+
model_name: str,
|
396 |
+
pretrained: Optional[str] = None,
|
397 |
+
precision: str = 'fp32',
|
398 |
+
device: Union[str, torch.device] = 'cpu',
|
399 |
+
jit: bool = False,
|
400 |
+
force_quick_gelu: bool = False,
|
401 |
+
force_custom_text: bool = False,
|
402 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
403 |
+
return_transform: bool = True,
|
404 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
405 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
406 |
+
cache_dir: Optional[str] = None,
|
407 |
+
):
|
408 |
+
model = create_model(
|
409 |
+
model_name,
|
410 |
+
pretrained,
|
411 |
+
precision=precision,
|
412 |
+
device=device,
|
413 |
+
jit=jit,
|
414 |
+
force_quick_gelu=force_quick_gelu,
|
415 |
+
force_custom_text=force_custom_text,
|
416 |
+
force_image_size=force_image_size,
|
417 |
+
cache_dir=cache_dir,
|
418 |
+
require_pretrained=True,
|
419 |
+
)
|
420 |
+
|
421 |
+
if not return_transform:
|
422 |
+
return model
|
423 |
+
|
424 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
425 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
426 |
+
preprocess = image_transform(
|
427 |
+
model.visual.image_size,
|
428 |
+
is_train=False,
|
429 |
+
mean=image_mean,
|
430 |
+
std=image_std,
|
431 |
+
)
|
432 |
+
|
433 |
+
return model, preprocess
|
diffsynth/extensions/ImageQualityMetric/open_clip/generation_utils.py
ADDED
File without changes
|
diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HF architecture dict:
|
2 |
+
arch_dict = {
|
3 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
+
"roberta": {
|
5 |
+
"config_names": {
|
6 |
+
"context_length": "max_position_embeddings",
|
7 |
+
"vocab_size": "vocab_size",
|
8 |
+
"width": "hidden_size",
|
9 |
+
"heads": "num_attention_heads",
|
10 |
+
"layers": "num_hidden_layers",
|
11 |
+
"layer_attr": "layer",
|
12 |
+
"token_embeddings_attr": "embeddings"
|
13 |
+
},
|
14 |
+
"pooler": "mean_pooler",
|
15 |
+
},
|
16 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
+
"xlm-roberta": {
|
18 |
+
"config_names": {
|
19 |
+
"context_length": "max_position_embeddings",
|
20 |
+
"vocab_size": "vocab_size",
|
21 |
+
"width": "hidden_size",
|
22 |
+
"heads": "num_attention_heads",
|
23 |
+
"layers": "num_hidden_layers",
|
24 |
+
"layer_attr": "layer",
|
25 |
+
"token_embeddings_attr": "embeddings"
|
26 |
+
},
|
27 |
+
"pooler": "mean_pooler",
|
28 |
+
},
|
29 |
+
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
+
"mt5": {
|
31 |
+
"config_names": {
|
32 |
+
# unlimited seqlen
|
33 |
+
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
+
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
+
"context_length": "",
|
36 |
+
"vocab_size": "vocab_size",
|
37 |
+
"width": "d_model",
|
38 |
+
"heads": "num_heads",
|
39 |
+
"layers": "num_layers",
|
40 |
+
"layer_attr": "block",
|
41 |
+
"token_embeddings_attr": "embed_tokens"
|
42 |
+
},
|
43 |
+
"pooler": "mean_pooler",
|
44 |
+
},
|
45 |
+
}
|
diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" huggingface model adapter
|
2 |
+
|
3 |
+
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch import TensorType
|
11 |
+
|
12 |
+
try:
|
13 |
+
import transformers
|
14 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
+
except ImportError as e:
|
18 |
+
transformers = None
|
19 |
+
|
20 |
+
|
21 |
+
class BaseModelOutput:
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class PretrainedConfig:
|
26 |
+
pass
|
27 |
+
|
28 |
+
from .hf_configs import arch_dict
|
29 |
+
|
30 |
+
|
31 |
+
# utils
|
32 |
+
def _camel2snake(s):
|
33 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
34 |
+
|
35 |
+
|
36 |
+
# TODO: ?last - for gpt-like models
|
37 |
+
_POOLERS = {}
|
38 |
+
|
39 |
+
|
40 |
+
def register_pooler(cls):
|
41 |
+
"""Decorator registering pooler class"""
|
42 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
43 |
+
return cls
|
44 |
+
|
45 |
+
|
46 |
+
@register_pooler
|
47 |
+
class MeanPooler(nn.Module):
|
48 |
+
"""Mean pooling"""
|
49 |
+
|
50 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
51 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
52 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
53 |
+
|
54 |
+
|
55 |
+
@register_pooler
|
56 |
+
class MaxPooler(nn.Module):
|
57 |
+
"""Max pooling"""
|
58 |
+
|
59 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
60 |
+
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
61 |
+
return masked_output.max(1).values
|
62 |
+
|
63 |
+
|
64 |
+
@register_pooler
|
65 |
+
class ClsPooler(nn.Module):
|
66 |
+
"""CLS token pooling"""
|
67 |
+
|
68 |
+
def __init__(self, use_pooler_output=True):
|
69 |
+
super().__init__()
|
70 |
+
self.cls_token_position = 0
|
71 |
+
self.use_pooler_output = use_pooler_output
|
72 |
+
|
73 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
74 |
+
if (self.use_pooler_output and
|
75 |
+
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
76 |
+
(x.pooler_output is not None)
|
77 |
+
):
|
78 |
+
return x.pooler_output
|
79 |
+
|
80 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
81 |
+
|
82 |
+
|
83 |
+
class HFTextEncoder(nn.Module):
|
84 |
+
"""HuggingFace model adapter"""
|
85 |
+
output_tokens: torch.jit.Final[bool]
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
model_name_or_path: str,
|
90 |
+
output_dim: int,
|
91 |
+
config: PretrainedConfig = None,
|
92 |
+
pooler_type: str = None,
|
93 |
+
proj: str = None,
|
94 |
+
pretrained: bool = True,
|
95 |
+
output_tokens: bool = False,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.output_tokens = output_tokens
|
99 |
+
self.output_dim = output_dim
|
100 |
+
|
101 |
+
# TODO: find better way to get this information
|
102 |
+
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
103 |
+
|
104 |
+
if transformers is None:
|
105 |
+
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
106 |
+
if config is None:
|
107 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
108 |
+
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
109 |
+
AutoModel.from_config, self.config)
|
110 |
+
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
111 |
+
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
112 |
+
self.transformer = create_func(model_args)
|
113 |
+
self.transformer = self.transformer.encoder
|
114 |
+
else:
|
115 |
+
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
116 |
+
else:
|
117 |
+
self.config = config
|
118 |
+
self.transformer = AutoModel.from_config(config)
|
119 |
+
if pooler_type is None: # get default arch pooler
|
120 |
+
pooler_type = (arch_dict[self.config.model_type]["pooler"])
|
121 |
+
|
122 |
+
self.pooler = _POOLERS[pooler_type]()
|
123 |
+
|
124 |
+
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
125 |
+
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
126 |
+
self.proj = nn.Identity()
|
127 |
+
elif proj == 'linear':
|
128 |
+
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
129 |
+
elif proj == 'mlp':
|
130 |
+
hidden_size = (d_model + output_dim) // 2
|
131 |
+
self.proj = nn.Sequential(
|
132 |
+
nn.Linear(d_model, hidden_size, bias=False),
|
133 |
+
nn.GELU(),
|
134 |
+
nn.Linear(hidden_size, output_dim, bias=False),
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x: TensorType):
|
138 |
+
attn_mask = (x != self.config.pad_token_id).long()
|
139 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
140 |
+
pooled_out = self.pooler(out, attn_mask)
|
141 |
+
projected = self.proj(pooled_out)
|
142 |
+
|
143 |
+
seq_len = out.last_hidden_state.shape[1]
|
144 |
+
tokens = (
|
145 |
+
out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :]
|
146 |
+
if type(self.pooler) == ClsPooler
|
147 |
+
else out.last_hidden_state
|
148 |
+
)
|
149 |
+
|
150 |
+
if self.output_tokens:
|
151 |
+
return projected, tokens
|
152 |
+
return projected
|
153 |
+
|
154 |
+
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
155 |
+
if not unlocked_layers: # full freezing
|
156 |
+
for n, p in self.transformer.named_parameters():
|
157 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
158 |
+
return
|
159 |
+
|
160 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
161 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
162 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
163 |
+
embeddings = getattr(
|
164 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
165 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
166 |
+
# freeze layers
|
167 |
+
for module in modules:
|
168 |
+
for n, p in module.named_parameters():
|
169 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
170 |
+
|
171 |
+
@torch.jit.ignore
|
172 |
+
def set_grad_checkpointing(self, enable=True):
|
173 |
+
self.transformer.gradient_checkpointing_enable()
|
174 |
+
|
175 |
+
def init_parameters(self):
|
176 |
+
pass
|
diffsynth/extensions/ImageQualityMetric/open_clip/loss.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from torch.nn.utils.rnn import pad_sequence
|
5 |
+
|
6 |
+
try:
|
7 |
+
import torch.distributed.nn
|
8 |
+
from torch import distributed as dist
|
9 |
+
|
10 |
+
has_distributed = True
|
11 |
+
except ImportError:
|
12 |
+
has_distributed = False
|
13 |
+
|
14 |
+
try:
|
15 |
+
import horovod.torch as hvd
|
16 |
+
except ImportError:
|
17 |
+
hvd = None
|
18 |
+
|
19 |
+
|
20 |
+
def gather_features(
|
21 |
+
image_features,
|
22 |
+
text_features,
|
23 |
+
local_loss=False,
|
24 |
+
gather_with_grad=False,
|
25 |
+
rank=0,
|
26 |
+
world_size=1,
|
27 |
+
use_horovod=False
|
28 |
+
):
|
29 |
+
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
30 |
+
if use_horovod:
|
31 |
+
assert hvd is not None, 'Please install horovod'
|
32 |
+
if gather_with_grad:
|
33 |
+
all_image_features = hvd.allgather(image_features)
|
34 |
+
all_text_features = hvd.allgather(text_features)
|
35 |
+
else:
|
36 |
+
with torch.no_grad():
|
37 |
+
all_image_features = hvd.allgather(image_features)
|
38 |
+
all_text_features = hvd.allgather(text_features)
|
39 |
+
if not local_loss:
|
40 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
41 |
+
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
42 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
43 |
+
gathered_image_features[rank] = image_features
|
44 |
+
gathered_text_features[rank] = text_features
|
45 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
46 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
47 |
+
else:
|
48 |
+
# We gather tensors from all gpus
|
49 |
+
if gather_with_grad:
|
50 |
+
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
51 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
52 |
+
else:
|
53 |
+
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
54 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
55 |
+
dist.all_gather(gathered_image_features, image_features)
|
56 |
+
dist.all_gather(gathered_text_features, text_features)
|
57 |
+
if not local_loss:
|
58 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
59 |
+
gathered_image_features[rank] = image_features
|
60 |
+
gathered_text_features[rank] = text_features
|
61 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
62 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
63 |
+
|
64 |
+
return all_image_features, all_text_features
|
65 |
+
|
66 |
+
|
67 |
+
class ClipLoss(nn.Module):
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
local_loss=False,
|
72 |
+
gather_with_grad=False,
|
73 |
+
cache_labels=False,
|
74 |
+
rank=0,
|
75 |
+
world_size=1,
|
76 |
+
use_horovod=False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
self.local_loss = local_loss
|
80 |
+
self.gather_with_grad = gather_with_grad
|
81 |
+
self.cache_labels = cache_labels
|
82 |
+
self.rank = rank
|
83 |
+
self.world_size = world_size
|
84 |
+
self.use_horovod = use_horovod
|
85 |
+
|
86 |
+
# cache state
|
87 |
+
self.prev_num_logits = 0
|
88 |
+
self.labels = {}
|
89 |
+
|
90 |
+
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
|
91 |
+
# calculated ground-truth and cache if enabled
|
92 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
93 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
94 |
+
if self.world_size > 1 and self.local_loss:
|
95 |
+
labels = labels + num_logits * self.rank
|
96 |
+
if self.cache_labels:
|
97 |
+
self.labels[device] = labels
|
98 |
+
self.prev_num_logits = num_logits
|
99 |
+
else:
|
100 |
+
labels = self.labels[device]
|
101 |
+
return labels
|
102 |
+
|
103 |
+
def get_logits(self, image_features, text_features, logit_scale):
|
104 |
+
if self.world_size > 1:
|
105 |
+
all_image_features, all_text_features = gather_features(
|
106 |
+
image_features, text_features,
|
107 |
+
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
108 |
+
|
109 |
+
if self.local_loss:
|
110 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
111 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
112 |
+
else:
|
113 |
+
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
114 |
+
logits_per_text = logits_per_image.T
|
115 |
+
else:
|
116 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
117 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
118 |
+
|
119 |
+
return logits_per_image, logits_per_text
|
120 |
+
|
121 |
+
def forward(self, image_features, text_features, logit_scale, output_dict=False):
|
122 |
+
device = image_features.device
|
123 |
+
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
|
124 |
+
|
125 |
+
labels = self.get_ground_truth(device, logits_per_image.shape[0])
|
126 |
+
|
127 |
+
total_loss = (
|
128 |
+
F.cross_entropy(logits_per_image, labels) +
|
129 |
+
F.cross_entropy(logits_per_text, labels)
|
130 |
+
) / 2
|
131 |
+
return total_loss
|
132 |
+
|
133 |
+
class PreferenceLoss(nn.Module):
|
134 |
+
|
135 |
+
def forward(self, logits_per_image, num_images, labels):
|
136 |
+
|
137 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
138 |
+
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
|
139 |
+
|
140 |
+
ce_loss = F.cross_entropy(paired_logits, labels)
|
141 |
+
return ce_loss
|
142 |
+
|
143 |
+
class HPSLoss(nn.Module):
|
144 |
+
|
145 |
+
def forward(self, text_logits, labels):
|
146 |
+
|
147 |
+
device = text_logits.device
|
148 |
+
text_0_logits, text_1_logits = text_logits.chunk(2, dim=-1)
|
149 |
+
label_0, label_1 = labels.chunk(2, dim=-1)
|
150 |
+
|
151 |
+
index = torch.arange(text_0_logits.shape[0], device=device, dtype=torch.long)
|
152 |
+
text_0_logits = text_0_logits[index, index]
|
153 |
+
text_1_logits = text_1_logits[index, index]
|
154 |
+
text_logits = torch.stack([text_0_logits, text_1_logits], dim=-1)
|
155 |
+
text_0_labels = torch.zeros(text_logits.shape[0], device=device, dtype=torch.long)
|
156 |
+
text_1_labels = text_0_labels + 1
|
157 |
+
|
158 |
+
text_0_loss = torch.nn.functional.cross_entropy(text_logits, text_0_labels, reduction="none")
|
159 |
+
text_1_loss = torch.nn.functional.cross_entropy(text_logits, text_1_labels, reduction="none")
|
160 |
+
|
161 |
+
text_loss = label_0 * text_0_loss + label_1 * text_1_loss
|
162 |
+
|
163 |
+
# absolute_example_weight = 1 / num_per_prompt
|
164 |
+
# denominator = absolute_example_weight.sum()
|
165 |
+
# weight_per_example = absolute_example_weight / denominator
|
166 |
+
# text_loss *= weight_per_example
|
167 |
+
|
168 |
+
text_loss = text_loss.sum()
|
169 |
+
return text_loss
|
170 |
+
|
171 |
+
class RankingLoss(nn.Module):
|
172 |
+
|
173 |
+
def forward(self, logits_per_image, num_images, labels, margin = 1.0):
|
174 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
175 |
+
label_list = [label for label in labels.split(num_images.tolist())]
|
176 |
+
# ranked_logits = [torch.index_select(paired_logits_list[i], 0, rank) for i, rank in enumerate(label_list)]
|
177 |
+
|
178 |
+
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-1)
|
179 |
+
padded_labels = pad_sequence(label_list, batch_first=True, padding_value=10)
|
180 |
+
|
181 |
+
# regulized_logits = torch.log(torch.sigmoid(paired_logits))
|
182 |
+
|
183 |
+
diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
|
184 |
+
# diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
|
185 |
+
# diff_label = torch.clamp(padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2), min=-1, max=1)
|
186 |
+
diff_label = - (padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2))
|
187 |
+
mask = torch.triu(torch.ones(diff.shape[1], diff.shape[1]), diagonal=1).bool().detach()
|
188 |
+
|
189 |
+
loss = torch.clamp(margin - torch.mul(diff[:, ~mask],diff_label[:,~mask]), min=0).mean()
|
190 |
+
return loss
|
191 |
+
|
192 |
+
class CoCaLoss(ClipLoss):
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
caption_loss_weight,
|
196 |
+
clip_loss_weight,
|
197 |
+
pad_id=0, # pad_token for open_clip custom tokenizer
|
198 |
+
local_loss=False,
|
199 |
+
gather_with_grad=False,
|
200 |
+
cache_labels=False,
|
201 |
+
rank=0,
|
202 |
+
world_size=1,
|
203 |
+
use_horovod=False,
|
204 |
+
):
|
205 |
+
super().__init__(
|
206 |
+
local_loss=local_loss,
|
207 |
+
gather_with_grad=gather_with_grad,
|
208 |
+
cache_labels=cache_labels,
|
209 |
+
rank=rank,
|
210 |
+
world_size=world_size,
|
211 |
+
use_horovod=use_horovod
|
212 |
+
)
|
213 |
+
|
214 |
+
self.clip_loss_weight = clip_loss_weight
|
215 |
+
self.caption_loss_weight = caption_loss_weight
|
216 |
+
self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id)
|
217 |
+
|
218 |
+
def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False):
|
219 |
+
clip_loss = super().forward(image_features, text_features, logit_scale)
|
220 |
+
clip_loss = self.clip_loss_weight * clip_loss
|
221 |
+
|
222 |
+
caption_loss = self.caption_loss(
|
223 |
+
logits.permute(0, 2, 1),
|
224 |
+
labels,
|
225 |
+
)
|
226 |
+
caption_loss = caption_loss * self.caption_loss_weight
|
227 |
+
|
228 |
+
if output_dict:
|
229 |
+
return {"contrastive_loss": clip_loss, "caption_loss": caption_loss}
|
230 |
+
|
231 |
+
return clip_loss, caption_loss
|
232 |
+
|
233 |
+
|
234 |
+
class DistillClipLoss(ClipLoss):
|
235 |
+
|
236 |
+
def dist_loss(self, teacher_logits, student_logits):
|
237 |
+
return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
image_features,
|
242 |
+
text_features,
|
243 |
+
logit_scale,
|
244 |
+
dist_image_features,
|
245 |
+
dist_text_features,
|
246 |
+
dist_logit_scale,
|
247 |
+
output_dict=False,
|
248 |
+
):
|
249 |
+
logits_per_image, logits_per_text = \
|
250 |
+
self.get_logits(image_features, text_features, logit_scale)
|
251 |
+
|
252 |
+
dist_logits_per_image, dist_logits_per_text = \
|
253 |
+
self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
|
254 |
+
|
255 |
+
labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0])
|
256 |
+
|
257 |
+
contrastive_loss = (
|
258 |
+
F.cross_entropy(logits_per_image, labels) +
|
259 |
+
F.cross_entropy(logits_per_text, labels)
|
260 |
+
) / 2
|
261 |
+
|
262 |
+
distill_loss = (
|
263 |
+
self.dist_loss(dist_logits_per_image, logits_per_image) +
|
264 |
+
self.dist_loss(dist_logits_per_text, logits_per_text)
|
265 |
+
) / 2
|
266 |
+
|
267 |
+
if output_dict:
|
268 |
+
return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
|
269 |
+
|
270 |
+
return contrastive_loss, distill_loss
|
diffsynth/extensions/ImageQualityMetric/open_clip/model.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP Model
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
from torch.utils.checkpoint import checkpoint
|
15 |
+
|
16 |
+
from .hf_model import HFTextEncoder
|
17 |
+
from .modified_resnet import ModifiedResNet
|
18 |
+
from .timm_model import TimmModel
|
19 |
+
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
20 |
+
from .utils import to_2tuple
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class CLIPVisionCfg:
|
25 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
26 |
+
width: int = 768
|
27 |
+
head_width: int = 64
|
28 |
+
mlp_ratio: float = 4.0
|
29 |
+
patch_size: int = 16
|
30 |
+
image_size: Union[Tuple[int, int], int] = 224
|
31 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
32 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
33 |
+
input_patchnorm: bool = False # whether to use dual patchnorm - would only apply the input layernorm on each patch, as post-layernorm already exist in original clip vit design
|
34 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
35 |
+
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer
|
36 |
+
n_queries: int = 256 # n_queries for attentional pooler
|
37 |
+
attn_pooler_heads: int = 8 # n heads for attentional_pooling
|
38 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
39 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
40 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
41 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
42 |
+
timm_proj_bias: bool = False # enable bias final projection
|
43 |
+
timm_drop: float = 0. # head dropout
|
44 |
+
timm_drop_path: Optional[float] = None # backbone stochastic depth
|
45 |
+
output_tokens: bool = False
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class CLIPTextCfg:
|
50 |
+
context_length: int = 77
|
51 |
+
vocab_size: int = 49408
|
52 |
+
width: int = 512
|
53 |
+
heads: int = 8
|
54 |
+
layers: int = 12
|
55 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
56 |
+
hf_model_name: str = None
|
57 |
+
hf_tokenizer_name: str = None
|
58 |
+
hf_model_pretrained: bool = True
|
59 |
+
proj: str = 'mlp'
|
60 |
+
pooler_type: str = 'mean_pooler'
|
61 |
+
embed_cls: bool = False
|
62 |
+
pad_id: int = 0
|
63 |
+
output_tokens: bool = False
|
64 |
+
|
65 |
+
|
66 |
+
def get_cast_dtype(precision: str):
|
67 |
+
cast_dtype = None
|
68 |
+
if precision == 'bf16':
|
69 |
+
cast_dtype = torch.bfloat16
|
70 |
+
elif precision == 'fp16':
|
71 |
+
cast_dtype = torch.float16
|
72 |
+
return cast_dtype
|
73 |
+
|
74 |
+
|
75 |
+
def _build_vision_tower(
|
76 |
+
embed_dim: int,
|
77 |
+
vision_cfg: CLIPVisionCfg,
|
78 |
+
quick_gelu: bool = False,
|
79 |
+
cast_dtype: Optional[torch.dtype] = None
|
80 |
+
):
|
81 |
+
if isinstance(vision_cfg, dict):
|
82 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
83 |
+
|
84 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
85 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
86 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
87 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
88 |
+
|
89 |
+
if vision_cfg.timm_model_name:
|
90 |
+
visual = TimmModel(
|
91 |
+
vision_cfg.timm_model_name,
|
92 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
93 |
+
pool=vision_cfg.timm_pool,
|
94 |
+
proj=vision_cfg.timm_proj,
|
95 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
96 |
+
drop=vision_cfg.timm_drop,
|
97 |
+
drop_path=vision_cfg.timm_drop_path,
|
98 |
+
embed_dim=embed_dim,
|
99 |
+
image_size=vision_cfg.image_size,
|
100 |
+
)
|
101 |
+
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
102 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
103 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
104 |
+
visual = ModifiedResNet(
|
105 |
+
layers=vision_cfg.layers,
|
106 |
+
output_dim=embed_dim,
|
107 |
+
heads=vision_heads,
|
108 |
+
image_size=vision_cfg.image_size,
|
109 |
+
width=vision_cfg.width,
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
113 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
114 |
+
visual = VisionTransformer(
|
115 |
+
image_size=vision_cfg.image_size,
|
116 |
+
patch_size=vision_cfg.patch_size,
|
117 |
+
width=vision_cfg.width,
|
118 |
+
layers=vision_cfg.layers,
|
119 |
+
heads=vision_heads,
|
120 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
+
ls_init_value=vision_cfg.ls_init_value,
|
122 |
+
patch_dropout=vision_cfg.patch_dropout,
|
123 |
+
input_patchnorm=vision_cfg.input_patchnorm,
|
124 |
+
global_average_pool=vision_cfg.global_average_pool,
|
125 |
+
attentional_pool=vision_cfg.attentional_pool,
|
126 |
+
n_queries=vision_cfg.n_queries,
|
127 |
+
attn_pooler_heads=vision_cfg.attn_pooler_heads,
|
128 |
+
output_tokens=vision_cfg.output_tokens,
|
129 |
+
output_dim=embed_dim,
|
130 |
+
act_layer=act_layer,
|
131 |
+
norm_layer=norm_layer,
|
132 |
+
)
|
133 |
+
|
134 |
+
return visual
|
135 |
+
|
136 |
+
|
137 |
+
def _build_text_tower(
|
138 |
+
embed_dim: int,
|
139 |
+
text_cfg: CLIPTextCfg,
|
140 |
+
quick_gelu: bool = False,
|
141 |
+
cast_dtype: Optional[torch.dtype] = None,
|
142 |
+
):
|
143 |
+
if isinstance(text_cfg, dict):
|
144 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
145 |
+
|
146 |
+
if text_cfg.hf_model_name:
|
147 |
+
text = HFTextEncoder(
|
148 |
+
text_cfg.hf_model_name,
|
149 |
+
output_dim=embed_dim,
|
150 |
+
proj=text_cfg.proj,
|
151 |
+
pooler_type=text_cfg.pooler_type,
|
152 |
+
pretrained=text_cfg.hf_model_pretrained,
|
153 |
+
output_tokens=text_cfg.output_tokens,
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
157 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
158 |
+
|
159 |
+
text = TextTransformer(
|
160 |
+
context_length=text_cfg.context_length,
|
161 |
+
vocab_size=text_cfg.vocab_size,
|
162 |
+
width=text_cfg.width,
|
163 |
+
heads=text_cfg.heads,
|
164 |
+
layers=text_cfg.layers,
|
165 |
+
ls_init_value=text_cfg.ls_init_value,
|
166 |
+
output_dim=embed_dim,
|
167 |
+
embed_cls=text_cfg.embed_cls,
|
168 |
+
output_tokens=text_cfg.output_tokens,
|
169 |
+
pad_id=text_cfg.pad_id,
|
170 |
+
act_layer=act_layer,
|
171 |
+
norm_layer=norm_layer,
|
172 |
+
)
|
173 |
+
return text
|
174 |
+
|
175 |
+
|
176 |
+
class CLIP(nn.Module):
|
177 |
+
output_dict: torch.jit.Final[bool]
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
embed_dim: int,
|
182 |
+
vision_cfg: CLIPVisionCfg,
|
183 |
+
text_cfg: CLIPTextCfg,
|
184 |
+
quick_gelu: bool = False,
|
185 |
+
cast_dtype: Optional[torch.dtype] = None,
|
186 |
+
output_dict: bool = False,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
self.output_dict = output_dict
|
190 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
191 |
+
|
192 |
+
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
193 |
+
self.transformer = text.transformer
|
194 |
+
self.vocab_size = text.vocab_size
|
195 |
+
self.token_embedding = text.token_embedding
|
196 |
+
self.positional_embedding = text.positional_embedding
|
197 |
+
self.ln_final = text.ln_final
|
198 |
+
self.text_projection = text.text_projection
|
199 |
+
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
200 |
+
|
201 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
202 |
+
|
203 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
204 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
205 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
206 |
+
|
207 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
208 |
+
locked_layers = []
|
209 |
+
locked_layers.append(self.token_embedding)
|
210 |
+
self.positional_embedding.requires_grad = False
|
211 |
+
if unlocked_layers > 0:
|
212 |
+
locked_layers.append(self.transformer.resblocks[:-unlocked_layers])
|
213 |
+
else:
|
214 |
+
locked_layers.append(self.transformer)
|
215 |
+
locked_layers.append(self.ln_final)
|
216 |
+
self.text_projection.requires_grad = False
|
217 |
+
|
218 |
+
# freeze layers
|
219 |
+
for module in locked_layers:
|
220 |
+
for n, p in module.named_parameters():
|
221 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
222 |
+
|
223 |
+
@torch.jit.ignore
|
224 |
+
def set_grad_checkpointing(self, enable=True):
|
225 |
+
self.visual.set_grad_checkpointing(enable)
|
226 |
+
self.transformer.grad_checkpointing = enable
|
227 |
+
|
228 |
+
def encode_image(self, image, normalize: bool = False):
|
229 |
+
features = self.visual(image)
|
230 |
+
return F.normalize(features, dim=-1) if normalize else features
|
231 |
+
|
232 |
+
def encode_text(self, text, normalize: bool = False):
|
233 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
234 |
+
|
235 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
236 |
+
|
237 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
238 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
239 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
240 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
241 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
242 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
243 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
244 |
+
return F.normalize(x, dim=-1) if normalize else x
|
245 |
+
|
246 |
+
def forward(self, image, text):
|
247 |
+
image_features = self.encode_image(image, normalize=True)
|
248 |
+
text_features = self.encode_text(text, normalize=True)
|
249 |
+
if self.output_dict:
|
250 |
+
return {
|
251 |
+
"image_features": image_features,
|
252 |
+
"text_features": text_features,
|
253 |
+
"logit_scale": self.logit_scale.exp()
|
254 |
+
}
|
255 |
+
return image_features, text_features, self.logit_scale.exp()
|
256 |
+
|
257 |
+
|
258 |
+
class CustomTextCLIP(nn.Module):
|
259 |
+
output_dict: torch.jit.Final[bool]
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
embed_dim: int,
|
264 |
+
vision_cfg: CLIPVisionCfg,
|
265 |
+
text_cfg: CLIPTextCfg,
|
266 |
+
quick_gelu: bool = False,
|
267 |
+
cast_dtype: Optional[torch.dtype] = None,
|
268 |
+
output_dict: bool = False,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
self.output_dict = output_dict
|
272 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
273 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
274 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
275 |
+
|
276 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
277 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
278 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
279 |
+
|
280 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
281 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
282 |
+
|
283 |
+
@torch.jit.ignore
|
284 |
+
def set_grad_checkpointing(self, enable=True):
|
285 |
+
self.visual.set_grad_checkpointing(enable)
|
286 |
+
self.text.set_grad_checkpointing(enable)
|
287 |
+
|
288 |
+
def encode_image(self, image, normalize: bool = False):
|
289 |
+
features = self.visual(image)
|
290 |
+
return F.normalize(features, dim=-1) if normalize else features
|
291 |
+
|
292 |
+
def encode_text(self, text, normalize: bool = False):
|
293 |
+
features = self.text(text)
|
294 |
+
return F.normalize(features, dim=-1) if normalize else features
|
295 |
+
|
296 |
+
def forward(self, image, text):
|
297 |
+
image_features = self.encode_image(image, normalize=True)
|
298 |
+
text_features = self.encode_text(text, normalize=True)
|
299 |
+
if self.output_dict:
|
300 |
+
return {
|
301 |
+
"image_features": image_features,
|
302 |
+
"text_features": text_features,
|
303 |
+
"logit_scale": self.logit_scale.exp()
|
304 |
+
}
|
305 |
+
return image_features, text_features, self.logit_scale.exp()
|
306 |
+
|
307 |
+
|
308 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
309 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
310 |
+
|
311 |
+
def _convert_weights(l):
|
312 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
313 |
+
l.weight.data = l.weight.data.to(dtype)
|
314 |
+
if l.bias is not None:
|
315 |
+
l.bias.data = l.bias.data.to(dtype)
|
316 |
+
|
317 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
318 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
319 |
+
tensor = getattr(l, attr)
|
320 |
+
if tensor is not None:
|
321 |
+
tensor.data = tensor.data.to(dtype)
|
322 |
+
|
323 |
+
for name in ["text_projection", "proj"]:
|
324 |
+
if hasattr(l, name):
|
325 |
+
attr = getattr(l, name)
|
326 |
+
if attr is not None:
|
327 |
+
attr.data = attr.data.to(dtype)
|
328 |
+
|
329 |
+
model.apply(_convert_weights)
|
330 |
+
|
331 |
+
|
332 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
333 |
+
|
334 |
+
|
335 |
+
# used to maintain checkpoint compatibility
|
336 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
337 |
+
if 'text_projection' in state_dict:
|
338 |
+
# old format state_dict, move text tower -> .text
|
339 |
+
new_state_dict = {}
|
340 |
+
for k, v in state_dict.items():
|
341 |
+
if any(k.startswith(p) for p in (
|
342 |
+
'text_projection',
|
343 |
+
'positional_embedding',
|
344 |
+
'token_embedding',
|
345 |
+
'transformer',
|
346 |
+
'ln_final',
|
347 |
+
)):
|
348 |
+
k = 'text.' + k
|
349 |
+
new_state_dict[k] = v
|
350 |
+
return new_state_dict
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def build_model_from_openai_state_dict(
|
355 |
+
state_dict: dict,
|
356 |
+
quick_gelu=True,
|
357 |
+
cast_dtype=torch.float16,
|
358 |
+
):
|
359 |
+
vit = "visual.proj" in state_dict
|
360 |
+
|
361 |
+
if vit:
|
362 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
363 |
+
vision_layers = len(
|
364 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
365 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
366 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
367 |
+
image_size = vision_patch_size * grid_size
|
368 |
+
else:
|
369 |
+
counts: list = [
|
370 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
371 |
+
vision_layers = tuple(counts)
|
372 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
373 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
374 |
+
vision_patch_size = None
|
375 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
376 |
+
image_size = output_width * 32
|
377 |
+
|
378 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
379 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
380 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
381 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
382 |
+
transformer_heads = transformer_width // 64
|
383 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
384 |
+
|
385 |
+
vision_cfg = CLIPVisionCfg(
|
386 |
+
layers=vision_layers,
|
387 |
+
width=vision_width,
|
388 |
+
patch_size=vision_patch_size,
|
389 |
+
image_size=image_size,
|
390 |
+
)
|
391 |
+
text_cfg = CLIPTextCfg(
|
392 |
+
context_length=context_length,
|
393 |
+
vocab_size=vocab_size,
|
394 |
+
width=transformer_width,
|
395 |
+
heads=transformer_heads,
|
396 |
+
layers=transformer_layers,
|
397 |
+
)
|
398 |
+
model = CLIP(
|
399 |
+
embed_dim,
|
400 |
+
vision_cfg=vision_cfg,
|
401 |
+
text_cfg=text_cfg,
|
402 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
403 |
+
cast_dtype=cast_dtype,
|
404 |
+
)
|
405 |
+
|
406 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
407 |
+
state_dict.pop(key, None)
|
408 |
+
|
409 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
410 |
+
model.load_state_dict(state_dict)
|
411 |
+
return model.eval()
|
412 |
+
|
413 |
+
|
414 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
415 |
+
model.eval()
|
416 |
+
image_size = model.visual.image_size
|
417 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
418 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
419 |
+
model = torch.jit.trace_module(
|
420 |
+
model,
|
421 |
+
inputs=dict(
|
422 |
+
forward=(example_images, example_text),
|
423 |
+
encode_text=(example_text,),
|
424 |
+
encode_image=(example_images,)
|
425 |
+
))
|
426 |
+
model.visual.image_size = image_size
|
427 |
+
return model
|
428 |
+
|
429 |
+
|
430 |
+
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
|
431 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
432 |
+
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
433 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
434 |
+
return
|
435 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
436 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
437 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
438 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
439 |
+
return
|
440 |
+
|
441 |
+
if extra_tokens:
|
442 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
443 |
+
else:
|
444 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
445 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
446 |
+
|
447 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
448 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
449 |
+
pos_emb_img = F.interpolate(
|
450 |
+
pos_emb_img,
|
451 |
+
size=grid_size,
|
452 |
+
mode=interpolation,
|
453 |
+
antialias=antialias,
|
454 |
+
align_corners=False,
|
455 |
+
)
|
456 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
457 |
+
if pos_emb_tok is not None:
|
458 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
459 |
+
else:
|
460 |
+
new_pos_embed = pos_emb_img
|
461 |
+
state_dict['visual.positional_embedding'] = new_pos_embed
|
diffsynth/extensions/ImageQualityMetric/open_clip/model_configs/ViT-H-14.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 32,
|
6 |
+
"width": 1280,
|
7 |
+
"head_width": 80,
|
8 |
+
"patch_size": 14
|
9 |
+
},
|
10 |
+
"text_cfg": {
|
11 |
+
"context_length": 77,
|
12 |
+
"vocab_size": 49408,
|
13 |
+
"width": 1024,
|
14 |
+
"heads": 16,
|
15 |
+
"layers": 24
|
16 |
+
}
|
17 |
+
}
|
diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from .utils import freeze_batch_norm_2d
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.act1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.act2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.act3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.act1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.act2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.act3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x, key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0.,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
|
92 |
+
return x[0]
|
93 |
+
|
94 |
+
|
95 |
+
class ModifiedResNet(nn.Module):
|
96 |
+
"""
|
97 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
98 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
99 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
100 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
104 |
+
super().__init__()
|
105 |
+
self.output_dim = output_dim
|
106 |
+
self.image_size = image_size
|
107 |
+
|
108 |
+
# the 3-layer stem
|
109 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
110 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.act1 = nn.ReLU(inplace=True)
|
112 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
113 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
114 |
+
self.act2 = nn.ReLU(inplace=True)
|
115 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
116 |
+
self.bn3 = nn.BatchNorm2d(width)
|
117 |
+
self.act3 = nn.ReLU(inplace=True)
|
118 |
+
self.avgpool = nn.AvgPool2d(2)
|
119 |
+
|
120 |
+
# residual layers
|
121 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
122 |
+
self.layer1 = self._make_layer(width, layers[0])
|
123 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
124 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
125 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
126 |
+
|
127 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
128 |
+
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
129 |
+
|
130 |
+
self.init_parameters()
|
131 |
+
|
132 |
+
def _make_layer(self, planes, blocks, stride=1):
|
133 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
134 |
+
|
135 |
+
self._inplanes = planes * Bottleneck.expansion
|
136 |
+
for _ in range(1, blocks):
|
137 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
138 |
+
|
139 |
+
return nn.Sequential(*layers)
|
140 |
+
|
141 |
+
def init_parameters(self):
|
142 |
+
if self.attnpool is not None:
|
143 |
+
std = self.attnpool.c_proj.in_features ** -0.5
|
144 |
+
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
145 |
+
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
146 |
+
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
147 |
+
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
148 |
+
|
149 |
+
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
150 |
+
for name, param in resnet_block.named_parameters():
|
151 |
+
if name.endswith("bn3.weight"):
|
152 |
+
nn.init.zeros_(param)
|
153 |
+
|
154 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
155 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
156 |
+
for param in self.parameters():
|
157 |
+
param.requires_grad = False
|
158 |
+
if freeze_bn_stats:
|
159 |
+
freeze_batch_norm_2d(self)
|
160 |
+
|
161 |
+
@torch.jit.ignore
|
162 |
+
def set_grad_checkpointing(self, enable=True):
|
163 |
+
# FIXME support for non-transformer
|
164 |
+
pass
|
165 |
+
|
166 |
+
def stem(self, x):
|
167 |
+
x = self.act1(self.bn1(self.conv1(x)))
|
168 |
+
x = self.act2(self.bn2(self.conv2(x)))
|
169 |
+
x = self.act3(self.bn3(self.conv3(x)))
|
170 |
+
x = self.avgpool(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.stem(x)
|
175 |
+
x = self.layer1(x)
|
176 |
+
x = self.layer2(x)
|
177 |
+
x = self.layer3(x)
|
178 |
+
x = self.layer4(x)
|
179 |
+
x = self.attnpool(x)
|
180 |
+
|
181 |
+
return x
|
diffsynth/extensions/ImageQualityMetric/open_clip/openai.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" OpenAI pretrained model functions
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
13 |
+
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
14 |
+
|
15 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
16 |
+
|
17 |
+
|
18 |
+
def list_openai_models() -> List[str]:
|
19 |
+
"""Returns the names of available CLIP models"""
|
20 |
+
return list_pretrained_models_by_tag('openai')
|
21 |
+
|
22 |
+
|
23 |
+
def load_openai_model(
|
24 |
+
name: str,
|
25 |
+
precision: Optional[str] = None,
|
26 |
+
device: Optional[Union[str, torch.device]] = None,
|
27 |
+
jit: bool = True,
|
28 |
+
cache_dir: Optional[str] = None,
|
29 |
+
):
|
30 |
+
"""Load a CLIP model
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
name : str
|
35 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
36 |
+
precision: str
|
37 |
+
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
38 |
+
device : Union[str, torch.device]
|
39 |
+
The device to put the loaded model
|
40 |
+
jit : bool
|
41 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
42 |
+
cache_dir : Optional[str]
|
43 |
+
The directory to cache the downloaded model weights
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
model : torch.nn.Module
|
48 |
+
The CLIP model
|
49 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
50 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
51 |
+
"""
|
52 |
+
if device is None:
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
if precision is None:
|
55 |
+
precision = 'fp32' if device == 'cpu' else 'fp16'
|
56 |
+
|
57 |
+
if get_pretrained_url(name, 'openai'):
|
58 |
+
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
59 |
+
elif os.path.isfile(name):
|
60 |
+
model_path = name
|
61 |
+
else:
|
62 |
+
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
63 |
+
|
64 |
+
try:
|
65 |
+
# loading JIT archive
|
66 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
67 |
+
state_dict = None
|
68 |
+
except RuntimeError:
|
69 |
+
# loading saved state dict
|
70 |
+
if jit:
|
71 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
72 |
+
jit = False
|
73 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
+
|
75 |
+
if not jit:
|
76 |
+
# Build a non-jit model from the OpenAI jitted model state dict
|
77 |
+
cast_dtype = get_cast_dtype(precision)
|
78 |
+
try:
|
79 |
+
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
80 |
+
except KeyError:
|
81 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
82 |
+
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
83 |
+
|
84 |
+
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
85 |
+
model = model.to(device)
|
86 |
+
if precision.startswith('amp') or precision == 'fp32':
|
87 |
+
model.float()
|
88 |
+
elif precision == 'bf16':
|
89 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
90 |
+
|
91 |
+
return model
|
92 |
+
|
93 |
+
# patch the device names
|
94 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
95 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
96 |
+
|
97 |
+
def patch_device(module):
|
98 |
+
try:
|
99 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
100 |
+
except RuntimeError:
|
101 |
+
graphs = []
|
102 |
+
|
103 |
+
if hasattr(module, "forward1"):
|
104 |
+
graphs.append(module.forward1.graph)
|
105 |
+
|
106 |
+
for graph in graphs:
|
107 |
+
for node in graph.findAllNodes("prim::Constant"):
|
108 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
109 |
+
node.copyAttributes(device_node)
|
110 |
+
|
111 |
+
model.apply(patch_device)
|
112 |
+
patch_device(model.encode_image)
|
113 |
+
patch_device(model.encode_text)
|
114 |
+
|
115 |
+
# patch dtype to float32 (typically for CPU)
|
116 |
+
if precision == 'fp32':
|
117 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
118 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
119 |
+
float_node = float_input.node()
|
120 |
+
|
121 |
+
def patch_float(module):
|
122 |
+
try:
|
123 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
124 |
+
except RuntimeError:
|
125 |
+
graphs = []
|
126 |
+
|
127 |
+
if hasattr(module, "forward1"):
|
128 |
+
graphs.append(module.forward1.graph)
|
129 |
+
|
130 |
+
for graph in graphs:
|
131 |
+
for node in graph.findAllNodes("aten::to"):
|
132 |
+
inputs = list(node.inputs())
|
133 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
134 |
+
if inputs[i].node()["value"] == 5:
|
135 |
+
inputs[i].node().copyAttributes(float_node)
|
136 |
+
|
137 |
+
model.apply(patch_float)
|
138 |
+
patch_float(model.encode_image)
|
139 |
+
patch_float(model.encode_text)
|
140 |
+
model.float()
|
141 |
+
|
142 |
+
# ensure image_size attr available at consistent location for both jit and non-jit
|
143 |
+
model.visual.image_size = model.input_resolution.item()
|
144 |
+
return model
|
diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from functools import partial
|
6 |
+
from typing import Dict, Union
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from .version import __version__
|
11 |
+
|
12 |
+
try:
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
hf_hub_download = partial(hf_hub_download, library_name="open_clip", library_version=__version__)
|
15 |
+
_has_hf_hub = True
|
16 |
+
except ImportError:
|
17 |
+
hf_hub_download = None
|
18 |
+
_has_hf_hub = False
|
19 |
+
|
20 |
+
|
21 |
+
def _pcfg(url='', hf_hub='', mean=None, std=None):
|
22 |
+
return dict(
|
23 |
+
url=url,
|
24 |
+
hf_hub=hf_hub,
|
25 |
+
mean=mean,
|
26 |
+
std=std,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
_RN50 = dict(
|
31 |
+
openai=_pcfg(
|
32 |
+
"https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"),
|
33 |
+
yfcc15m=_pcfg(
|
34 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"),
|
35 |
+
cc12m=_pcfg(
|
36 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"),
|
37 |
+
)
|
38 |
+
|
39 |
+
_RN50_quickgelu = dict(
|
40 |
+
openai=_pcfg(
|
41 |
+
"https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"),
|
42 |
+
yfcc15m=_pcfg(
|
43 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"),
|
44 |
+
cc12m=_pcfg(
|
45 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"),
|
46 |
+
)
|
47 |
+
|
48 |
+
_RN101 = dict(
|
49 |
+
openai=_pcfg(
|
50 |
+
"https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"),
|
51 |
+
yfcc15m=_pcfg(
|
52 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"),
|
53 |
+
)
|
54 |
+
|
55 |
+
_RN101_quickgelu = dict(
|
56 |
+
openai=_pcfg(
|
57 |
+
"https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"),
|
58 |
+
yfcc15m=_pcfg(
|
59 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"),
|
60 |
+
)
|
61 |
+
|
62 |
+
_RN50x4 = dict(
|
63 |
+
openai=_pcfg(
|
64 |
+
"https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt"),
|
65 |
+
)
|
66 |
+
|
67 |
+
_RN50x16 = dict(
|
68 |
+
openai=_pcfg(
|
69 |
+
"https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt"),
|
70 |
+
)
|
71 |
+
|
72 |
+
_RN50x64 = dict(
|
73 |
+
openai=_pcfg(
|
74 |
+
"https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt"),
|
75 |
+
)
|
76 |
+
|
77 |
+
_VITB32 = dict(
|
78 |
+
openai=_pcfg(
|
79 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
80 |
+
laion400m_e31=_pcfg(
|
81 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
82 |
+
laion400m_e32=_pcfg(
|
83 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
84 |
+
laion2b_e16=_pcfg(
|
85 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
86 |
+
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
87 |
+
)
|
88 |
+
|
89 |
+
_VITB32_quickgelu = dict(
|
90 |
+
openai=_pcfg(
|
91 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
92 |
+
laion400m_e31=_pcfg(
|
93 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
94 |
+
laion400m_e32=_pcfg(
|
95 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
96 |
+
)
|
97 |
+
|
98 |
+
_VITB16 = dict(
|
99 |
+
openai=_pcfg(
|
100 |
+
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
101 |
+
laion400m_e31=_pcfg(
|
102 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
103 |
+
laion400m_e32=_pcfg(
|
104 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
105 |
+
# laion400m_32k=_pcfg(
|
106 |
+
# url="",
|
107 |
+
# mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
108 |
+
# laion400m_64k=_pcfg(
|
109 |
+
# url="",
|
110 |
+
# mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
111 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
112 |
+
)
|
113 |
+
|
114 |
+
_VITB16_PLUS_240 = dict(
|
115 |
+
laion400m_e31=_pcfg(
|
116 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
117 |
+
laion400m_e32=_pcfg(
|
118 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
119 |
+
)
|
120 |
+
|
121 |
+
_VITL14 = dict(
|
122 |
+
openai=_pcfg(
|
123 |
+
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
124 |
+
laion400m_e31=_pcfg(
|
125 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
126 |
+
laion400m_e32=_pcfg(
|
127 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
128 |
+
laion2b_s32b_b82k=_pcfg(
|
129 |
+
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
130 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
131 |
+
)
|
132 |
+
|
133 |
+
_VITL14_336 = dict(
|
134 |
+
openai=_pcfg(
|
135 |
+
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
136 |
+
)
|
137 |
+
|
138 |
+
_VITH14 = dict(
|
139 |
+
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
140 |
+
)
|
141 |
+
|
142 |
+
_VITg14 = dict(
|
143 |
+
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
144 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
145 |
+
)
|
146 |
+
|
147 |
+
_VITbigG14 = dict(
|
148 |
+
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
149 |
+
)
|
150 |
+
|
151 |
+
_robertaViTB32 = dict(
|
152 |
+
laion2b_s12b_b32k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k/'),
|
153 |
+
)
|
154 |
+
|
155 |
+
_xlmRobertaBaseViTB32 = dict(
|
156 |
+
laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k/'),
|
157 |
+
)
|
158 |
+
|
159 |
+
_xlmRobertaLargeFrozenViTH14 = dict(
|
160 |
+
frozen_laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/'),
|
161 |
+
)
|
162 |
+
|
163 |
+
_convnext_base = dict(
|
164 |
+
laion400m_s13b_b51k=_pcfg(hf_hub='laion/CLIP-convnext_base-laion400M-s13B-b51K/'),
|
165 |
+
)
|
166 |
+
|
167 |
+
_convnext_base_w = dict(
|
168 |
+
laion2b_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K/'),
|
169 |
+
laion2b_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg/'),
|
170 |
+
laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K/'),
|
171 |
+
)
|
172 |
+
|
173 |
+
_convnext_base_w_320 = dict(
|
174 |
+
laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K/'),
|
175 |
+
laion_aesthetic_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg/'),
|
176 |
+
)
|
177 |
+
|
178 |
+
_convnext_large_d = dict(
|
179 |
+
laion2b_s26b_b102k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg/'),
|
180 |
+
)
|
181 |
+
|
182 |
+
_convnext_large_d_320 = dict(
|
183 |
+
laion2b_s29b_b131k_ft=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft/'),
|
184 |
+
laion2b_s29b_b131k_ft_soup=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup/'),
|
185 |
+
)
|
186 |
+
|
187 |
+
_convnext_xxlarge = dict(
|
188 |
+
laion2b_s34b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg/'),
|
189 |
+
laion2b_s34b_b82k_augreg_rewind=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind/'),
|
190 |
+
laion2b_s34b_b82k_augreg_soup=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup/'),
|
191 |
+
)
|
192 |
+
|
193 |
+
_coca_VITB32 = dict(
|
194 |
+
laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-B-32-laion2B-s13B-b90k/'),
|
195 |
+
mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-B-32-laion2B-s13B-b90k/')
|
196 |
+
)
|
197 |
+
|
198 |
+
_coca_VITL14 = dict(
|
199 |
+
laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-L-14-laion2B-s13B-b90k/'),
|
200 |
+
mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-L-14-laion2B-s13B-b90k/')
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
_PRETRAINED = {
|
205 |
+
"RN50": _RN50,
|
206 |
+
"RN50-quickgelu": _RN50_quickgelu,
|
207 |
+
"RN101": _RN101,
|
208 |
+
"RN101-quickgelu": _RN101_quickgelu,
|
209 |
+
"RN50x4": _RN50x4,
|
210 |
+
"RN50x16": _RN50x16,
|
211 |
+
"RN50x64": _RN50x64,
|
212 |
+
"ViT-B-32": _VITB32,
|
213 |
+
"ViT-B-32-quickgelu": _VITB32_quickgelu,
|
214 |
+
"ViT-B-16": _VITB16,
|
215 |
+
"ViT-B-16-plus-240": _VITB16_PLUS_240,
|
216 |
+
"ViT-L-14": _VITL14,
|
217 |
+
"ViT-L-14-336": _VITL14_336,
|
218 |
+
"ViT-H-14": _VITH14,
|
219 |
+
"ViT-g-14": _VITg14,
|
220 |
+
"ViT-bigG-14": _VITbigG14,
|
221 |
+
"roberta-ViT-B-32": _robertaViTB32,
|
222 |
+
"xlm-roberta-base-ViT-B-32": _xlmRobertaBaseViTB32,
|
223 |
+
"xlm-roberta-large-ViT-H-14": _xlmRobertaLargeFrozenViTH14,
|
224 |
+
"convnext_base": _convnext_base,
|
225 |
+
"convnext_base_w": _convnext_base_w,
|
226 |
+
"convnext_base_w_320": _convnext_base_w_320,
|
227 |
+
"convnext_large_d": _convnext_large_d,
|
228 |
+
"convnext_large_d_320": _convnext_large_d_320,
|
229 |
+
"convnext_xxlarge": _convnext_xxlarge,
|
230 |
+
"coca_ViT-B-32": _coca_VITB32,
|
231 |
+
"coca_ViT-L-14": _coca_VITL14,
|
232 |
+
}
|
233 |
+
|
234 |
+
|
235 |
+
def _clean_tag(tag: str):
|
236 |
+
# normalize pretrained tags
|
237 |
+
return tag.lower().replace('-', '_')
|
238 |
+
|
239 |
+
|
240 |
+
def list_pretrained(as_str: bool = False):
|
241 |
+
""" returns list of pretrained models
|
242 |
+
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
243 |
+
"""
|
244 |
+
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
245 |
+
|
246 |
+
|
247 |
+
def list_pretrained_models_by_tag(tag: str):
|
248 |
+
""" return all models having the specified pretrain tag """
|
249 |
+
models = []
|
250 |
+
tag = _clean_tag(tag)
|
251 |
+
for k in _PRETRAINED.keys():
|
252 |
+
if tag in _PRETRAINED[k]:
|
253 |
+
models.append(k)
|
254 |
+
return models
|
255 |
+
|
256 |
+
|
257 |
+
def list_pretrained_tags_by_model(model: str):
|
258 |
+
""" return all pretrain tags for the specified model architecture """
|
259 |
+
tags = []
|
260 |
+
if model in _PRETRAINED:
|
261 |
+
tags.extend(_PRETRAINED[model].keys())
|
262 |
+
return tags
|
263 |
+
|
264 |
+
|
265 |
+
def is_pretrained_cfg(model: str, tag: str):
|
266 |
+
if model not in _PRETRAINED:
|
267 |
+
return False
|
268 |
+
return _clean_tag(tag) in _PRETRAINED[model]
|
269 |
+
|
270 |
+
|
271 |
+
def get_pretrained_cfg(model: str, tag: str):
|
272 |
+
if model not in _PRETRAINED:
|
273 |
+
return {}
|
274 |
+
model_pretrained = _PRETRAINED[model]
|
275 |
+
return model_pretrained.get(_clean_tag(tag), {})
|
276 |
+
|
277 |
+
|
278 |
+
def get_pretrained_url(model: str, tag: str):
|
279 |
+
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
280 |
+
return cfg.get('url', '')
|
281 |
+
|
282 |
+
|
283 |
+
def download_pretrained_from_url(
|
284 |
+
url: str,
|
285 |
+
cache_dir: Union[str, None] = None,
|
286 |
+
):
|
287 |
+
if not cache_dir:
|
288 |
+
cache_dir = os.path.expanduser("~/.cache/clip")
|
289 |
+
os.makedirs(cache_dir, exist_ok=True)
|
290 |
+
filename = os.path.basename(url)
|
291 |
+
|
292 |
+
if 'openaipublic' in url:
|
293 |
+
expected_sha256 = url.split("/")[-2]
|
294 |
+
elif 'mlfoundations' in url:
|
295 |
+
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
296 |
+
else:
|
297 |
+
expected_sha256 = ''
|
298 |
+
|
299 |
+
download_target = os.path.join(cache_dir, filename)
|
300 |
+
|
301 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
302 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
303 |
+
|
304 |
+
if os.path.isfile(download_target):
|
305 |
+
if expected_sha256:
|
306 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
307 |
+
return download_target
|
308 |
+
else:
|
309 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
310 |
+
else:
|
311 |
+
return download_target
|
312 |
+
|
313 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
314 |
+
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
315 |
+
while True:
|
316 |
+
buffer = source.read(8192)
|
317 |
+
if not buffer:
|
318 |
+
break
|
319 |
+
|
320 |
+
output.write(buffer)
|
321 |
+
loop.update(len(buffer))
|
322 |
+
|
323 |
+
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
324 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
325 |
+
|
326 |
+
return download_target
|
327 |
+
|
328 |
+
|
329 |
+
def has_hf_hub(necessary=False):
|
330 |
+
if not _has_hf_hub and necessary:
|
331 |
+
# if no HF Hub module installed, and it is necessary to continue, raise error
|
332 |
+
raise RuntimeError(
|
333 |
+
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
334 |
+
return _has_hf_hub
|
335 |
+
|
336 |
+
|
337 |
+
def download_pretrained_from_hf(
|
338 |
+
model_id: str,
|
339 |
+
filename: str = 'open_clip_pytorch_model.bin',
|
340 |
+
revision=None,
|
341 |
+
cache_dir: Union[str, None] = None,
|
342 |
+
):
|
343 |
+
has_hf_hub(True)
|
344 |
+
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
345 |
+
return cached_file
|
346 |
+
|
347 |
+
|
348 |
+
def download_pretrained(
|
349 |
+
cfg: Dict,
|
350 |
+
force_hf_hub: bool = False,
|
351 |
+
cache_dir: Union[str, None] = None,
|
352 |
+
):
|
353 |
+
target = ''
|
354 |
+
if not cfg:
|
355 |
+
return target
|
356 |
+
|
357 |
+
download_url = cfg.get('url', '')
|
358 |
+
download_hf_hub = cfg.get('hf_hub', '')
|
359 |
+
if download_hf_hub and force_hf_hub:
|
360 |
+
# use HF hub even if url exists
|
361 |
+
download_url = ''
|
362 |
+
|
363 |
+
if download_url:
|
364 |
+
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
365 |
+
elif download_hf_hub:
|
366 |
+
has_hf_hub(True)
|
367 |
+
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
368 |
+
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
369 |
+
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
370 |
+
model_id, filename = os.path.split(download_hf_hub)
|
371 |
+
if filename:
|
372 |
+
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
373 |
+
else:
|
374 |
+
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
375 |
+
|
376 |
+
return target
|
diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from pathlib import Path
|
4 |
+
from tempfile import TemporaryDirectory
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
try:
|
10 |
+
from huggingface_hub import (
|
11 |
+
create_repo,
|
12 |
+
get_hf_file_metadata,
|
13 |
+
hf_hub_download,
|
14 |
+
hf_hub_url,
|
15 |
+
repo_type_and_id_from_hf_id,
|
16 |
+
upload_folder,
|
17 |
+
)
|
18 |
+
from huggingface_hub.utils import EntryNotFoundError
|
19 |
+
_has_hf_hub = True
|
20 |
+
except ImportError:
|
21 |
+
_has_hf_hub = False
|
22 |
+
|
23 |
+
from .factory import create_model_from_pretrained, get_model_config, get_tokenizer
|
24 |
+
from .tokenizer import HFTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
def save_config_for_hf(
|
28 |
+
model,
|
29 |
+
config_path: str,
|
30 |
+
model_config: Optional[dict]
|
31 |
+
):
|
32 |
+
preprocess_cfg = {
|
33 |
+
'mean': model.visual.image_mean,
|
34 |
+
'std': model.visual.image_std,
|
35 |
+
}
|
36 |
+
hf_config = {
|
37 |
+
'model_cfg': model_config,
|
38 |
+
'preprocess_cfg': preprocess_cfg,
|
39 |
+
}
|
40 |
+
|
41 |
+
with config_path.open('w') as f:
|
42 |
+
json.dump(hf_config, f, indent=2)
|
43 |
+
|
44 |
+
|
45 |
+
def save_for_hf(
|
46 |
+
model,
|
47 |
+
tokenizer: HFTokenizer,
|
48 |
+
model_config: dict,
|
49 |
+
save_directory: str,
|
50 |
+
weights_filename='open_clip_pytorch_model.bin',
|
51 |
+
config_filename='open_clip_config.json',
|
52 |
+
):
|
53 |
+
save_directory = Path(save_directory)
|
54 |
+
save_directory.mkdir(exist_ok=True, parents=True)
|
55 |
+
|
56 |
+
weights_path = save_directory / weights_filename
|
57 |
+
torch.save(model.state_dict(), weights_path)
|
58 |
+
|
59 |
+
tokenizer.save_pretrained(save_directory)
|
60 |
+
|
61 |
+
config_path = save_directory / config_filename
|
62 |
+
save_config_for_hf(model, config_path, model_config=model_config)
|
63 |
+
|
64 |
+
|
65 |
+
def push_to_hf_hub(
|
66 |
+
model,
|
67 |
+
tokenizer,
|
68 |
+
model_config: Optional[dict],
|
69 |
+
repo_id: str,
|
70 |
+
commit_message: str = 'Add model',
|
71 |
+
token: Optional[str] = None,
|
72 |
+
revision: Optional[str] = None,
|
73 |
+
private: bool = False,
|
74 |
+
create_pr: bool = False,
|
75 |
+
model_card: Optional[dict] = None,
|
76 |
+
):
|
77 |
+
if not isinstance(tokenizer, HFTokenizer):
|
78 |
+
# default CLIP tokenizers use https://huggingface.co/openai/clip-vit-large-patch14
|
79 |
+
tokenizer = HFTokenizer('openai/clip-vit-large-patch14')
|
80 |
+
|
81 |
+
# Create repo if it doesn't exist yet
|
82 |
+
repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True)
|
83 |
+
|
84 |
+
# Infer complete repo_id from repo_url
|
85 |
+
# Can be different from the input `repo_id` if repo_owner was implicit
|
86 |
+
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
|
87 |
+
repo_id = f"{repo_owner}/{repo_name}"
|
88 |
+
|
89 |
+
# Check if README file already exist in repo
|
90 |
+
try:
|
91 |
+
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
|
92 |
+
has_readme = True
|
93 |
+
except EntryNotFoundError:
|
94 |
+
has_readme = False
|
95 |
+
|
96 |
+
# Dump model and push to Hub
|
97 |
+
with TemporaryDirectory() as tmpdir:
|
98 |
+
# Save model weights and config.
|
99 |
+
save_for_hf(
|
100 |
+
model,
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
model_config=model_config,
|
103 |
+
save_directory=tmpdir,
|
104 |
+
)
|
105 |
+
|
106 |
+
# Add readme if it does not exist
|
107 |
+
if not has_readme:
|
108 |
+
model_card = model_card or {}
|
109 |
+
model_name = repo_id.split('/')[-1]
|
110 |
+
readme_path = Path(tmpdir) / "README.md"
|
111 |
+
readme_text = generate_readme(model_card, model_name)
|
112 |
+
readme_path.write_text(readme_text)
|
113 |
+
|
114 |
+
# Upload model and return
|
115 |
+
return upload_folder(
|
116 |
+
repo_id=repo_id,
|
117 |
+
folder_path=tmpdir,
|
118 |
+
revision=revision,
|
119 |
+
create_pr=create_pr,
|
120 |
+
commit_message=commit_message,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def push_pretrained_to_hf_hub(
|
125 |
+
model_name,
|
126 |
+
pretrained: str,
|
127 |
+
repo_id: str,
|
128 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
129 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
130 |
+
commit_message: str = 'Add model',
|
131 |
+
token: Optional[str] = None,
|
132 |
+
revision: Optional[str] = None,
|
133 |
+
private: bool = False,
|
134 |
+
create_pr: bool = False,
|
135 |
+
model_card: Optional[dict] = None,
|
136 |
+
):
|
137 |
+
model, preprocess_eval = create_model_from_pretrained(
|
138 |
+
model_name,
|
139 |
+
pretrained=pretrained,
|
140 |
+
image_mean=image_mean,
|
141 |
+
image_std=image_std,
|
142 |
+
)
|
143 |
+
|
144 |
+
model_config = get_model_config(model_name)
|
145 |
+
assert model_config
|
146 |
+
|
147 |
+
tokenizer = get_tokenizer(model_name)
|
148 |
+
|
149 |
+
push_to_hf_hub(
|
150 |
+
model=model,
|
151 |
+
tokenizer=tokenizer,
|
152 |
+
model_config=model_config,
|
153 |
+
repo_id=repo_id,
|
154 |
+
commit_message=commit_message,
|
155 |
+
token=token,
|
156 |
+
revision=revision,
|
157 |
+
private=private,
|
158 |
+
create_pr=create_pr,
|
159 |
+
model_card=model_card,
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
def generate_readme(model_card: dict, model_name: str):
|
164 |
+
readme_text = "---\n"
|
165 |
+
readme_text += "tags:\n- zero-shot-image-classification\n- clip\n"
|
166 |
+
readme_text += "library_tag: open_clip\n"
|
167 |
+
readme_text += f"license: {model_card.get('license', 'mit')}\n"
|
168 |
+
if 'details' in model_card and 'Dataset' in model_card['details']:
|
169 |
+
readme_text += 'datasets:\n'
|
170 |
+
readme_text += f"- {model_card['details']['Dataset'].lower()}\n"
|
171 |
+
readme_text += "---\n"
|
172 |
+
readme_text += f"# Model card for {model_name}\n"
|
173 |
+
if 'description' in model_card:
|
174 |
+
readme_text += f"\n{model_card['description']}\n"
|
175 |
+
if 'details' in model_card:
|
176 |
+
readme_text += f"\n## Model Details\n"
|
177 |
+
for k, v in model_card['details'].items():
|
178 |
+
if isinstance(v, (list, tuple)):
|
179 |
+
readme_text += f"- **{k}:**\n"
|
180 |
+
for vi in v:
|
181 |
+
readme_text += f" - {vi}\n"
|
182 |
+
elif isinstance(v, dict):
|
183 |
+
readme_text += f"- **{k}:**\n"
|
184 |
+
for ki, vi in v.items():
|
185 |
+
readme_text += f" - {ki}: {vi}\n"
|
186 |
+
else:
|
187 |
+
readme_text += f"- **{k}:** {v}\n"
|
188 |
+
if 'usage' in model_card:
|
189 |
+
readme_text += f"\n## Model Usage\n"
|
190 |
+
readme_text += model_card['usage']
|
191 |
+
readme_text += '\n'
|
192 |
+
|
193 |
+
if 'comparison' in model_card:
|
194 |
+
readme_text += f"\n## Model Comparison\n"
|
195 |
+
readme_text += model_card['comparison']
|
196 |
+
readme_text += '\n'
|
197 |
+
|
198 |
+
if 'citation' in model_card:
|
199 |
+
readme_text += f"\n## Citation\n"
|
200 |
+
if not isinstance(model_card['citation'], (list, tuple)):
|
201 |
+
citations = [model_card['citation']]
|
202 |
+
else:
|
203 |
+
citations = model_card['citation']
|
204 |
+
for c in citations:
|
205 |
+
readme_text += f"```bibtex\n{c}\n```\n"
|
206 |
+
|
207 |
+
return readme_text
|
208 |
+
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
parser = argparse.ArgumentParser(description="Push to Hugging Face Hub")
|
212 |
+
parser.add_argument(
|
213 |
+
"--model", type=str, help="Name of the model to use.",
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--pretrained", type=str,
|
217 |
+
help="Use a pretrained CLIP model weights with the specified tag or file path.",
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--repo-id", type=str,
|
221 |
+
help="Destination HF Hub repo-id ie 'organization/model_id'.",
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
'--image-mean', type=float, nargs='+', default=None, metavar='MEAN',
|
225 |
+
help='Override default image mean value of dataset')
|
226 |
+
parser.add_argument(
|
227 |
+
'--image-std', type=float, nargs='+', default=None, metavar='STD',
|
228 |
+
help='Override default image std deviation of of dataset')
|
229 |
+
args = parser.parse_args()
|
230 |
+
|
231 |
+
print(f'Saving model {args.model} with pretrained weights {args.pretrained} to Hugging Face Hub at {args.repo_id}')
|
232 |
+
|
233 |
+
# FIXME add support to pass model_card json / template from file via cmd line
|
234 |
+
|
235 |
+
push_pretrained_to_hf_hub(
|
236 |
+
args.model,
|
237 |
+
args.pretrained,
|
238 |
+
args.repo_id,
|
239 |
+
image_mean=args.image_mean, # override image mean/std if trained w/ non defaults
|
240 |
+
image_std=args.image_std,
|
241 |
+
)
|
242 |
+
|
243 |
+
print(f'{args.model} saved.')
|
diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" timm model adapter
|
2 |
+
|
3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
try:
|
12 |
+
import timm
|
13 |
+
from timm.models.layers import Mlp, to_2tuple
|
14 |
+
try:
|
15 |
+
# old timm imports < 0.8.1
|
16 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
17 |
+
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
18 |
+
except ImportError:
|
19 |
+
# new timm imports >= 0.8.1
|
20 |
+
from timm.layers import RotAttentionPool2d
|
21 |
+
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
22 |
+
except ImportError:
|
23 |
+
timm = None
|
24 |
+
|
25 |
+
from .utils import freeze_batch_norm_2d
|
26 |
+
|
27 |
+
|
28 |
+
class TimmModel(nn.Module):
|
29 |
+
""" timm model adapter
|
30 |
+
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
model_name,
|
36 |
+
embed_dim,
|
37 |
+
image_size=224,
|
38 |
+
pool='avg',
|
39 |
+
proj='linear',
|
40 |
+
proj_bias=False,
|
41 |
+
drop=0.,
|
42 |
+
drop_path=None,
|
43 |
+
pretrained=False,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
if timm is None:
|
47 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
48 |
+
|
49 |
+
self.image_size = to_2tuple(image_size)
|
50 |
+
timm_kwargs = {}
|
51 |
+
if drop_path is not None:
|
52 |
+
timm_kwargs['drop_path_rate'] = drop_path
|
53 |
+
self.trunk = timm.create_model(model_name, pretrained=pretrained, **timm_kwargs)
|
54 |
+
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
55 |
+
feature_ndim = 1 if not feat_size else 2
|
56 |
+
if pool in ('abs_attn', 'rot_attn'):
|
57 |
+
assert feature_ndim == 2
|
58 |
+
# if attn pooling used, remove both classifier and default pool
|
59 |
+
self.trunk.reset_classifier(0, global_pool='')
|
60 |
+
else:
|
61 |
+
# reset global pool if pool config set, otherwise leave as network default
|
62 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
63 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
64 |
+
prev_chs = self.trunk.num_features
|
65 |
+
|
66 |
+
head_layers = OrderedDict()
|
67 |
+
if pool == 'abs_attn':
|
68 |
+
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
69 |
+
prev_chs = embed_dim
|
70 |
+
elif pool == 'rot_attn':
|
71 |
+
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
72 |
+
prev_chs = embed_dim
|
73 |
+
else:
|
74 |
+
assert proj, 'projection layer needed if non-attention pooling is used.'
|
75 |
+
|
76 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
77 |
+
if proj == 'linear':
|
78 |
+
head_layers['drop'] = nn.Dropout(drop)
|
79 |
+
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
80 |
+
elif proj == 'mlp':
|
81 |
+
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias))
|
82 |
+
|
83 |
+
self.head = nn.Sequential(head_layers)
|
84 |
+
|
85 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
86 |
+
""" lock modules
|
87 |
+
Args:
|
88 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
89 |
+
"""
|
90 |
+
if not unlocked_groups:
|
91 |
+
# lock full model
|
92 |
+
for param in self.trunk.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
if freeze_bn_stats:
|
95 |
+
freeze_batch_norm_2d(self.trunk)
|
96 |
+
else:
|
97 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
98 |
+
try:
|
99 |
+
# FIXME import here until API stable and in an official release
|
100 |
+
from timm.models.helpers import group_parameters, group_modules
|
101 |
+
except ImportError:
|
102 |
+
raise RuntimeError(
|
103 |
+
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
104 |
+
matcher = self.trunk.group_matcher()
|
105 |
+
gparams = group_parameters(self.trunk, matcher)
|
106 |
+
max_layer_id = max(gparams.keys())
|
107 |
+
max_layer_id = max_layer_id - unlocked_groups
|
108 |
+
for group_idx in range(max_layer_id + 1):
|
109 |
+
group = gparams[group_idx]
|
110 |
+
for param in group:
|
111 |
+
self.trunk.get_parameter(param).requires_grad = False
|
112 |
+
if freeze_bn_stats:
|
113 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
114 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
115 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
116 |
+
|
117 |
+
@torch.jit.ignore
|
118 |
+
def set_grad_checkpointing(self, enable=True):
|
119 |
+
try:
|
120 |
+
self.trunk.set_grad_checkpointing(enable)
|
121 |
+
except Exception as e:
|
122 |
+
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
x = self.trunk(x)
|
126 |
+
x = self.head(x)
|
127 |
+
return x
|
diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP tokenizer
|
2 |
+
|
3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
import gzip
|
6 |
+
import html
|
7 |
+
import os
|
8 |
+
from functools import lru_cache
|
9 |
+
from typing import Union, List
|
10 |
+
|
11 |
+
import ftfy
|
12 |
+
import regex as re
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# https://stackoverflow.com/q/62691279
|
16 |
+
import os
|
17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def default_bpe():
|
22 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
project_root = os.path.abspath(os.path.join(current_dir, '../../../../'))
|
24 |
+
quality_metric_path = os.path.join(project_root, 'models', 'QualityMetric')
|
25 |
+
return os.path.join(quality_metric_path, "bpe_simple_vocab_16e6.txt.gz")
|
26 |
+
|
27 |
+
|
28 |
+
@lru_cache()
|
29 |
+
def bytes_to_unicode():
|
30 |
+
"""
|
31 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
32 |
+
The reversible bpe codes work on unicode strings.
|
33 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
34 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
35 |
+
This is a significant percentage of your normal, say, 32K bpe vocab.
|
36 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
37 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
38 |
+
"""
|
39 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
40 |
+
cs = bs[:]
|
41 |
+
n = 0
|
42 |
+
for b in range(2**8):
|
43 |
+
if b not in bs:
|
44 |
+
bs.append(b)
|
45 |
+
cs.append(2**8+n)
|
46 |
+
n += 1
|
47 |
+
cs = [chr(n) for n in cs]
|
48 |
+
return dict(zip(bs, cs))
|
49 |
+
|
50 |
+
|
51 |
+
def get_pairs(word):
|
52 |
+
"""Return set of symbol pairs in a word.
|
53 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
54 |
+
"""
|
55 |
+
pairs = set()
|
56 |
+
prev_char = word[0]
|
57 |
+
for char in word[1:]:
|
58 |
+
pairs.add((prev_char, char))
|
59 |
+
prev_char = char
|
60 |
+
return pairs
|
61 |
+
|
62 |
+
|
63 |
+
def basic_clean(text):
|
64 |
+
text = ftfy.fix_text(text)
|
65 |
+
text = html.unescape(html.unescape(text))
|
66 |
+
return text.strip()
|
67 |
+
|
68 |
+
|
69 |
+
def whitespace_clean(text):
|
70 |
+
text = re.sub(r'\s+', ' ', text)
|
71 |
+
text = text.strip()
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
class SimpleTokenizer(object):
|
76 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
77 |
+
self.byte_encoder = bytes_to_unicode()
|
78 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
79 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
80 |
+
merges = merges[1:49152-256-2+1]
|
81 |
+
merges = [tuple(merge.split()) for merge in merges]
|
82 |
+
vocab = list(bytes_to_unicode().values())
|
83 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
84 |
+
for merge in merges:
|
85 |
+
vocab.append(''.join(merge))
|
86 |
+
if not special_tokens:
|
87 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
88 |
+
else:
|
89 |
+
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
90 |
+
vocab.extend(special_tokens)
|
91 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
92 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
93 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
94 |
+
self.cache = {t:t for t in special_tokens}
|
95 |
+
special = "|".join(special_tokens)
|
96 |
+
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
97 |
+
|
98 |
+
self.vocab_size = len(self.encoder)
|
99 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
100 |
+
|
101 |
+
def bpe(self, token):
|
102 |
+
if token in self.cache:
|
103 |
+
return self.cache[token]
|
104 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
105 |
+
pairs = get_pairs(word)
|
106 |
+
|
107 |
+
if not pairs:
|
108 |
+
return token+'</w>'
|
109 |
+
|
110 |
+
while True:
|
111 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
112 |
+
if bigram not in self.bpe_ranks:
|
113 |
+
break
|
114 |
+
first, second = bigram
|
115 |
+
new_word = []
|
116 |
+
i = 0
|
117 |
+
while i < len(word):
|
118 |
+
try:
|
119 |
+
j = word.index(first, i)
|
120 |
+
new_word.extend(word[i:j])
|
121 |
+
i = j
|
122 |
+
except:
|
123 |
+
new_word.extend(word[i:])
|
124 |
+
break
|
125 |
+
|
126 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
127 |
+
new_word.append(first+second)
|
128 |
+
i += 2
|
129 |
+
else:
|
130 |
+
new_word.append(word[i])
|
131 |
+
i += 1
|
132 |
+
new_word = tuple(new_word)
|
133 |
+
word = new_word
|
134 |
+
if len(word) == 1:
|
135 |
+
break
|
136 |
+
else:
|
137 |
+
pairs = get_pairs(word)
|
138 |
+
word = ' '.join(word)
|
139 |
+
self.cache[token] = word
|
140 |
+
return word
|
141 |
+
|
142 |
+
def encode(self, text):
|
143 |
+
bpe_tokens = []
|
144 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
145 |
+
for token in re.findall(self.pat, text):
|
146 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
147 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
148 |
+
return bpe_tokens
|
149 |
+
|
150 |
+
def decode(self, tokens):
|
151 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
152 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
153 |
+
return text
|
154 |
+
|
155 |
+
def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
156 |
+
"""
|
157 |
+
Returns the tokenized representation of given input string(s)
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
texts : Union[str, List[str]]
|
162 |
+
An input string or a list of input strings to tokenize
|
163 |
+
context_length : int
|
164 |
+
The context length to use; all CLIP models use 77 as the context length
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
169 |
+
"""
|
170 |
+
if isinstance(texts, str):
|
171 |
+
texts = [texts]
|
172 |
+
|
173 |
+
sot_token = self.encoder["<start_of_text>"]
|
174 |
+
eot_token = self.encoder["<end_of_text>"]
|
175 |
+
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
|
176 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
177 |
+
|
178 |
+
for i, tokens in enumerate(all_tokens):
|
179 |
+
if len(tokens) > context_length:
|
180 |
+
tokens = tokens[:context_length] # Truncate
|
181 |
+
tokens[-1] = eot_token
|
182 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
183 |
+
|
184 |
+
return result
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
class HFTokenizer:
|
189 |
+
"""HuggingFace tokenizer wrapper"""
|
190 |
+
|
191 |
+
def __init__(self, tokenizer_name: str):
|
192 |
+
from transformers import AutoTokenizer
|
193 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
194 |
+
|
195 |
+
def save_pretrained(self, dest):
|
196 |
+
self.tokenizer.save_pretrained(dest)
|
197 |
+
|
198 |
+
def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor:
|
199 |
+
# same cleaning as for default tokenizer, except lowercasing
|
200 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
201 |
+
if isinstance(texts, str):
|
202 |
+
texts = [texts]
|
203 |
+
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
204 |
+
input_ids = self.tokenizer(
|
205 |
+
texts,
|
206 |
+
return_tensors='pt',
|
207 |
+
max_length=context_length,
|
208 |
+
padding='max_length',
|
209 |
+
truncation=True,
|
210 |
+
).input_ids
|
211 |
+
return input_ids
|
diffsynth/extensions/ImageQualityMetric/open_clip/transform.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from dataclasses import dataclass, asdict
|
3 |
+
from typing import Any, Dict, Optional, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torchvision.transforms.functional as F
|
8 |
+
from functools import partial
|
9 |
+
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
10 |
+
CenterCrop
|
11 |
+
|
12 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class AugmentationCfg:
|
17 |
+
scale: Tuple[float, float] = (0.9, 1.0)
|
18 |
+
ratio: Optional[Tuple[float, float]] = None
|
19 |
+
color_jitter: Optional[Union[float, Tuple[float, float, float]]] = None
|
20 |
+
interpolation: Optional[str] = None
|
21 |
+
re_prob: Optional[float] = None
|
22 |
+
re_count: Optional[int] = None
|
23 |
+
use_timm: bool = False
|
24 |
+
|
25 |
+
|
26 |
+
class ResizeMaxSize(nn.Module):
|
27 |
+
|
28 |
+
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
29 |
+
super().__init__()
|
30 |
+
if not isinstance(max_size, int):
|
31 |
+
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
32 |
+
self.max_size = max_size
|
33 |
+
self.interpolation = interpolation
|
34 |
+
self.fn = min if fn == 'min' else min
|
35 |
+
self.fill = fill
|
36 |
+
|
37 |
+
def forward(self, img):
|
38 |
+
if isinstance(img, torch.Tensor):
|
39 |
+
height, width = img.shape[1:]
|
40 |
+
else:
|
41 |
+
width, height = img.size
|
42 |
+
scale = self.max_size / float(max(height, width))
|
43 |
+
if scale != 1.0:
|
44 |
+
new_size = tuple(round(dim * scale) for dim in (height, width))
|
45 |
+
img = F.resize(img, new_size, self.interpolation)
|
46 |
+
pad_h = self.max_size - new_size[0]
|
47 |
+
pad_w = self.max_size - new_size[1]
|
48 |
+
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
49 |
+
return img
|
50 |
+
|
51 |
+
|
52 |
+
def _convert_to_rgb_or_rgba(image):
|
53 |
+
if image.mode == 'RGBA':
|
54 |
+
return image
|
55 |
+
else:
|
56 |
+
return image.convert('RGB')
|
57 |
+
|
58 |
+
# def transform_and_split(merged, transform_fn, normalize_fn):
|
59 |
+
# transformed = transform_fn(merged)
|
60 |
+
# crop_img, crop_label = torch.split(transformed, [3,1], dim=0)
|
61 |
+
|
62 |
+
# # crop_img = _convert_to_rgb(crop_img)
|
63 |
+
# crop_img = normalize_fn(ToTensor()(crop_img))
|
64 |
+
# return crop_img, crop_label
|
65 |
+
|
66 |
+
class MaskAwareNormalize(nn.Module):
|
67 |
+
def __init__(self, mean, std):
|
68 |
+
super().__init__()
|
69 |
+
self.normalize = Normalize(mean=mean, std=std)
|
70 |
+
|
71 |
+
def forward(self, tensor):
|
72 |
+
if tensor.shape[0] == 4:
|
73 |
+
return torch.cat([self.normalize(tensor[:3]), tensor[3:]], dim=0)
|
74 |
+
else:
|
75 |
+
return self.normalize(tensor)
|
76 |
+
|
77 |
+
def image_transform(
|
78 |
+
image_size: int,
|
79 |
+
is_train: bool,
|
80 |
+
mean: Optional[Tuple[float, ...]] = None,
|
81 |
+
std: Optional[Tuple[float, ...]] = None,
|
82 |
+
resize_longest_max: bool = False,
|
83 |
+
fill_color: int = 0,
|
84 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
85 |
+
):
|
86 |
+
mean = mean or OPENAI_DATASET_MEAN
|
87 |
+
if not isinstance(mean, (list, tuple)):
|
88 |
+
mean = (mean,) * 3
|
89 |
+
|
90 |
+
std = std or OPENAI_DATASET_STD
|
91 |
+
if not isinstance(std, (list, tuple)):
|
92 |
+
std = (std,) * 3
|
93 |
+
|
94 |
+
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
95 |
+
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
96 |
+
image_size = image_size[0]
|
97 |
+
|
98 |
+
if isinstance(aug_cfg, dict):
|
99 |
+
aug_cfg = AugmentationCfg(**aug_cfg)
|
100 |
+
else:
|
101 |
+
aug_cfg = aug_cfg or AugmentationCfg()
|
102 |
+
normalize = MaskAwareNormalize(mean=mean, std=std)
|
103 |
+
if is_train:
|
104 |
+
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
|
105 |
+
use_timm = aug_cfg_dict.pop('use_timm', False)
|
106 |
+
if use_timm:
|
107 |
+
assert False, "not tested for augmentation with mask"
|
108 |
+
from timm.data import create_transform # timm can still be optional
|
109 |
+
if isinstance(image_size, (tuple, list)):
|
110 |
+
assert len(image_size) >= 2
|
111 |
+
input_size = (3,) + image_size[-2:]
|
112 |
+
else:
|
113 |
+
input_size = (3, image_size, image_size)
|
114 |
+
# by default, timm aug randomly alternates bicubic & bilinear for better robustness at inference time
|
115 |
+
aug_cfg_dict.setdefault('interpolation', 'random')
|
116 |
+
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
|
117 |
+
train_transform = create_transform(
|
118 |
+
input_size=input_size,
|
119 |
+
is_training=True,
|
120 |
+
hflip=0.,
|
121 |
+
mean=mean,
|
122 |
+
std=std,
|
123 |
+
re_mode='pixel',
|
124 |
+
**aug_cfg_dict,
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
train_transform = Compose([
|
128 |
+
_convert_to_rgb_or_rgba,
|
129 |
+
ToTensor(),
|
130 |
+
RandomResizedCrop(
|
131 |
+
image_size,
|
132 |
+
scale=aug_cfg_dict.pop('scale'),
|
133 |
+
interpolation=InterpolationMode.BICUBIC,
|
134 |
+
),
|
135 |
+
normalize,
|
136 |
+
])
|
137 |
+
if aug_cfg_dict:
|
138 |
+
warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
|
139 |
+
return train_transform
|
140 |
+
else:
|
141 |
+
transforms = [
|
142 |
+
_convert_to_rgb_or_rgba,
|
143 |
+
ToTensor(),
|
144 |
+
]
|
145 |
+
if resize_longest_max:
|
146 |
+
transforms.extend([
|
147 |
+
ResizeMaxSize(image_size, fill=fill_color)
|
148 |
+
])
|
149 |
+
else:
|
150 |
+
transforms.extend([
|
151 |
+
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
152 |
+
CenterCrop(image_size),
|
153 |
+
])
|
154 |
+
transforms.extend([
|
155 |
+
normalize,
|
156 |
+
])
|
157 |
+
return Compose(transforms)
|
158 |
+
|
159 |
+
|
160 |
+
# def image_transform_region(
|
161 |
+
# image_size: int,
|
162 |
+
# is_train: bool,
|
163 |
+
# mean: Optional[Tuple[float, ...]] = None,
|
164 |
+
# std: Optional[Tuple[float, ...]] = None,
|
165 |
+
# resize_longest_max: bool = False,
|
166 |
+
# fill_color: int = 0,
|
167 |
+
# aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
168 |
+
# ):
|
169 |
+
# mean = mean or OPENAI_DATASET_MEAN
|
170 |
+
# if not isinstance(mean, (list, tuple)):
|
171 |
+
# mean = (mean,) * 3
|
172 |
+
|
173 |
+
# std = std or OPENAI_DATASET_STD
|
174 |
+
# if not isinstance(std, (list, tuple)):
|
175 |
+
# std = (std,) * 3
|
176 |
+
|
177 |
+
# if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
178 |
+
# # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
179 |
+
# image_size = image_size[0]
|
180 |
+
|
181 |
+
# if isinstance(aug_cfg, dict):
|
182 |
+
# aug_cfg = AugmentationCfg(**aug_cfg)
|
183 |
+
# else:
|
184 |
+
# aug_cfg = aug_cfg or AugmentationCfg()
|
185 |
+
# normalize = Normalize(mean=mean, std=std)
|
186 |
+
# if is_train:
|
187 |
+
# aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
|
188 |
+
|
189 |
+
# transform = Compose([
|
190 |
+
# RandomResizedCrop(
|
191 |
+
# image_size,
|
192 |
+
# scale=aug_cfg_dict.pop('scale'),
|
193 |
+
# interpolation=InterpolationMode.BICUBIC,
|
194 |
+
# ),
|
195 |
+
# ])
|
196 |
+
# train_transform = Compose([
|
197 |
+
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize)
|
198 |
+
# ])
|
199 |
+
# return train_transform
|
200 |
+
# else:
|
201 |
+
# if resize_longest_max:
|
202 |
+
# transform = [
|
203 |
+
# ResizeMaxSize(image_size, fill=fill_color)
|
204 |
+
# ]
|
205 |
+
# val_transform = Compose([
|
206 |
+
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
|
207 |
+
# ])
|
208 |
+
# else:
|
209 |
+
# transform = [
|
210 |
+
# Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
211 |
+
# CenterCrop(image_size),
|
212 |
+
# ]
|
213 |
+
# val_transform = Compose([
|
214 |
+
# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
|
215 |
+
# ])
|
216 |
+
# return val_transform
|