File size: 7,749 Bytes
62f1377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch.utils.data import DataLoader\n",
"from torch.optim import Optimizer\n",
"import os\n",
"from datetime import datetime\n",
"from train.learner import DiffproLearner\n",
"\n",
"class TrainConfig:\n",
"\n",
" model: torch.nn.Module\n",
" train_dl: DataLoader\n",
" val_dl: DataLoader\n",
" optimizer: Optimizer\n",
"\n",
" def __init__(self, params, param_scheduler, output_dir) -> None:\n",
" self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
" self.params = params\n",
" self.param_scheduler = param_scheduler\n",
" self.output_dir = output_dir\n",
"\n",
" def train(self):\n",
" # collect and display total parameters\n",
" total_parameters = sum(\n",
" p.numel() for p in self.model.parameters() if p.requires_grad\n",
" )\n",
" print(f\"Total parameters: {total_parameters}\")\n",
"\n",
" # dealing with the output storing\n",
" output_dir = self.output_dir\n",
" if os.path.exists(f\"{output_dir}/chkpts/weights.pt\"):\n",
" print(\"Checkpoint already exists.\")\n",
" if input(\"Resume training? (y/n)\") != \"y\":\n",
" return\n",
" else:\n",
" output_dir = f\"{output_dir}/{datetime.now().strftime('%m-%d_%H%M%S')}\"\n",
" print(f\"Creating new log folder as {output_dir}\")\n",
"\n",
" # prepare the learner structure and parameters\n",
" learner = DiffproLearner(\n",
" output_dir, self.model, self.train_dl, self.val_dl, self.optimizer,\n",
" self.params\n",
" )\n",
" learner.train(max_epoch=self.params.max_epoch)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from model import init_ldm_model, init_diff_pro_sdf\n",
"from data.dataset_loading import load_datasets, create_dataloader\n",
"\n",
"WITH_RHYTHM = \"onset\"\n",
"\n",
"class LdmTrainConfig(TrainConfig):\n",
"\n",
" def __init__(self, params, output_dir, debug_mode=False) -> None:\n",
" super().__init__(params, None, output_dir)\n",
" self.debug_mode = debug_mode\n",
" #self.use_autoreg_cond = use_autoreg_cond\n",
" #self.use_external_cond = use_external_cond\n",
" #self.mask_background = mask_background\n",
" #self.random_pitch_aug = random_pitch_aug\n",
"\n",
" # create model\n",
" self.ldm_model = init_ldm_model(params, debug_mode)\n",
" self.model = init_diff_pro_sdf(self.ldm_model, params, self.device)\n",
"\n",
" # Create dataloader\n",
" train_set = load_datasets(with_rhythm=WITH_RHYTHM)\n",
" self.train_dl = create_dataloader(params.batch_size, train_set)\n",
" self.val_dl = create_dataloader(params.batch_size, train_set) # we temporarily use train_set for validation\n",
"\n",
" # Create optimizer4\n",
" self.optimizer = torch.optim.Adam(\n",
" self.model.parameters(), lr=params.learning_rate\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/music/chord_trainer/train/learner.py:45: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
" self.autocast = torch.cuda.amp.autocast(enabled=params.fp16)\n",
"/home/music/chord_trainer/train/learner.py:46: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.\n",
" self.scaler = torch.cuda.amp.GradScaler(enabled=params.fp16)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total parameters: 36755330\n",
"Creating new log folder as results/test/09-13_171940\n",
"{\n",
" \"attention_levels\": [\n",
" 2,\n",
" 3\n",
" ],\n",
" \"batch_size\": 16,\n",
" \"channel_multipliers\": [\n",
" 1,\n",
" 2,\n",
" 4,\n",
" 4\n",
" ],\n",
" \"channels\": 64,\n",
" \"d_cond\": 2,\n",
" \"fp16\": true,\n",
" \"in_channels\": 4,\n",
" \"latent_scaling_factor\": 0.18215,\n",
" \"learning_rate\": 5e-05,\n",
" \"linear_end\": 0.012,\n",
" \"linear_start\": 0.00085,\n",
" \"max_epoch\": 10,\n",
" \"max_grad_norm\": 10,\n",
" \"n_heads\": 4,\n",
" \"n_res_blocks\": 2,\n",
" \"n_steps\": 1000,\n",
" \"out_channels\": 2,\n",
" \"tf_layers\": 1\n",
"}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Epoch 0: 100%|ββββββββββ| 1141/1141 [00:51<00:00, 22.08it/s]\n",
"Epoch 1: 100%|ββββββββββ| 1141/1141 [00:50<00:00, 22.43it/s]\n",
"Epoch 2: 100%|ββββββββββ| 1141/1141 [00:47<00:00, 24.02it/s]\n",
"Epoch 3: 100%|ββββββββββ| 1141/1141 [00:47<00:00, 24.07it/s]\n",
"Epoch 4: 100%|ββββββββββ| 1141/1141 [01:04<00:00, 17.70it/s]\n",
"Epoch 5: 100%|ββββββββββ| 1141/1141 [00:50<00:00, 22.42it/s]\n",
"Epoch 6: 100%|ββββββββββ| 1141/1141 [00:50<00:00, 22.38it/s]\n",
"Epoch 7: 100%|ββββββββββ| 1141/1141 [00:50<00:00, 22.38it/s]\n",
"Epoch 8: 100%|ββββββββββ| 1141/1141 [01:05<00:00, 17.38it/s]\n",
"Epoch 9: 100%|ββββββββββ| 1141/1141 [00:49<00:00, 22.83it/s]\n"
]
}
],
"source": [
"\n",
"# Import necessary libraries\n",
"from train.train_params import params_chord_cond, params_chord\n",
"import os\n",
"\n",
"# Set the argument values directly\n",
"args = {\n",
" 'output_dir': 'results',\n",
" 'uniform_pitch_shift': False,\n",
" # 'debug': False,\n",
" # 'data_source': \"lmd\",\n",
" # 'load_chkpt_from': None,\n",
" # 'dataset_path': \"data/lmd_sample/no_drum_sample\",\n",
"}\n",
"\n",
"# Determine random pitch augmentation\n",
"random_pitch_aug = not args['uniform_pitch_shift']\n",
"\n",
"# Generate the filename based on argument settings\n",
"fn = 'test'\n",
"\n",
"# Set the output directory\n",
"output_dir = os.path.join(args['output_dir'], fn)\n",
"\n",
"# Create the training configuration\n",
"config = LdmTrainConfig(params_chord_cond, output_dir)\n",
"\n",
"config.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "music_demo",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|