Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,24 @@ import fitz # PyMuPDF
|
|
4 |
import re
|
5 |
import pandas as pd
|
6 |
|
7 |
-
# Load models
|
8 |
bias_detector = pipeline("text-classification", model="himel7/bias-detector")
|
9 |
bias_type_classifier = pipeline("text-classification", model="maximuspowers/bias-type-classifier")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_text_from_pdf(pdf_file):
|
12 |
-
"""Extract text from a PDF file using PyMuPDF"""
|
13 |
text = ""
|
14 |
with fitz.open(pdf_file) as pdf:
|
15 |
for page in pdf:
|
@@ -17,12 +29,10 @@ def extract_text_from_pdf(pdf_file):
|
|
17 |
return text
|
18 |
|
19 |
def split_into_sentences(text):
|
20 |
-
"""Split text into sentences (basic split by .!? with spaces)"""
|
21 |
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
|
22 |
return [s for s in sentences if s]
|
23 |
|
24 |
def analyze_sentence(sentence):
|
25 |
-
"""Run bias detection and (if biased) bias type classification"""
|
26 |
detection_result = bias_detector(sentence)[0]
|
27 |
label = detection_result['label']
|
28 |
score = detection_result['score']
|
@@ -46,7 +56,6 @@ def analyze_sentence(sentence):
|
|
46 |
}
|
47 |
|
48 |
def analyze_pdf(pdf_file):
|
49 |
-
"""Full pipeline: extract text, split sentences, analyze bias"""
|
50 |
text = extract_text_from_pdf(pdf_file)
|
51 |
sentences = split_into_sentences(text)
|
52 |
|
@@ -64,16 +73,29 @@ def analyze_pdf(pdf_file):
|
|
64 |
- **Unbiased Sentences:** {unbiased} ({(unbiased/total)*100:.1f}%)
|
65 |
"""
|
66 |
|
67 |
-
# Create a DataFrame for table display
|
68 |
df = pd.DataFrame(results)
|
69 |
return stats_md, df
|
70 |
|
71 |
-
|
72 |
def analyze_text(text):
|
73 |
-
"""Single text input analysis"""
|
74 |
return analyze_sentence(text)
|
75 |
|
76 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
badges_html = """
|
78 |
<p align="center">
|
79 |
<a href="https://huggingface.co/himel7/bias-detector">
|
@@ -91,9 +113,11 @@ badges_html = """
|
|
91 |
</p>
|
92 |
"""
|
93 |
|
|
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.HTML(badges_html)
|
96 |
-
gr.Markdown("## Bias
|
|
|
97 |
|
98 |
with gr.Tab("Single Sentence"):
|
99 |
text_input = gr.Textbox(lines=3, placeholder="Enter a sentence...")
|
@@ -101,6 +125,12 @@ with gr.Blocks() as demo:
|
|
101 |
btn = gr.Button("Analyze")
|
102 |
btn.click(analyze_text, inputs=text_input, outputs=output)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
with gr.Tab("Analyze PDF"):
|
105 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
106 |
stats_output = gr.Markdown()
|
@@ -108,5 +138,12 @@ with gr.Blocks() as demo:
|
|
108 |
analyze_btn = gr.Button("Analyze PDF")
|
109 |
analyze_btn.click(analyze_pdf, inputs=pdf_input, outputs=[stats_output, table_output])
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if __name__ == "__main__":
|
112 |
demo.launch()
|
|
|
4 |
import re
|
5 |
import pandas as pd
|
6 |
|
7 |
+
# Load detection models
|
8 |
bias_detector = pipeline("text-classification", model="himel7/bias-detector")
|
9 |
bias_type_classifier = pipeline("text-classification", model="maximuspowers/bias-type-classifier")
|
10 |
|
11 |
+
# Load neutralizer models (lazy load for speed)
|
12 |
+
neutralizer_models = {
|
13 |
+
"BART Neutralizer": "himel7/bias-neutralizer-bart",
|
14 |
+
"T5 Small Neutralizer": "himel7/bias-neutralizer-t5s"
|
15 |
+
}
|
16 |
+
neutralizers = {}
|
17 |
+
|
18 |
+
def get_neutralizer(model_name):
|
19 |
+
if model_name not in neutralizers:
|
20 |
+
neutralizers[model_name] = pipeline("text2text-generation", model=neutralizer_models[model_name])
|
21 |
+
return neutralizers[model_name]
|
22 |
+
|
23 |
+
# Utils
|
24 |
def extract_text_from_pdf(pdf_file):
|
|
|
25 |
text = ""
|
26 |
with fitz.open(pdf_file) as pdf:
|
27 |
for page in pdf:
|
|
|
29 |
return text
|
30 |
|
31 |
def split_into_sentences(text):
|
|
|
32 |
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
|
33 |
return [s for s in sentences if s]
|
34 |
|
35 |
def analyze_sentence(sentence):
|
|
|
36 |
detection_result = bias_detector(sentence)[0]
|
37 |
label = detection_result['label']
|
38 |
score = detection_result['score']
|
|
|
56 |
}
|
57 |
|
58 |
def analyze_pdf(pdf_file):
|
|
|
59 |
text = extract_text_from_pdf(pdf_file)
|
60 |
sentences = split_into_sentences(text)
|
61 |
|
|
|
73 |
- **Unbiased Sentences:** {unbiased} ({(unbiased/total)*100:.1f}%)
|
74 |
"""
|
75 |
|
|
|
76 |
df = pd.DataFrame(results)
|
77 |
return stats_md, df
|
78 |
|
|
|
79 |
def analyze_text(text):
|
|
|
80 |
return analyze_sentence(text)
|
81 |
|
82 |
+
# New: Neutralize Bias
|
83 |
+
def neutralize_text(text, model_choice):
|
84 |
+
neutralizer = get_neutralizer(model_choice)
|
85 |
+
result = neutralizer(text, max_length=512, do_sample=False)
|
86 |
+
return result[0]["generated_text"]
|
87 |
+
|
88 |
+
def neutralize_pdf(pdf_file, model_choice):
|
89 |
+
text = extract_text_from_pdf(pdf_file)
|
90 |
+
sentences = split_into_sentences(text)
|
91 |
+
|
92 |
+
neutralizer = get_neutralizer(model_choice)
|
93 |
+
neutralized_sentences = [neutralizer(s, max_length=512, do_sample=False)[0]["generated_text"] for s in sentences]
|
94 |
+
neutralized_text = " ".join(neutralized_sentences)
|
95 |
+
return neutralized_text
|
96 |
+
|
97 |
+
|
98 |
+
# Top badges
|
99 |
badges_html = """
|
100 |
<p align="center">
|
101 |
<a href="https://huggingface.co/himel7/bias-detector">
|
|
|
113 |
</p>
|
114 |
"""
|
115 |
|
116 |
+
# Build UI
|
117 |
with gr.Blocks() as demo:
|
118 |
gr.HTML(badges_html)
|
119 |
+
gr.Markdown("## Bias Analyzer & Neutralizer")
|
120 |
+
gr.Markdown("### This app helps you to detect biases in sentences, analyse them, and neutralize sentences.")
|
121 |
|
122 |
with gr.Tab("Single Sentence"):
|
123 |
text_input = gr.Textbox(lines=3, placeholder="Enter a sentence...")
|
|
|
125 |
btn = gr.Button("Analyze")
|
126 |
btn.click(analyze_text, inputs=text_input, outputs=output)
|
127 |
|
128 |
+
gr.Markdown("### Neutralize Bias")
|
129 |
+
model_choice = gr.Dropdown(list(neutralizer_models.keys()), label="Neutralizer Model", value="BART Neutralizer")
|
130 |
+
neutral_output = gr.Textbox(label="Neutralized Sentence", lines=3)
|
131 |
+
neutral_btn = gr.Button("Neutralize")
|
132 |
+
neutral_btn.click(neutralize_text, inputs=[text_input, model_choice], outputs=neutral_output)
|
133 |
+
|
134 |
with gr.Tab("Analyze PDF"):
|
135 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
136 |
stats_output = gr.Markdown()
|
|
|
138 |
analyze_btn = gr.Button("Analyze PDF")
|
139 |
analyze_btn.click(analyze_pdf, inputs=pdf_input, outputs=[stats_output, table_output])
|
140 |
|
141 |
+
gr.Markdown("### Neutralize Entire PDF")
|
142 |
+
model_choice_pdf = gr.Dropdown(list(neutralizer_models.keys()), label="Neutralizer Model", value="BART Neutralizer")
|
143 |
+
neutral_pdf_output = gr.Textbox(label="Neutralized PDF Text", lines=15)
|
144 |
+
neutral_pdf_btn = gr.Button("Neutralize PDF")
|
145 |
+
neutral_pdf_btn.click(neutralize_pdf, inputs=[pdf_input, model_choice_pdf], outputs=neutral_pdf_output)
|
146 |
+
|
147 |
+
|
148 |
if __name__ == "__main__":
|
149 |
demo.launch()
|