# Tabular Classification / Regression Using AutoTrain, you can train a model to classify or regress tabular data easily. All you need to do is select from a list of models and upload your dataset. Parameter tuning is done automatically. ## Models The following models are available for tabular classification / regression. - xgboost - random_forest - ridge - logistic_regression - svm - extra_trees - gradient_boosting - adaboost - decision_tree - knn ## Data Format ```csv id,category1,category2,feature1,target 1,A,X,0.3373961604172684,1 2,B,Z,0.6481718720511972,0 3,A,Y,0.36824153984054797,1 4,B,Z,0.9571551589530464,1 5,B,Z,0.14035078041264515,1 6,C,X,0.8700872583584364,1 7,A,Y,0.4736080452737105,0 8,C,Y,0.8009107519796442,1 9,A,Y,0.5204774795512048,0 10,A,Y,0.6788795301189603,0 . . . ``` ## Columns Your CSV dataset must have two columns: `id` and `target`. ## Parameters [[autodoc]] trainers.tabular.params.TabularParams