# Object Detection Object detection is a form of supervised learning where a model is trained to identify and categorize objects within images. AutoTrain simplifies the process, enabling you to train a state-of-the-art object detection model by simply uploading labeled example images. ## Preparing your data To ensure your object detection model trains effectively, follow these guidelines for preparing your data: ### Organizing Images Prepare a zip file containing your images and metadata.jsonl. ``` Archive.zip ├── 0001.png ├── 0002.png ├── 0003.png ├── . ├── . ├── . └── metadata.jsonl ``` Example for `metadata.jsonl`: ``` {"file_name": "0001.png", "objects": {"bbox": [[302.0, 109.0, 73.0, 52.0]], "category": [0]}} {"file_name": "0002.png", "objects": {"bbox": [[810.0, 100.0, 57.0, 28.0]], "category": [1]}} {"file_name": "0003.png", "objects": {"bbox": [[160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0]], "category": [2, 2]}} ``` Please note that bboxes need to be in COCO format `[x, y, width, height]`. ### Image Requirements - Format: Ensure all images are in JPEG, JPG, or PNG format. - Quantity: Include at least 5 images to provide the model with sufficient examples for learning. - Exclusivity: The zip file should exclusively contain images and metadata.jsonl. No additional files or nested folders should be included. Some points to keep in mind: - The images must be jpeg, jpg or png. - There should be at least 5 images per split. - There must not be any other files in the zip file. - There must not be any other folders inside the zip folder. When train.zip is decompressed, it creates no folders: only images and metadata.jsonl. ## Parameters [[autodoc]] trainers.object_detection.params.ObjectDetectionParams