# AutoTrain Configs AutoTrain Configs are the way to use and train models using AutoTrain locally. Once you have installed AutoTrain Advanced, you can use the following command to train models using AutoTrain config files: ```bash $ export HF_USERNAME=your_hugging_face_username $ export HF_TOKEN=your_hugging_face_write_token $ autotrain --config path/to/config.yaml ``` Example configurations for all tasks can be found in the `configs` directory of the [AutoTrain Advanced GitHub repository](https://github.com/huggingface/autotrain-advanced). Here is an example of an AutoTrain config file: ```yaml task: llm base_model: meta-llama/Meta-Llama-3-8B-Instruct project_name: autotrain-llama3-8b-orpo log: tensorboard backend: local data: path: argilla/distilabel-capybara-dpo-7k-binarized train_split: train valid_split: null chat_template: chatml column_mapping: text_column: chosen rejected_text_column: rejected params: trainer: orpo block_size: 1024 model_max_length: 2048 max_prompt_length: 512 epochs: 3 batch_size: 2 lr: 3e-5 peft: true quantization: int4 target_modules: all-linear padding: right optimizer: adamw_torch scheduler: linear gradient_accumulation: 4 mixed_precision: bf16 hub: username: ${HF_USERNAME} token: ${HF_TOKEN} push_to_hub: true ``` In this config, we are finetuning the `meta-llama/Meta-Llama-3-8B-Instruct` model on the `argilla/distilabel-capybara-dpo-7k-binarized` dataset using the `orpo` trainer for 3 epochs with a batch size of 2 and a learning rate of `3e-5`. More information on the available parameters can be found in the *Data Formats and Parameters* section. In case you dont want to push the model to hub, you can set `push_to_hub` to `false` in the config file. If not pushing the model to hub username and token are not required. Note: they may still be needed if you are trying to access gated models or datasets.