Spaces:
Running
Running
Create chat_handler.py
Browse files- chat_handler.py +639 -0
chat_handler.py
ADDED
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Chat handling logic for Universal MCP Client - Fixed Version with File Upload Support
|
3 |
+
"""
|
4 |
+
import re
|
5 |
+
import logging
|
6 |
+
import traceback
|
7 |
+
from datetime import datetime
|
8 |
+
from typing import Dict, Any, List, Tuple, Optional
|
9 |
+
import gradio as gr
|
10 |
+
from gradio import ChatMessage
|
11 |
+
from gradio_client import Client
|
12 |
+
import time
|
13 |
+
import json
|
14 |
+
import httpx
|
15 |
+
|
16 |
+
from config import AppConfig
|
17 |
+
from mcp_client import UniversalMCPClient
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
class ChatHandler:
|
22 |
+
"""Handles chat interactions with HF Inference Providers and MCP servers using ChatMessage dataclass"""
|
23 |
+
|
24 |
+
def __init__(self, mcp_client: UniversalMCPClient):
|
25 |
+
self.mcp_client = mcp_client
|
26 |
+
# Initialize the file uploader client for converting local files to public URLs
|
27 |
+
try:
|
28 |
+
self.uploader_client = Client("abidlabs/file-uploader")
|
29 |
+
logger.info("β
File uploader client initialized")
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Failed to initialize file uploader: {e}")
|
32 |
+
self.uploader_client = None
|
33 |
+
|
34 |
+
def _upload_file_to_gradio_server(self, file_path: str) -> str:
|
35 |
+
"""Upload a file to the Gradio server and get a public URL"""
|
36 |
+
if not self.uploader_client:
|
37 |
+
logger.error("File uploader client not initialized")
|
38 |
+
return file_path
|
39 |
+
|
40 |
+
try:
|
41 |
+
# Open file in binary mode as your peer discovered
|
42 |
+
with open(file_path, "rb") as f_:
|
43 |
+
files = [("files", (file_path.split("/")[-1], f_))]
|
44 |
+
r = httpx.post(
|
45 |
+
self.uploader_client.upload_url,
|
46 |
+
files=files,
|
47 |
+
)
|
48 |
+
r.raise_for_status()
|
49 |
+
result = r.json()
|
50 |
+
uploaded_path = result[0]
|
51 |
+
# Construct the full public URL
|
52 |
+
public_url = f"{self.uploader_client.src}/gradio_api/file={uploaded_path}"
|
53 |
+
logger.info(f"β
Uploaded {file_path} -> {public_url}")
|
54 |
+
return public_url
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Failed to upload file {file_path}: {e}")
|
57 |
+
return file_path # Return original path as fallback
|
58 |
+
|
59 |
+
def process_multimodal_message(self, message: Dict[str, Any], history: List) -> Tuple[List[ChatMessage], Dict[str, Any]]:
|
60 |
+
"""Enhanced MCP chat function with multimodal input support and ChatMessage formatting"""
|
61 |
+
|
62 |
+
if not self.mcp_client.hf_client:
|
63 |
+
error_msg = "β HuggingFace token not configured. Please set HF_TOKEN environment variable or login."
|
64 |
+
history.append(ChatMessage(role="user", content=error_msg))
|
65 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
66 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
67 |
+
|
68 |
+
if not self.mcp_client.current_provider or not self.mcp_client.current_model:
|
69 |
+
error_msg = "β Please select an inference provider and model first."
|
70 |
+
history.append(ChatMessage(role="user", content=error_msg))
|
71 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
72 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
73 |
+
|
74 |
+
# Initialize variables for error handling
|
75 |
+
user_text = ""
|
76 |
+
user_files = []
|
77 |
+
uploaded_file_urls = [] # Store uploaded file URLs
|
78 |
+
self.file_url_mapping = {} # Add this: Map local paths to uploaded URLs
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Handle multimodal input - message is a dict with 'text' and 'files'
|
82 |
+
user_text = message.get("text", "") if message else ""
|
83 |
+
user_files = message.get("files", []) if message else []
|
84 |
+
|
85 |
+
# Handle case where message might be a string (backward compatibility)
|
86 |
+
if isinstance(message, str):
|
87 |
+
user_text = message
|
88 |
+
user_files = []
|
89 |
+
|
90 |
+
logger.info(f"π¬ Processing multimodal message:")
|
91 |
+
logger.info(f" π Text: {user_text}")
|
92 |
+
logger.info(f" π Files: {len(user_files)} files uploaded")
|
93 |
+
logger.info(f" π History type: {type(history)}, length: {len(history)}")
|
94 |
+
|
95 |
+
# Convert history to ChatMessage objects if needed
|
96 |
+
converted_history = []
|
97 |
+
for i, msg in enumerate(history):
|
98 |
+
try:
|
99 |
+
if isinstance(msg, dict):
|
100 |
+
# Convert dict to ChatMessage for internal processing
|
101 |
+
logger.info(f" π Converting dict message {i}: {msg.get('role', 'unknown')}")
|
102 |
+
converted_history.append(ChatMessage(
|
103 |
+
role=msg.get('role', 'assistant'),
|
104 |
+
content=msg.get('content', ''),
|
105 |
+
metadata=msg.get('metadata', None)
|
106 |
+
))
|
107 |
+
else:
|
108 |
+
# Already a ChatMessage
|
109 |
+
logger.info(f" β
ChatMessage {i}: {getattr(msg, 'role', 'unknown')}")
|
110 |
+
converted_history.append(msg)
|
111 |
+
except Exception as conv_error:
|
112 |
+
logger.error(f"Error converting message {i}: {conv_error}")
|
113 |
+
logger.error(f"Message content: {msg}")
|
114 |
+
# Skip problematic messages
|
115 |
+
continue
|
116 |
+
|
117 |
+
history = converted_history
|
118 |
+
|
119 |
+
# Upload files and get public URLs
|
120 |
+
for file_path in user_files:
|
121 |
+
logger.info(f" π Local File: {file_path}")
|
122 |
+
try:
|
123 |
+
# Upload file to get public URL
|
124 |
+
uploaded_url = self._upload_file_to_gradio_server(file_path)
|
125 |
+
# Store the mapping
|
126 |
+
self.file_url_mapping[file_path] = uploaded_url
|
127 |
+
logger.info(f" β
Uploaded File URL: {uploaded_url}")
|
128 |
+
|
129 |
+
# Add to history with public URL
|
130 |
+
history.append(ChatMessage(role="user", content={"path": uploaded_url}))
|
131 |
+
except Exception as upload_error:
|
132 |
+
logger.error(f"Failed to upload file {file_path}: {upload_error}")
|
133 |
+
# Fallback to local path with warning
|
134 |
+
history.append(ChatMessage(role="user", content={"path": file_path}))
|
135 |
+
logger.warning(f"β οΈ Using local path for {file_path} - MCP servers may not be able to access it")
|
136 |
+
|
137 |
+
# Add text message if provided
|
138 |
+
if user_text and user_text.strip():
|
139 |
+
history.append(ChatMessage(role="user", content=user_text))
|
140 |
+
|
141 |
+
# If no text and no files, return early
|
142 |
+
if not user_text.strip() and not user_files:
|
143 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
144 |
+
|
145 |
+
# Create messages for HF Inference API
|
146 |
+
messages = self._prepare_hf_messages(history, uploaded_file_urls)
|
147 |
+
|
148 |
+
# Process the chat and get structured responses
|
149 |
+
response_messages = self._call_hf_api(messages, uploaded_file_urls)
|
150 |
+
|
151 |
+
# Add all response messages to history
|
152 |
+
history.extend(response_messages)
|
153 |
+
|
154 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
error_msg = f"β Error: {str(e)}"
|
158 |
+
logger.error(f"Chat error: {e}")
|
159 |
+
logger.error(traceback.format_exc())
|
160 |
+
|
161 |
+
# Add user input to history if it exists
|
162 |
+
if user_text and user_text.strip():
|
163 |
+
history.append(ChatMessage(role="user", content=user_text))
|
164 |
+
if user_files:
|
165 |
+
for file_path in user_files:
|
166 |
+
history.append(ChatMessage(role="user", content={"path": file_path}))
|
167 |
+
|
168 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
169 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
170 |
+
|
171 |
+
def _prepare_hf_messages(self, history: List, uploaded_file_urls: List[str] = None) -> List[Dict[str, Any]]:
|
172 |
+
"""Convert history (ChatMessage or dict) to HuggingFace Inference API format"""
|
173 |
+
messages = []
|
174 |
+
|
175 |
+
# Get optimal context settings for current model/provider
|
176 |
+
if self.mcp_client.current_model and self.mcp_client.current_provider:
|
177 |
+
context_settings = AppConfig.get_optimal_context_settings(
|
178 |
+
self.mcp_client.current_model,
|
179 |
+
self.mcp_client.current_provider,
|
180 |
+
len(self.mcp_client.get_enabled_servers())
|
181 |
+
)
|
182 |
+
max_history = context_settings['recommended_history_limit']
|
183 |
+
else:
|
184 |
+
max_history = 20 # Fallback
|
185 |
+
|
186 |
+
# Convert history to HF API format (text only for context)
|
187 |
+
recent_history = history[-max_history:] if len(history) > max_history else history
|
188 |
+
|
189 |
+
for msg in recent_history:
|
190 |
+
# Handle both ChatMessage objects and dictionary format for backward compatibility
|
191 |
+
if hasattr(msg, 'role'): # ChatMessage object
|
192 |
+
role = msg.role
|
193 |
+
content = msg.content
|
194 |
+
elif isinstance(msg, dict) and 'role' in msg: # Dictionary format
|
195 |
+
role = msg.get('role')
|
196 |
+
content = msg.get('content')
|
197 |
+
else:
|
198 |
+
continue # Skip invalid messages
|
199 |
+
|
200 |
+
if role in ["user", "assistant"]:
|
201 |
+
|
202 |
+
# Convert any non-string content to string description for context
|
203 |
+
if isinstance(content, dict):
|
204 |
+
if "path" in content:
|
205 |
+
file_path = content.get('path', 'unknown')
|
206 |
+
# Check if it's a public URL or local path
|
207 |
+
if file_path.startswith('http'):
|
208 |
+
# It's already a public URL
|
209 |
+
if AppConfig.is_image_file(file_path):
|
210 |
+
content = f"[User uploaded an image: {file_path}]"
|
211 |
+
elif AppConfig.is_audio_file(file_path):
|
212 |
+
content = f"[User uploaded an audio file: {file_path}]"
|
213 |
+
elif AppConfig.is_video_file(file_path):
|
214 |
+
content = f"[User uploaded a video file: {file_path}]"
|
215 |
+
else:
|
216 |
+
content = f"[User uploaded a file: {file_path}]"
|
217 |
+
else:
|
218 |
+
# Local path - mention it's not accessible to remote servers
|
219 |
+
content = f"[User uploaded a file (local path, not accessible to remote servers): {file_path}]"
|
220 |
+
else:
|
221 |
+
content = f"[Object: {str(content)[:50]}...]"
|
222 |
+
elif isinstance(content, (list, tuple)):
|
223 |
+
content = f"[List: {str(content)[:50]}...]"
|
224 |
+
elif content is None:
|
225 |
+
content = "[Empty]"
|
226 |
+
else:
|
227 |
+
content = str(content)
|
228 |
+
|
229 |
+
messages.append({
|
230 |
+
"role": role,
|
231 |
+
"content": content
|
232 |
+
})
|
233 |
+
|
234 |
+
return messages
|
235 |
+
|
236 |
+
def _call_hf_api(self, messages: List[Dict[str, Any]], uploaded_file_urls: List[str] = None) -> List[ChatMessage]:
|
237 |
+
"""Call HuggingFace Inference API and return structured ChatMessage responses"""
|
238 |
+
|
239 |
+
# Check if we have enabled MCP servers to use
|
240 |
+
enabled_servers = self.mcp_client.get_enabled_servers()
|
241 |
+
if not enabled_servers:
|
242 |
+
return self._call_hf_without_mcp(messages)
|
243 |
+
else:
|
244 |
+
return self._call_hf_with_mcp(messages, uploaded_file_urls)
|
245 |
+
|
246 |
+
def _call_hf_without_mcp(self, messages: List[Dict[str, Any]]) -> List[ChatMessage]:
|
247 |
+
"""Call HF Inference API without MCP servers"""
|
248 |
+
logger.info("π¬ No MCP servers available, using regular HF Inference chat")
|
249 |
+
|
250 |
+
system_prompt = self._get_native_system_prompt()
|
251 |
+
|
252 |
+
# Add system prompt to messages
|
253 |
+
if messages and messages[0].get("role") == "system":
|
254 |
+
messages[0]["content"] = system_prompt + "\n\n" + messages[0]["content"]
|
255 |
+
else:
|
256 |
+
messages.insert(0, {"role": "system", "content": system_prompt})
|
257 |
+
|
258 |
+
# Get optimal token settings
|
259 |
+
if self.mcp_client.current_model and self.mcp_client.current_provider:
|
260 |
+
context_settings = AppConfig.get_optimal_context_settings(
|
261 |
+
self.mcp_client.current_model,
|
262 |
+
self.mcp_client.current_provider,
|
263 |
+
0 # No MCP servers
|
264 |
+
)
|
265 |
+
max_tokens = context_settings['max_response_tokens']
|
266 |
+
else:
|
267 |
+
max_tokens = 8192
|
268 |
+
|
269 |
+
# Use HF Inference API
|
270 |
+
try:
|
271 |
+
response = self.mcp_client.generate_chat_completion(messages, **{"max_tokens": max_tokens})
|
272 |
+
response_text = response.choices[0].message.content
|
273 |
+
|
274 |
+
if not response_text:
|
275 |
+
response_text = "I understand your request and I'm here to help."
|
276 |
+
|
277 |
+
return [ChatMessage(role="assistant", content=response_text)]
|
278 |
+
except Exception as e:
|
279 |
+
logger.error(f"HF Inference API call failed: {e}")
|
280 |
+
return [ChatMessage(role="assistant", content=f"β API call failed: {str(e)}")]
|
281 |
+
|
282 |
+
def _call_hf_with_mcp(self, messages: List[Dict[str, Any]], uploaded_file_urls: List[str] = None) -> List[ChatMessage]:
|
283 |
+
"""Call HF Inference API with MCP servers and return structured responses"""
|
284 |
+
|
285 |
+
# Enhanced system prompt with multimodal and MCP instructions
|
286 |
+
system_prompt = self._get_mcp_system_prompt(uploaded_file_urls)
|
287 |
+
|
288 |
+
# Add system prompt to messages
|
289 |
+
if messages and messages[0].get("role") == "system":
|
290 |
+
messages[0]["content"] = system_prompt + "\n\n" + messages[0]["content"]
|
291 |
+
else:
|
292 |
+
messages.insert(0, {"role": "system", "content": system_prompt})
|
293 |
+
|
294 |
+
# Get optimal token settings
|
295 |
+
enabled_servers = self.mcp_client.get_enabled_servers()
|
296 |
+
if self.mcp_client.current_model and self.mcp_client.current_provider:
|
297 |
+
context_settings = AppConfig.get_optimal_context_settings(
|
298 |
+
self.mcp_client.current_model,
|
299 |
+
self.mcp_client.current_provider,
|
300 |
+
len(enabled_servers)
|
301 |
+
)
|
302 |
+
max_tokens = context_settings['max_response_tokens']
|
303 |
+
else:
|
304 |
+
max_tokens = 8192
|
305 |
+
|
306 |
+
# Debug logging
|
307 |
+
logger.info(f"π€ Sending {len(messages)} messages to HF Inference API")
|
308 |
+
logger.info(f"π§ Using {len(self.mcp_client.servers)} MCP servers")
|
309 |
+
logger.info(f"π€ Model: {self.mcp_client.current_model} via {self.mcp_client.current_provider}")
|
310 |
+
logger.info(f"π Max tokens: {max_tokens}")
|
311 |
+
|
312 |
+
start_time = time.time()
|
313 |
+
|
314 |
+
try:
|
315 |
+
# Pass file mapping to MCP client
|
316 |
+
if hasattr(self, 'file_url_mapping'):
|
317 |
+
self.mcp_client.chat_handler_file_mapping = self.file_url_mapping
|
318 |
+
|
319 |
+
# Call HF Inference with MCP tool support - using optimal max_tokens
|
320 |
+
response = self.mcp_client.generate_chat_completion_with_mcp_tools(messages, **{"max_tokens": max_tokens})
|
321 |
+
|
322 |
+
return self._process_hf_response(response, start_time)
|
323 |
+
except Exception as e:
|
324 |
+
logger.error(f"HF Inference API call with MCP failed: {e}")
|
325 |
+
return [ChatMessage(role="assistant", content=f"β API call failed: {str(e)}")]
|
326 |
+
|
327 |
+
def _process_hf_response(self, response, start_time: float) -> List[ChatMessage]:
|
328 |
+
"""Process HF Inference response with simplified media handling and nested errors"""
|
329 |
+
chat_messages = []
|
330 |
+
|
331 |
+
try:
|
332 |
+
response_text = response.choices[0].message.content
|
333 |
+
|
334 |
+
if not response_text:
|
335 |
+
response_text = "I understand your request and I'm here to help."
|
336 |
+
|
337 |
+
# Check if this response includes tool execution info
|
338 |
+
if hasattr(response, '_tool_execution'):
|
339 |
+
tool_info = response._tool_execution
|
340 |
+
logger.info(f"π§ Processing response with tool execution: {tool_info}")
|
341 |
+
|
342 |
+
duration = round(time.time() - start_time, 2)
|
343 |
+
tool_id = f"tool_{tool_info['tool']}_{int(time.time())}"
|
344 |
+
|
345 |
+
if tool_info['success']:
|
346 |
+
tool_result = str(tool_info['result'])
|
347 |
+
|
348 |
+
# Extract media URL if present
|
349 |
+
media_url = self._extract_media_url(tool_result, tool_info.get('server', ''))
|
350 |
+
|
351 |
+
# Create tool usage metadata message
|
352 |
+
chat_messages.append(ChatMessage(
|
353 |
+
role="assistant",
|
354 |
+
content="",
|
355 |
+
metadata={
|
356 |
+
"title": f"π§ Used {tool_info['tool']}",
|
357 |
+
"status": "done",
|
358 |
+
"duration": duration,
|
359 |
+
"id": tool_id
|
360 |
+
}
|
361 |
+
))
|
362 |
+
|
363 |
+
# Add nested success message with the raw result
|
364 |
+
if media_url:
|
365 |
+
result_preview = f"β
Successfully generated media\nURL: {media_url[:100]}..."
|
366 |
+
else:
|
367 |
+
result_preview = f"β
Tool executed successfully\nResult: {tool_result[:200]}..."
|
368 |
+
|
369 |
+
chat_messages.append(ChatMessage(
|
370 |
+
role="assistant",
|
371 |
+
content=result_preview,
|
372 |
+
metadata={
|
373 |
+
"title": "π Server Response",
|
374 |
+
"parent_id": tool_id,
|
375 |
+
"status": "done"
|
376 |
+
}
|
377 |
+
))
|
378 |
+
|
379 |
+
# Add LLM's descriptive text if present (before media)
|
380 |
+
if response_text and not response_text.startswith('{"use_tool"'):
|
381 |
+
# Clean the response text by removing URLs and tool JSON
|
382 |
+
clean_response = response_text
|
383 |
+
if media_url and media_url in clean_response:
|
384 |
+
clean_response = clean_response.replace(media_url, "").strip()
|
385 |
+
|
386 |
+
# Remove any remaining JSON tool call patterns
|
387 |
+
clean_response = re.sub(r'\{"use_tool"[^}]+\}', '', clean_response).strip()
|
388 |
+
|
389 |
+
# Remove all markdown link/image syntax completely
|
390 |
+
clean_response = re.sub(r'!\[([^\]]*)\]\([^)]*\)', '', clean_response) # Remove image markdown
|
391 |
+
clean_response = re.sub(r'\[([^\]]*)\]\([^)]*\)', '', clean_response) # Remove link markdown
|
392 |
+
clean_response = re.sub(r'!\[([^\]]*)\]', '', clean_response) # Remove broken image refs
|
393 |
+
clean_response = re.sub(r'\[([^\]]*)\]', '', clean_response) # Remove broken link refs
|
394 |
+
clean_response = re.sub(r'\(\s*\)', '', clean_response) # Remove empty parentheses
|
395 |
+
clean_response = clean_response.strip() # Final strip
|
396 |
+
|
397 |
+
# Only add if there's meaningful text left after cleaning
|
398 |
+
if clean_response and len(clean_response) > 10:
|
399 |
+
chat_messages.append(ChatMessage(
|
400 |
+
role="assistant",
|
401 |
+
content=clean_response
|
402 |
+
))
|
403 |
+
# Handle media content if present
|
404 |
+
if media_url:
|
405 |
+
# Add media as a separate message - Gradio will auto-detect type
|
406 |
+
chat_messages.append(ChatMessage(
|
407 |
+
role="assistant",
|
408 |
+
content={"path": media_url}
|
409 |
+
))
|
410 |
+
else:
|
411 |
+
# No media URL found, check if we need to show non-media result
|
412 |
+
if not response_text or response_text.startswith('{"use_tool"'):
|
413 |
+
# Only show result if there wasn't descriptive text from LLM
|
414 |
+
if len(tool_result) > 500:
|
415 |
+
result_preview = f"Operation completed successfully. Result preview: {tool_result[:500]}..."
|
416 |
+
else:
|
417 |
+
result_preview = f"Operation completed successfully. Result: {tool_result}"
|
418 |
+
|
419 |
+
chat_messages.append(ChatMessage(
|
420 |
+
role="assistant",
|
421 |
+
content=result_preview
|
422 |
+
))
|
423 |
+
|
424 |
+
else:
|
425 |
+
# Tool execution failed
|
426 |
+
error_details = tool_info['result']
|
427 |
+
|
428 |
+
# Create main tool message with error status
|
429 |
+
chat_messages.append(ChatMessage(
|
430 |
+
role="assistant",
|
431 |
+
content="",
|
432 |
+
metadata={
|
433 |
+
"title": f"β Used {tool_info['tool']}",
|
434 |
+
"status": "error",
|
435 |
+
"duration": duration,
|
436 |
+
"id": tool_id
|
437 |
+
}
|
438 |
+
))
|
439 |
+
|
440 |
+
# Add nested error response from server
|
441 |
+
chat_messages.append(ChatMessage(
|
442 |
+
role="assistant",
|
443 |
+
content=f"β Tool execution failed\n```\n{error_details}\n```",
|
444 |
+
metadata={
|
445 |
+
"title": "π Server Response",
|
446 |
+
"parent_id": tool_id,
|
447 |
+
"status": "error"
|
448 |
+
}
|
449 |
+
))
|
450 |
+
|
451 |
+
# Add suggestions as another nested message
|
452 |
+
chat_messages.append(ChatMessage(
|
453 |
+
role="assistant",
|
454 |
+
content="**Suggestions:**\nβ’ Try modifying your request slightly\nβ’ Wait a moment and try again\nβ’ Use a different MCP server if available",
|
455 |
+
metadata={
|
456 |
+
"title": "π‘ Possible Solutions",
|
457 |
+
"parent_id": tool_id,
|
458 |
+
"status": "info"
|
459 |
+
}
|
460 |
+
))
|
461 |
+
else:
|
462 |
+
# No tool usage, just return the response
|
463 |
+
chat_messages.append(ChatMessage(
|
464 |
+
role="assistant",
|
465 |
+
content=response_text
|
466 |
+
))
|
467 |
+
|
468 |
+
except Exception as e:
|
469 |
+
logger.error(f"Error processing HF response: {e}")
|
470 |
+
logger.error(traceback.format_exc())
|
471 |
+
chat_messages.append(ChatMessage(
|
472 |
+
role="assistant",
|
473 |
+
content="I understand your request and I'm here to help."
|
474 |
+
))
|
475 |
+
|
476 |
+
return chat_messages
|
477 |
+
|
478 |
+
def _extract_media_url(self, result_text: str, server_name: str) -> Optional[str]:
|
479 |
+
"""Extract media URL from MCP response with improved pattern matching"""
|
480 |
+
if not isinstance(result_text, str):
|
481 |
+
return None
|
482 |
+
|
483 |
+
logger.info(f"π Extracting media from result: {result_text[:500]}...")
|
484 |
+
|
485 |
+
# Try JSON parsing first
|
486 |
+
try:
|
487 |
+
if result_text.strip().startswith('[') or result_text.strip().startswith('{'):
|
488 |
+
data = json.loads(result_text.strip())
|
489 |
+
|
490 |
+
# Handle array format
|
491 |
+
if isinstance(data, list) and len(data) > 0:
|
492 |
+
item = data[0]
|
493 |
+
if isinstance(item, dict):
|
494 |
+
# Check for nested media structure
|
495 |
+
for media_type in ['audio', 'video', 'image']:
|
496 |
+
if media_type in item and isinstance(item[media_type], dict):
|
497 |
+
if 'url' in item[media_type]:
|
498 |
+
url = item[media_type]['url'].strip('\'"')
|
499 |
+
logger.info(f"π― Found {media_type} URL in JSON: {url}")
|
500 |
+
return url
|
501 |
+
# Check for direct URL
|
502 |
+
if 'url' in item:
|
503 |
+
url = item['url'].strip('\'"')
|
504 |
+
logger.info(f"π― Found direct URL in JSON: {url}")
|
505 |
+
return url
|
506 |
+
|
507 |
+
# Handle object format
|
508 |
+
elif isinstance(data, dict):
|
509 |
+
# Check for nested media structure
|
510 |
+
for media_type in ['audio', 'video', 'image']:
|
511 |
+
if media_type in data and isinstance(data[media_type], dict):
|
512 |
+
if 'url' in data[media_type]:
|
513 |
+
url = data[media_type]['url'].strip('\'"')
|
514 |
+
logger.info(f"π― Found {media_type} URL in JSON: {url}")
|
515 |
+
return url
|
516 |
+
# Check for direct URL
|
517 |
+
if 'url' in data:
|
518 |
+
url = data['url'].strip('\'"')
|
519 |
+
logger.info(f"π― Found direct URL in JSON: {url}")
|
520 |
+
return url
|
521 |
+
|
522 |
+
except json.JSONDecodeError:
|
523 |
+
pass
|
524 |
+
|
525 |
+
# Check for Gradio file URLs (common pattern)
|
526 |
+
gradio_patterns = [
|
527 |
+
r'https://[^/]+\.hf\.space/gradio_api/file=/[^/]+/[^/]+/[^\s"\'<>,]+',
|
528 |
+
r'https://[^/]+\.hf\.space/file=[^\s"\'<>,]+',
|
529 |
+
r'/gradio_api/file=/[^\s"\'<>,]+'
|
530 |
+
]
|
531 |
+
|
532 |
+
for pattern in gradio_patterns:
|
533 |
+
match = re.search(pattern, result_text)
|
534 |
+
if match:
|
535 |
+
url = match.group(0).rstrip('\'",:;')
|
536 |
+
logger.info(f"π― Found Gradio file URL: {url}")
|
537 |
+
return url
|
538 |
+
|
539 |
+
# Check for any HTTP URLs with media extensions
|
540 |
+
url_pattern = r'https?://[^\s"\'<>]+\.(?:mp3|wav|ogg|m4a|flac|aac|opus|wma|mp4|webm|avi|mov|mkv|m4v|wmv|png|jpg|jpeg|gif|webp|bmp|svg)'
|
541 |
+
match = re.search(url_pattern, result_text, re.IGNORECASE)
|
542 |
+
if match:
|
543 |
+
url = match.group(0)
|
544 |
+
logger.info(f"π― Found media URL by extension: {url}")
|
545 |
+
return url
|
546 |
+
|
547 |
+
# Check for data URLs
|
548 |
+
if result_text.startswith('data:'):
|
549 |
+
logger.info("π― Found data URL")
|
550 |
+
return result_text
|
551 |
+
|
552 |
+
logger.info("β No media URL found in result")
|
553 |
+
return None
|
554 |
+
|
555 |
+
def _get_native_system_prompt(self) -> str:
|
556 |
+
"""Get system prompt for HF Inference without MCP servers"""
|
557 |
+
model_info = AppConfig.AVAILABLE_MODELS.get(self.mcp_client.current_model, {})
|
558 |
+
context_length = model_info.get("context_length", 128000)
|
559 |
+
|
560 |
+
return f"""You are an AI assistant powered by {self.mcp_client.current_model} via {self.mcp_client.current_provider}. You have native capabilities for:
|
561 |
+
- **Text Processing**: You can analyze, summarize, translate, and process text directly
|
562 |
+
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
|
563 |
+
- **Code Analysis**: You can read, analyze, and explain code
|
564 |
+
- **Reasoning**: You can perform step-by-step reasoning and problem-solving
|
565 |
+
- **Context Window**: You have access to {context_length:,} tokens of context
|
566 |
+
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
567 |
+
Please provide helpful, accurate, and engaging responses to user queries."""
|
568 |
+
|
569 |
+
def _get_mcp_system_prompt(self, uploaded_file_urls: List[str] = None) -> str:
|
570 |
+
"""Get enhanced system prompt for HF Inference with MCP servers"""
|
571 |
+
model_info = AppConfig.AVAILABLE_MODELS.get(self.mcp_client.current_model, {})
|
572 |
+
context_length = model_info.get("context_length", 128000)
|
573 |
+
|
574 |
+
uploaded_files_context = ""
|
575 |
+
if uploaded_file_urls:
|
576 |
+
uploaded_files_context = f"\n\nFILES UPLOADED BY USER (Public URLs accessible to MCP servers):\n"
|
577 |
+
for i, file_url in enumerate(uploaded_file_urls, 1):
|
578 |
+
file_name = file_url.split('/')[-1] if '/' in file_url else file_url
|
579 |
+
if AppConfig.is_image_file(file_url):
|
580 |
+
file_type = "Image"
|
581 |
+
elif AppConfig.is_audio_file(file_url):
|
582 |
+
file_type = "Audio"
|
583 |
+
elif AppConfig.is_video_file(file_url):
|
584 |
+
file_type = "Video"
|
585 |
+
else:
|
586 |
+
file_type = "File"
|
587 |
+
uploaded_files_context += f"{i}. {file_type}: {file_name}\n URL: {file_url}\n"
|
588 |
+
|
589 |
+
# Get available tools with correct names from enabled servers only
|
590 |
+
enabled_servers = self.mcp_client.get_enabled_servers()
|
591 |
+
tools_info = []
|
592 |
+
for server_name, config in enabled_servers.items():
|
593 |
+
tools_info.append(f"- **{server_name}**: {config.description}")
|
594 |
+
|
595 |
+
return f"""You are an AI assistant powered by {self.mcp_client.current_model} via {self.mcp_client.current_provider}, with access to various MCP tools.
|
596 |
+
YOUR NATIVE CAPABILITIES:
|
597 |
+
- **Text Processing**: You can analyze, summarize, translate, and process text directly
|
598 |
+
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
|
599 |
+
- **Code Analysis**: You can read, analyze, and explain code
|
600 |
+
- **Reasoning**: You can perform step-by-step reasoning and problem-solving
|
601 |
+
- **Context Window**: You have access to {context_length:,} tokens of context
|
602 |
+
AVAILABLE MCP TOOLS:
|
603 |
+
You have access to the following MCP servers:
|
604 |
+
{chr(10).join(tools_info)}
|
605 |
+
WHEN TO USE MCP TOOLS:
|
606 |
+
- **Image Generation**: Creating new images from text prompts
|
607 |
+
- **Image Editing**: Modifying, enhancing, or transforming existing images
|
608 |
+
- **Audio Processing**: Transcribing audio, generating speech, audio enhancement
|
609 |
+
- **Video Processing**: Creating or editing videos
|
610 |
+
- **Text to Speech**: Converting text to audio
|
611 |
+
- **Specialized Analysis**: Tasks requiring specific models or APIs
|
612 |
+
TOOL USAGE FORMAT:
|
613 |
+
When you need to use an MCP tool, respond with JSON in this exact format:
|
614 |
+
{{"use_tool": true, "server": "exact_server_name", "tool": "exact_tool_name", "arguments": {{"param": "value"}}}}
|
615 |
+
IMPORTANT: Always describe what you're going to do BEFORE the JSON tool call. For example:
|
616 |
+
"I'll generate speech for your text using the TTS tool."
|
617 |
+
{{"use_tool": true, "server": "text to speech", "tool": "Kokoro_TTS_mcp_test_generate_first", "arguments": {{"text": "hello"}}}}
|
618 |
+
IMPORTANT TOOL NAME MAPPING:
|
619 |
+
- For TTS server: use tool name "Kokoro_TTS_mcp_test_generate_first"
|
620 |
+
- For image generation: use tool name "dalle_3_xl_lora_v2_generate"
|
621 |
+
- For video generation: use tool name "ysharma_ltx_video_distilledtext_to_video"
|
622 |
+
- For letter counting: use tool name "gradio_app_dummy1_letter_counter"
|
623 |
+
EXACT SERVER NAMES TO USE:
|
624 |
+
{', '.join([f'"{name}"' for name in enabled_servers.keys()])}
|
625 |
+
FILE HANDLING FOR MCP TOOLS:
|
626 |
+
When using MCP tools with uploaded files, always use the public URLs provided above.
|
627 |
+
These URLs are accessible to remote MCP servers.
|
628 |
+
{uploaded_files_context}
|
629 |
+
MEDIA HANDLING:
|
630 |
+
When tool results contain media URLs (images, audio, videos), the system will automatically embed them as playable media.
|
631 |
+
IMPORTANT NOTES:
|
632 |
+
- Always use the EXACT server names and tool names as specified above
|
633 |
+
- Use proper JSON format for tool calls
|
634 |
+
- Include all required parameters in arguments
|
635 |
+
- For file inputs to MCP tools, use the public URLs provided, not local paths
|
636 |
+
- ALWAYS provide a descriptive message before the JSON tool call
|
637 |
+
- After tool execution, you can provide additional context or ask if the user needs anything else
|
638 |
+
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
639 |
+
Current model: {self.mcp_client.current_model} via {self.mcp_client.current_provider}"""
|