ysharma HF Staff commited on
Commit
1cdb77b
Β·
verified Β·
1 Parent(s): 6bcb871

Create chat_handler.py

Browse files
Files changed (1) hide show
  1. chat_handler.py +639 -0
chat_handler.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Chat handling logic for Universal MCP Client - Fixed Version with File Upload Support
3
+ """
4
+ import re
5
+ import logging
6
+ import traceback
7
+ from datetime import datetime
8
+ from typing import Dict, Any, List, Tuple, Optional
9
+ import gradio as gr
10
+ from gradio import ChatMessage
11
+ from gradio_client import Client
12
+ import time
13
+ import json
14
+ import httpx
15
+
16
+ from config import AppConfig
17
+ from mcp_client import UniversalMCPClient
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+ class ChatHandler:
22
+ """Handles chat interactions with HF Inference Providers and MCP servers using ChatMessage dataclass"""
23
+
24
+ def __init__(self, mcp_client: UniversalMCPClient):
25
+ self.mcp_client = mcp_client
26
+ # Initialize the file uploader client for converting local files to public URLs
27
+ try:
28
+ self.uploader_client = Client("abidlabs/file-uploader")
29
+ logger.info("βœ… File uploader client initialized")
30
+ except Exception as e:
31
+ logger.error(f"Failed to initialize file uploader: {e}")
32
+ self.uploader_client = None
33
+
34
+ def _upload_file_to_gradio_server(self, file_path: str) -> str:
35
+ """Upload a file to the Gradio server and get a public URL"""
36
+ if not self.uploader_client:
37
+ logger.error("File uploader client not initialized")
38
+ return file_path
39
+
40
+ try:
41
+ # Open file in binary mode as your peer discovered
42
+ with open(file_path, "rb") as f_:
43
+ files = [("files", (file_path.split("/")[-1], f_))]
44
+ r = httpx.post(
45
+ self.uploader_client.upload_url,
46
+ files=files,
47
+ )
48
+ r.raise_for_status()
49
+ result = r.json()
50
+ uploaded_path = result[0]
51
+ # Construct the full public URL
52
+ public_url = f"{self.uploader_client.src}/gradio_api/file={uploaded_path}"
53
+ logger.info(f"βœ… Uploaded {file_path} -> {public_url}")
54
+ return public_url
55
+ except Exception as e:
56
+ logger.error(f"Failed to upload file {file_path}: {e}")
57
+ return file_path # Return original path as fallback
58
+
59
+ def process_multimodal_message(self, message: Dict[str, Any], history: List) -> Tuple[List[ChatMessage], Dict[str, Any]]:
60
+ """Enhanced MCP chat function with multimodal input support and ChatMessage formatting"""
61
+
62
+ if not self.mcp_client.hf_client:
63
+ error_msg = "❌ HuggingFace token not configured. Please set HF_TOKEN environment variable or login."
64
+ history.append(ChatMessage(role="user", content=error_msg))
65
+ history.append(ChatMessage(role="assistant", content=error_msg))
66
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
67
+
68
+ if not self.mcp_client.current_provider or not self.mcp_client.current_model:
69
+ error_msg = "❌ Please select an inference provider and model first."
70
+ history.append(ChatMessage(role="user", content=error_msg))
71
+ history.append(ChatMessage(role="assistant", content=error_msg))
72
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
73
+
74
+ # Initialize variables for error handling
75
+ user_text = ""
76
+ user_files = []
77
+ uploaded_file_urls = [] # Store uploaded file URLs
78
+ self.file_url_mapping = {} # Add this: Map local paths to uploaded URLs
79
+
80
+ try:
81
+ # Handle multimodal input - message is a dict with 'text' and 'files'
82
+ user_text = message.get("text", "") if message else ""
83
+ user_files = message.get("files", []) if message else []
84
+
85
+ # Handle case where message might be a string (backward compatibility)
86
+ if isinstance(message, str):
87
+ user_text = message
88
+ user_files = []
89
+
90
+ logger.info(f"πŸ’¬ Processing multimodal message:")
91
+ logger.info(f" πŸ“ Text: {user_text}")
92
+ logger.info(f" πŸ“ Files: {len(user_files)} files uploaded")
93
+ logger.info(f" πŸ“‹ History type: {type(history)}, length: {len(history)}")
94
+
95
+ # Convert history to ChatMessage objects if needed
96
+ converted_history = []
97
+ for i, msg in enumerate(history):
98
+ try:
99
+ if isinstance(msg, dict):
100
+ # Convert dict to ChatMessage for internal processing
101
+ logger.info(f" πŸ“ Converting dict message {i}: {msg.get('role', 'unknown')}")
102
+ converted_history.append(ChatMessage(
103
+ role=msg.get('role', 'assistant'),
104
+ content=msg.get('content', ''),
105
+ metadata=msg.get('metadata', None)
106
+ ))
107
+ else:
108
+ # Already a ChatMessage
109
+ logger.info(f" βœ… ChatMessage {i}: {getattr(msg, 'role', 'unknown')}")
110
+ converted_history.append(msg)
111
+ except Exception as conv_error:
112
+ logger.error(f"Error converting message {i}: {conv_error}")
113
+ logger.error(f"Message content: {msg}")
114
+ # Skip problematic messages
115
+ continue
116
+
117
+ history = converted_history
118
+
119
+ # Upload files and get public URLs
120
+ for file_path in user_files:
121
+ logger.info(f" πŸ“„ Local File: {file_path}")
122
+ try:
123
+ # Upload file to get public URL
124
+ uploaded_url = self._upload_file_to_gradio_server(file_path)
125
+ # Store the mapping
126
+ self.file_url_mapping[file_path] = uploaded_url
127
+ logger.info(f" βœ… Uploaded File URL: {uploaded_url}")
128
+
129
+ # Add to history with public URL
130
+ history.append(ChatMessage(role="user", content={"path": uploaded_url}))
131
+ except Exception as upload_error:
132
+ logger.error(f"Failed to upload file {file_path}: {upload_error}")
133
+ # Fallback to local path with warning
134
+ history.append(ChatMessage(role="user", content={"path": file_path}))
135
+ logger.warning(f"⚠️ Using local path for {file_path} - MCP servers may not be able to access it")
136
+
137
+ # Add text message if provided
138
+ if user_text and user_text.strip():
139
+ history.append(ChatMessage(role="user", content=user_text))
140
+
141
+ # If no text and no files, return early
142
+ if not user_text.strip() and not user_files:
143
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
144
+
145
+ # Create messages for HF Inference API
146
+ messages = self._prepare_hf_messages(history, uploaded_file_urls)
147
+
148
+ # Process the chat and get structured responses
149
+ response_messages = self._call_hf_api(messages, uploaded_file_urls)
150
+
151
+ # Add all response messages to history
152
+ history.extend(response_messages)
153
+
154
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
155
+
156
+ except Exception as e:
157
+ error_msg = f"❌ Error: {str(e)}"
158
+ logger.error(f"Chat error: {e}")
159
+ logger.error(traceback.format_exc())
160
+
161
+ # Add user input to history if it exists
162
+ if user_text and user_text.strip():
163
+ history.append(ChatMessage(role="user", content=user_text))
164
+ if user_files:
165
+ for file_path in user_files:
166
+ history.append(ChatMessage(role="user", content={"path": file_path}))
167
+
168
+ history.append(ChatMessage(role="assistant", content=error_msg))
169
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
170
+
171
+ def _prepare_hf_messages(self, history: List, uploaded_file_urls: List[str] = None) -> List[Dict[str, Any]]:
172
+ """Convert history (ChatMessage or dict) to HuggingFace Inference API format"""
173
+ messages = []
174
+
175
+ # Get optimal context settings for current model/provider
176
+ if self.mcp_client.current_model and self.mcp_client.current_provider:
177
+ context_settings = AppConfig.get_optimal_context_settings(
178
+ self.mcp_client.current_model,
179
+ self.mcp_client.current_provider,
180
+ len(self.mcp_client.get_enabled_servers())
181
+ )
182
+ max_history = context_settings['recommended_history_limit']
183
+ else:
184
+ max_history = 20 # Fallback
185
+
186
+ # Convert history to HF API format (text only for context)
187
+ recent_history = history[-max_history:] if len(history) > max_history else history
188
+
189
+ for msg in recent_history:
190
+ # Handle both ChatMessage objects and dictionary format for backward compatibility
191
+ if hasattr(msg, 'role'): # ChatMessage object
192
+ role = msg.role
193
+ content = msg.content
194
+ elif isinstance(msg, dict) and 'role' in msg: # Dictionary format
195
+ role = msg.get('role')
196
+ content = msg.get('content')
197
+ else:
198
+ continue # Skip invalid messages
199
+
200
+ if role in ["user", "assistant"]:
201
+
202
+ # Convert any non-string content to string description for context
203
+ if isinstance(content, dict):
204
+ if "path" in content:
205
+ file_path = content.get('path', 'unknown')
206
+ # Check if it's a public URL or local path
207
+ if file_path.startswith('http'):
208
+ # It's already a public URL
209
+ if AppConfig.is_image_file(file_path):
210
+ content = f"[User uploaded an image: {file_path}]"
211
+ elif AppConfig.is_audio_file(file_path):
212
+ content = f"[User uploaded an audio file: {file_path}]"
213
+ elif AppConfig.is_video_file(file_path):
214
+ content = f"[User uploaded a video file: {file_path}]"
215
+ else:
216
+ content = f"[User uploaded a file: {file_path}]"
217
+ else:
218
+ # Local path - mention it's not accessible to remote servers
219
+ content = f"[User uploaded a file (local path, not accessible to remote servers): {file_path}]"
220
+ else:
221
+ content = f"[Object: {str(content)[:50]}...]"
222
+ elif isinstance(content, (list, tuple)):
223
+ content = f"[List: {str(content)[:50]}...]"
224
+ elif content is None:
225
+ content = "[Empty]"
226
+ else:
227
+ content = str(content)
228
+
229
+ messages.append({
230
+ "role": role,
231
+ "content": content
232
+ })
233
+
234
+ return messages
235
+
236
+ def _call_hf_api(self, messages: List[Dict[str, Any]], uploaded_file_urls: List[str] = None) -> List[ChatMessage]:
237
+ """Call HuggingFace Inference API and return structured ChatMessage responses"""
238
+
239
+ # Check if we have enabled MCP servers to use
240
+ enabled_servers = self.mcp_client.get_enabled_servers()
241
+ if not enabled_servers:
242
+ return self._call_hf_without_mcp(messages)
243
+ else:
244
+ return self._call_hf_with_mcp(messages, uploaded_file_urls)
245
+
246
+ def _call_hf_without_mcp(self, messages: List[Dict[str, Any]]) -> List[ChatMessage]:
247
+ """Call HF Inference API without MCP servers"""
248
+ logger.info("πŸ’¬ No MCP servers available, using regular HF Inference chat")
249
+
250
+ system_prompt = self._get_native_system_prompt()
251
+
252
+ # Add system prompt to messages
253
+ if messages and messages[0].get("role") == "system":
254
+ messages[0]["content"] = system_prompt + "\n\n" + messages[0]["content"]
255
+ else:
256
+ messages.insert(0, {"role": "system", "content": system_prompt})
257
+
258
+ # Get optimal token settings
259
+ if self.mcp_client.current_model and self.mcp_client.current_provider:
260
+ context_settings = AppConfig.get_optimal_context_settings(
261
+ self.mcp_client.current_model,
262
+ self.mcp_client.current_provider,
263
+ 0 # No MCP servers
264
+ )
265
+ max_tokens = context_settings['max_response_tokens']
266
+ else:
267
+ max_tokens = 8192
268
+
269
+ # Use HF Inference API
270
+ try:
271
+ response = self.mcp_client.generate_chat_completion(messages, **{"max_tokens": max_tokens})
272
+ response_text = response.choices[0].message.content
273
+
274
+ if not response_text:
275
+ response_text = "I understand your request and I'm here to help."
276
+
277
+ return [ChatMessage(role="assistant", content=response_text)]
278
+ except Exception as e:
279
+ logger.error(f"HF Inference API call failed: {e}")
280
+ return [ChatMessage(role="assistant", content=f"❌ API call failed: {str(e)}")]
281
+
282
+ def _call_hf_with_mcp(self, messages: List[Dict[str, Any]], uploaded_file_urls: List[str] = None) -> List[ChatMessage]:
283
+ """Call HF Inference API with MCP servers and return structured responses"""
284
+
285
+ # Enhanced system prompt with multimodal and MCP instructions
286
+ system_prompt = self._get_mcp_system_prompt(uploaded_file_urls)
287
+
288
+ # Add system prompt to messages
289
+ if messages and messages[0].get("role") == "system":
290
+ messages[0]["content"] = system_prompt + "\n\n" + messages[0]["content"]
291
+ else:
292
+ messages.insert(0, {"role": "system", "content": system_prompt})
293
+
294
+ # Get optimal token settings
295
+ enabled_servers = self.mcp_client.get_enabled_servers()
296
+ if self.mcp_client.current_model and self.mcp_client.current_provider:
297
+ context_settings = AppConfig.get_optimal_context_settings(
298
+ self.mcp_client.current_model,
299
+ self.mcp_client.current_provider,
300
+ len(enabled_servers)
301
+ )
302
+ max_tokens = context_settings['max_response_tokens']
303
+ else:
304
+ max_tokens = 8192
305
+
306
+ # Debug logging
307
+ logger.info(f"πŸ“€ Sending {len(messages)} messages to HF Inference API")
308
+ logger.info(f"πŸ”§ Using {len(self.mcp_client.servers)} MCP servers")
309
+ logger.info(f"πŸ€– Model: {self.mcp_client.current_model} via {self.mcp_client.current_provider}")
310
+ logger.info(f"πŸ“ Max tokens: {max_tokens}")
311
+
312
+ start_time = time.time()
313
+
314
+ try:
315
+ # Pass file mapping to MCP client
316
+ if hasattr(self, 'file_url_mapping'):
317
+ self.mcp_client.chat_handler_file_mapping = self.file_url_mapping
318
+
319
+ # Call HF Inference with MCP tool support - using optimal max_tokens
320
+ response = self.mcp_client.generate_chat_completion_with_mcp_tools(messages, **{"max_tokens": max_tokens})
321
+
322
+ return self._process_hf_response(response, start_time)
323
+ except Exception as e:
324
+ logger.error(f"HF Inference API call with MCP failed: {e}")
325
+ return [ChatMessage(role="assistant", content=f"❌ API call failed: {str(e)}")]
326
+
327
+ def _process_hf_response(self, response, start_time: float) -> List[ChatMessage]:
328
+ """Process HF Inference response with simplified media handling and nested errors"""
329
+ chat_messages = []
330
+
331
+ try:
332
+ response_text = response.choices[0].message.content
333
+
334
+ if not response_text:
335
+ response_text = "I understand your request and I'm here to help."
336
+
337
+ # Check if this response includes tool execution info
338
+ if hasattr(response, '_tool_execution'):
339
+ tool_info = response._tool_execution
340
+ logger.info(f"πŸ”§ Processing response with tool execution: {tool_info}")
341
+
342
+ duration = round(time.time() - start_time, 2)
343
+ tool_id = f"tool_{tool_info['tool']}_{int(time.time())}"
344
+
345
+ if tool_info['success']:
346
+ tool_result = str(tool_info['result'])
347
+
348
+ # Extract media URL if present
349
+ media_url = self._extract_media_url(tool_result, tool_info.get('server', ''))
350
+
351
+ # Create tool usage metadata message
352
+ chat_messages.append(ChatMessage(
353
+ role="assistant",
354
+ content="",
355
+ metadata={
356
+ "title": f"πŸ”§ Used {tool_info['tool']}",
357
+ "status": "done",
358
+ "duration": duration,
359
+ "id": tool_id
360
+ }
361
+ ))
362
+
363
+ # Add nested success message with the raw result
364
+ if media_url:
365
+ result_preview = f"βœ… Successfully generated media\nURL: {media_url[:100]}..."
366
+ else:
367
+ result_preview = f"βœ… Tool executed successfully\nResult: {tool_result[:200]}..."
368
+
369
+ chat_messages.append(ChatMessage(
370
+ role="assistant",
371
+ content=result_preview,
372
+ metadata={
373
+ "title": "πŸ“Š Server Response",
374
+ "parent_id": tool_id,
375
+ "status": "done"
376
+ }
377
+ ))
378
+
379
+ # Add LLM's descriptive text if present (before media)
380
+ if response_text and not response_text.startswith('{"use_tool"'):
381
+ # Clean the response text by removing URLs and tool JSON
382
+ clean_response = response_text
383
+ if media_url and media_url in clean_response:
384
+ clean_response = clean_response.replace(media_url, "").strip()
385
+
386
+ # Remove any remaining JSON tool call patterns
387
+ clean_response = re.sub(r'\{"use_tool"[^}]+\}', '', clean_response).strip()
388
+
389
+ # Remove all markdown link/image syntax completely
390
+ clean_response = re.sub(r'!\[([^\]]*)\]\([^)]*\)', '', clean_response) # Remove image markdown
391
+ clean_response = re.sub(r'\[([^\]]*)\]\([^)]*\)', '', clean_response) # Remove link markdown
392
+ clean_response = re.sub(r'!\[([^\]]*)\]', '', clean_response) # Remove broken image refs
393
+ clean_response = re.sub(r'\[([^\]]*)\]', '', clean_response) # Remove broken link refs
394
+ clean_response = re.sub(r'\(\s*\)', '', clean_response) # Remove empty parentheses
395
+ clean_response = clean_response.strip() # Final strip
396
+
397
+ # Only add if there's meaningful text left after cleaning
398
+ if clean_response and len(clean_response) > 10:
399
+ chat_messages.append(ChatMessage(
400
+ role="assistant",
401
+ content=clean_response
402
+ ))
403
+ # Handle media content if present
404
+ if media_url:
405
+ # Add media as a separate message - Gradio will auto-detect type
406
+ chat_messages.append(ChatMessage(
407
+ role="assistant",
408
+ content={"path": media_url}
409
+ ))
410
+ else:
411
+ # No media URL found, check if we need to show non-media result
412
+ if not response_text or response_text.startswith('{"use_tool"'):
413
+ # Only show result if there wasn't descriptive text from LLM
414
+ if len(tool_result) > 500:
415
+ result_preview = f"Operation completed successfully. Result preview: {tool_result[:500]}..."
416
+ else:
417
+ result_preview = f"Operation completed successfully. Result: {tool_result}"
418
+
419
+ chat_messages.append(ChatMessage(
420
+ role="assistant",
421
+ content=result_preview
422
+ ))
423
+
424
+ else:
425
+ # Tool execution failed
426
+ error_details = tool_info['result']
427
+
428
+ # Create main tool message with error status
429
+ chat_messages.append(ChatMessage(
430
+ role="assistant",
431
+ content="",
432
+ metadata={
433
+ "title": f"❌ Used {tool_info['tool']}",
434
+ "status": "error",
435
+ "duration": duration,
436
+ "id": tool_id
437
+ }
438
+ ))
439
+
440
+ # Add nested error response from server
441
+ chat_messages.append(ChatMessage(
442
+ role="assistant",
443
+ content=f"❌ Tool execution failed\n```\n{error_details}\n```",
444
+ metadata={
445
+ "title": "πŸ“Š Server Response",
446
+ "parent_id": tool_id,
447
+ "status": "error"
448
+ }
449
+ ))
450
+
451
+ # Add suggestions as another nested message
452
+ chat_messages.append(ChatMessage(
453
+ role="assistant",
454
+ content="**Suggestions:**\nβ€’ Try modifying your request slightly\nβ€’ Wait a moment and try again\nβ€’ Use a different MCP server if available",
455
+ metadata={
456
+ "title": "πŸ’‘ Possible Solutions",
457
+ "parent_id": tool_id,
458
+ "status": "info"
459
+ }
460
+ ))
461
+ else:
462
+ # No tool usage, just return the response
463
+ chat_messages.append(ChatMessage(
464
+ role="assistant",
465
+ content=response_text
466
+ ))
467
+
468
+ except Exception as e:
469
+ logger.error(f"Error processing HF response: {e}")
470
+ logger.error(traceback.format_exc())
471
+ chat_messages.append(ChatMessage(
472
+ role="assistant",
473
+ content="I understand your request and I'm here to help."
474
+ ))
475
+
476
+ return chat_messages
477
+
478
+ def _extract_media_url(self, result_text: str, server_name: str) -> Optional[str]:
479
+ """Extract media URL from MCP response with improved pattern matching"""
480
+ if not isinstance(result_text, str):
481
+ return None
482
+
483
+ logger.info(f"πŸ” Extracting media from result: {result_text[:500]}...")
484
+
485
+ # Try JSON parsing first
486
+ try:
487
+ if result_text.strip().startswith('[') or result_text.strip().startswith('{'):
488
+ data = json.loads(result_text.strip())
489
+
490
+ # Handle array format
491
+ if isinstance(data, list) and len(data) > 0:
492
+ item = data[0]
493
+ if isinstance(item, dict):
494
+ # Check for nested media structure
495
+ for media_type in ['audio', 'video', 'image']:
496
+ if media_type in item and isinstance(item[media_type], dict):
497
+ if 'url' in item[media_type]:
498
+ url = item[media_type]['url'].strip('\'"')
499
+ logger.info(f"🎯 Found {media_type} URL in JSON: {url}")
500
+ return url
501
+ # Check for direct URL
502
+ if 'url' in item:
503
+ url = item['url'].strip('\'"')
504
+ logger.info(f"🎯 Found direct URL in JSON: {url}")
505
+ return url
506
+
507
+ # Handle object format
508
+ elif isinstance(data, dict):
509
+ # Check for nested media structure
510
+ for media_type in ['audio', 'video', 'image']:
511
+ if media_type in data and isinstance(data[media_type], dict):
512
+ if 'url' in data[media_type]:
513
+ url = data[media_type]['url'].strip('\'"')
514
+ logger.info(f"🎯 Found {media_type} URL in JSON: {url}")
515
+ return url
516
+ # Check for direct URL
517
+ if 'url' in data:
518
+ url = data['url'].strip('\'"')
519
+ logger.info(f"🎯 Found direct URL in JSON: {url}")
520
+ return url
521
+
522
+ except json.JSONDecodeError:
523
+ pass
524
+
525
+ # Check for Gradio file URLs (common pattern)
526
+ gradio_patterns = [
527
+ r'https://[^/]+\.hf\.space/gradio_api/file=/[^/]+/[^/]+/[^\s"\'<>,]+',
528
+ r'https://[^/]+\.hf\.space/file=[^\s"\'<>,]+',
529
+ r'/gradio_api/file=/[^\s"\'<>,]+'
530
+ ]
531
+
532
+ for pattern in gradio_patterns:
533
+ match = re.search(pattern, result_text)
534
+ if match:
535
+ url = match.group(0).rstrip('\'",:;')
536
+ logger.info(f"🎯 Found Gradio file URL: {url}")
537
+ return url
538
+
539
+ # Check for any HTTP URLs with media extensions
540
+ url_pattern = r'https?://[^\s"\'<>]+\.(?:mp3|wav|ogg|m4a|flac|aac|opus|wma|mp4|webm|avi|mov|mkv|m4v|wmv|png|jpg|jpeg|gif|webp|bmp|svg)'
541
+ match = re.search(url_pattern, result_text, re.IGNORECASE)
542
+ if match:
543
+ url = match.group(0)
544
+ logger.info(f"🎯 Found media URL by extension: {url}")
545
+ return url
546
+
547
+ # Check for data URLs
548
+ if result_text.startswith('data:'):
549
+ logger.info("🎯 Found data URL")
550
+ return result_text
551
+
552
+ logger.info("❌ No media URL found in result")
553
+ return None
554
+
555
+ def _get_native_system_prompt(self) -> str:
556
+ """Get system prompt for HF Inference without MCP servers"""
557
+ model_info = AppConfig.AVAILABLE_MODELS.get(self.mcp_client.current_model, {})
558
+ context_length = model_info.get("context_length", 128000)
559
+
560
+ return f"""You are an AI assistant powered by {self.mcp_client.current_model} via {self.mcp_client.current_provider}. You have native capabilities for:
561
+ - **Text Processing**: You can analyze, summarize, translate, and process text directly
562
+ - **General Knowledge**: You can answer questions, explain concepts, and have conversations
563
+ - **Code Analysis**: You can read, analyze, and explain code
564
+ - **Reasoning**: You can perform step-by-step reasoning and problem-solving
565
+ - **Context Window**: You have access to {context_length:,} tokens of context
566
+ Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
567
+ Please provide helpful, accurate, and engaging responses to user queries."""
568
+
569
+ def _get_mcp_system_prompt(self, uploaded_file_urls: List[str] = None) -> str:
570
+ """Get enhanced system prompt for HF Inference with MCP servers"""
571
+ model_info = AppConfig.AVAILABLE_MODELS.get(self.mcp_client.current_model, {})
572
+ context_length = model_info.get("context_length", 128000)
573
+
574
+ uploaded_files_context = ""
575
+ if uploaded_file_urls:
576
+ uploaded_files_context = f"\n\nFILES UPLOADED BY USER (Public URLs accessible to MCP servers):\n"
577
+ for i, file_url in enumerate(uploaded_file_urls, 1):
578
+ file_name = file_url.split('/')[-1] if '/' in file_url else file_url
579
+ if AppConfig.is_image_file(file_url):
580
+ file_type = "Image"
581
+ elif AppConfig.is_audio_file(file_url):
582
+ file_type = "Audio"
583
+ elif AppConfig.is_video_file(file_url):
584
+ file_type = "Video"
585
+ else:
586
+ file_type = "File"
587
+ uploaded_files_context += f"{i}. {file_type}: {file_name}\n URL: {file_url}\n"
588
+
589
+ # Get available tools with correct names from enabled servers only
590
+ enabled_servers = self.mcp_client.get_enabled_servers()
591
+ tools_info = []
592
+ for server_name, config in enabled_servers.items():
593
+ tools_info.append(f"- **{server_name}**: {config.description}")
594
+
595
+ return f"""You are an AI assistant powered by {self.mcp_client.current_model} via {self.mcp_client.current_provider}, with access to various MCP tools.
596
+ YOUR NATIVE CAPABILITIES:
597
+ - **Text Processing**: You can analyze, summarize, translate, and process text directly
598
+ - **General Knowledge**: You can answer questions, explain concepts, and have conversations
599
+ - **Code Analysis**: You can read, analyze, and explain code
600
+ - **Reasoning**: You can perform step-by-step reasoning and problem-solving
601
+ - **Context Window**: You have access to {context_length:,} tokens of context
602
+ AVAILABLE MCP TOOLS:
603
+ You have access to the following MCP servers:
604
+ {chr(10).join(tools_info)}
605
+ WHEN TO USE MCP TOOLS:
606
+ - **Image Generation**: Creating new images from text prompts
607
+ - **Image Editing**: Modifying, enhancing, or transforming existing images
608
+ - **Audio Processing**: Transcribing audio, generating speech, audio enhancement
609
+ - **Video Processing**: Creating or editing videos
610
+ - **Text to Speech**: Converting text to audio
611
+ - **Specialized Analysis**: Tasks requiring specific models or APIs
612
+ TOOL USAGE FORMAT:
613
+ When you need to use an MCP tool, respond with JSON in this exact format:
614
+ {{"use_tool": true, "server": "exact_server_name", "tool": "exact_tool_name", "arguments": {{"param": "value"}}}}
615
+ IMPORTANT: Always describe what you're going to do BEFORE the JSON tool call. For example:
616
+ "I'll generate speech for your text using the TTS tool."
617
+ {{"use_tool": true, "server": "text to speech", "tool": "Kokoro_TTS_mcp_test_generate_first", "arguments": {{"text": "hello"}}}}
618
+ IMPORTANT TOOL NAME MAPPING:
619
+ - For TTS server: use tool name "Kokoro_TTS_mcp_test_generate_first"
620
+ - For image generation: use tool name "dalle_3_xl_lora_v2_generate"
621
+ - For video generation: use tool name "ysharma_ltx_video_distilledtext_to_video"
622
+ - For letter counting: use tool name "gradio_app_dummy1_letter_counter"
623
+ EXACT SERVER NAMES TO USE:
624
+ {', '.join([f'"{name}"' for name in enabled_servers.keys()])}
625
+ FILE HANDLING FOR MCP TOOLS:
626
+ When using MCP tools with uploaded files, always use the public URLs provided above.
627
+ These URLs are accessible to remote MCP servers.
628
+ {uploaded_files_context}
629
+ MEDIA HANDLING:
630
+ When tool results contain media URLs (images, audio, videos), the system will automatically embed them as playable media.
631
+ IMPORTANT NOTES:
632
+ - Always use the EXACT server names and tool names as specified above
633
+ - Use proper JSON format for tool calls
634
+ - Include all required parameters in arguments
635
+ - For file inputs to MCP tools, use the public URLs provided, not local paths
636
+ - ALWAYS provide a descriptive message before the JSON tool call
637
+ - After tool execution, you can provide additional context or ask if the user needs anything else
638
+ Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
639
+ Current model: {self.mcp_client.current_model} via {self.mcp_client.current_provider}"""