Seg-R1-demo / app.py
geshang's picture
Update app.py
84919dc verified
import os
import subprocess
import gradio as gr
from PIL import Image as PILImage
import torchvision.transforms.functional as TF
import numpy as np
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
import re
import io
import base64
import cv2
from typing import List, Tuple, Optional
import sys
import spaces
def add_sam2_to_path():
sam2_dir = os.path.abspath("third_party/sam2")
if sam2_dir not in sys.path:
sys.path.insert(0, sam2_dir)
return sam2_dir
def install_sam2():
sam2_dir = "third_party/sam2"
if not os.path.exists(sam2_dir):
print("Installing SAM2...")
os.makedirs("third_party", exist_ok=True)
subprocess.run([
"git", "clone",
"--recursive",
"https://github.com/facebookresearch/sam2.git",
sam2_dir
], check=True)
original_dir = os.getcwd()
try:
os.chdir(sam2_dir)
subprocess.run(["pip", "install", "-e", "."], check=True)
except Exception as e:
print(f"Error during SAM2 installation: {str(e)}")
raise
finally:
os.chdir(original_dir)
print("✅ SAM2 installed successfully!")
else:
print("SAM2 already exists, skipping installation.")
install_sam2()
sam2_dir = add_sam2_to_path()
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
print("🎉 SAM2 modules imported successfully!")
MODEL_PATH = "geshang/Seg-R1-7B"
SAM_CHECKPOINT = "sam2_weights/sam2.1_hiera_large.pt"
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
RESIZE_SIZE = (1024, 1024)
try:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None
)
processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
print(f"Qwen model loaded on {DEVICE}")
except Exception as e:
print(f"Error loading Qwen model: {e}")
model = None
processor = None
# SAM Wrapper
class CustomSAMWrapper:
def __init__(self, model_path: str, device: str = DEVICE):
# try:
self.device = torch.device(device)
sam_model = build_sam2("configs/sam2.1/sam2.1_hiera_l.yaml", model_path, self.device)
sam_model = sam_model.to(self.device)
self.predictor = SAM2ImagePredictor(sam_model)
self.last_mask = None
print(f"SAM model loaded on {device}")
# except Exception as e:
# print(f"Error loading SAM model: {e}")
# self.predictor = None
def predict(self, image: PILImage.Image,
points: List[Tuple[int, int]],
labels: List[int],
bbox: Optional[List[List[int]]] = None) -> Tuple[np.ndarray, float]:
if not self.predictor:
return np.zeros((image.height, image.width), dtype=bool), 0.0
try:
input_points = np.array(points) if points else None
input_labels = np.array(labels) if labels else None
input_bboxes = np.array(bbox) if bbox else None
image_np = np.array(image)
rgb_image = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
self.predictor.set_image(rgb_image)
mask_pred, score, logits = self.predictor.predict(
point_coords=input_points,
point_labels=input_labels,
box=input_bboxes,
multimask_output=False,
)
self.last_mask = mask_pred[0]
return mask_pred[0], score[0]
except Exception as e:
print(f"SAM prediction error: {e}")
return np.zeros((image.height, image.width), dtype=bool), 0.0
def parse_custom_format(content: str):
point_pattern = r"<points>\s*(\[\s*(?:\[\s*\d+\s*,\s*\d+\s*\]\s*,?\s*)+\])\s*</points>"
label_pattern = r"<labels>\s*(\[\s*(?:\d+\s*,?\s*)+\])\s*</labels>"
bbox_pattern = r"<bbox>\s*(\[\s*\d+\s*,\s*\d+\s*,\s*\d+\s*,\s*\d+\s*\])\s*</bbox>"
point_match = re.search(point_pattern, content)
label_match = re.search(label_pattern, content)
bbox_matches = re.findall(bbox_pattern, content)
try:
points = np.array(eval(point_match.group(1))) if point_match else None
labels = np.array(eval(label_match.group(1))) if label_match else None
if points is not None and labels is not None:
if not (len(points.shape) == 2 and points.shape[1] == 2 and len(labels) == points.shape[0]):
points, labels = None, None
bboxes = []
for bbox_str in bbox_matches:
bbox = np.array(eval(bbox_str))
if len(bbox.shape) == 1 and bbox.shape[0] == 4:
bboxes.append(bbox)
bboxes = np.stack(bboxes, axis=0) if bboxes else None
return points, labels, bboxes
except Exception as e:
print("Error parsing content:", e)
return None, None, None
def prepare_test_messages(image, prompt):
buffered = io.BytesIO()
image = TF.resize(image, RESIZE_SIZE)
image.save(buffered, format="JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
SYSTEM_PROMPT = (
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
"process should enclosed within <think> </think> tags, and the bounding box, points and points labels should be enclosed within <bbox></bbox>, <points></points>, and <labels></labels>, respectively. i.e., "
"<think> reasoning process here </think> <bbox>[x1,y1,x2,y2]</bbox>, <points>[[x3,y3],[x4,y4],...]</points>, <labels>[1,0,...]</labels>"
"Where 1 indicates a foreground (object) point, and 0 indicates a background point."
)
messages = [
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image/jpeg;base64,{img_base64}"},
{"type": "text", "text": prompt},
],
},
]
return [messages]
def answer_question(batch_messages):
if not model or not processor:
return ["Model not loaded. Please check logs."]
try:
text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in batch_messages]
image_inputs, video_inputs = process_vision_info(batch_messages)
inputs = processor(text=text, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True).to(DEVICE)
outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024)
trimmed = [out[len(inp):] for inp, out in zip(inputs.input_ids, outputs)]
return processor.batch_decode(trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
except Exception as e:
print(f"Error generating answer: {e}")
return ["Error generating response"]
def visualize_masks_on_image(
image: PILImage.Image,
masks_np: list,
colors=[(255, 0, 0), (0, 255, 0), (0, 0, 255),
(255, 255, 0), (255, 0, 255), (0, 255, 255),
(128, 128, 255)],
alpha=0.5,
):
if not masks_np:
return image
image_np = np.array(image)
color_mask = np.zeros((image_np.shape[0], image_np.shape[1], 3), dtype=np.uint8)
for i, mask in enumerate(masks_np):
color = colors[i % len(colors)]
mask = mask.astype(np.uint8)
if mask.shape[:2] != image_np.shape[:2]:
mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
color_mask[:, :, 0] = color_mask[:, :, 0] | (mask * color[0])
color_mask[:, :, 1] = color_mask[:, :, 1] | (mask * color[1])
color_mask[:, :, 2] = color_mask[:, :, 2] | (mask * color[2])
blended = cv2.addWeighted(image_np, 1 - alpha, color_mask, alpha, 0)
return PILImage.fromarray(blended)
@spaces.GPU
@torch.no_grad()
def run_pipeline(image: PILImage.Image, prompt: str):
sam_wrapper = CustomSAMWrapper(SAM_CHECKPOINT, device=DEVICE)
if not model or not processor:
return "Models not loaded. Please check logs.", None
try:
img_original = image.copy()
img_resized = TF.resize(image, RESIZE_SIZE)
messages = prepare_test_messages(img_resized, prompt)
output_text = answer_question(messages)[0]
print(f"Model output: {output_text}")
points, labels, bbox = parse_custom_format(output_text)
mask_pred = None
final_mask = np.zeros(RESIZE_SIZE[::-1], dtype=bool)
if (points is not None and labels is not None) or (bbox is not None):
img = img_resized
if bbox is not None and len(bbox.shape) == 2:
for b in bbox:
b = b.tolist()
if points is not None and labels is not None:
in_bbox_mask = (
(points[:, 0] >= b[0]) & (points[:, 0] <= b[2]) &
(points[:, 1] >= b[1]) & (points[:, 1] <= b[3])
)
selected_points = points[in_bbox_mask]
selected_labels = labels[in_bbox_mask]
else:
selected_points, selected_labels = None, None
try:
mask, _ = sam_wrapper.predict(
img,
selected_points.tolist() if selected_points is not None and len(selected_points) > 0 else None,
selected_labels.tolist() if selected_labels is not None and len(selected_labels) > 0 else None,
b
)
final_mask |= (mask > 0)
except Exception as e:
print(f"Mask prediction error for bbox: {e}")
continue
mask_pred = final_mask
else:
try:
mask_pred, _ = sam_wrapper.predict(
img,
points.tolist() if points is not None else None,
labels.tolist() if labels is not None else None,
bbox.tolist() if bbox is not None else None
)
mask_pred = mask_pred > 0
except Exception as e:
print(f"Mask prediction error: {e}")
mask_pred = np.zeros(RESIZE_SIZE[::-1], dtype=bool)
else:
return output_text, None
mask_np = mask_pred
mask_img = PILImage.fromarray((mask_np * 255).astype(np.uint8)).resize(img_original.size)
mask_img = mask_img.convert("L")
mask_np = np.array(mask_img) > 128
visualized_img = visualize_masks_on_image(
img_original,
masks_np=[mask_np],
alpha=0.6
)
match = re.search(r'(<think>.*?</think>)', output_text, re.DOTALL)
if match:
output_text = match.group(1)
return output_text, visualized_img
except Exception as e:
print(f"Pipeline error: {e}")
return f"Error processing request: {str(e)}", None
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(title="Seg-R1") as demo:
# gr.Markdown("# Seg-R1")
# gr.Markdown("Upload an image and ask questions about segmentation.")
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image")
text_input = gr.Textbox(lines=2, label="Question", placeholder="Ask about objects in the image...")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Model Response", interactive=False)
image_output = gr.Image(type="pil", label="Segmentation Result", interactive=False)
submit_btn.click(
fn=run_pipeline,
inputs=[image_input, text_input],
outputs=[text_output, image_output]
)
gr.Examples(
examples=[
["imgs/camourflage1.jpg", "There is a creature hidden in its surroundings, segment it."],
["imgs/camourflage2.jpg", "Please segment the camouflaged object in this image."],
["imgs/dog_in_sheeps.jpg", "Find the one that suffers."],
["imgs/kind_lady.jpg", "Find the most uncommon part of this picture."],
["imgs/painting.jpg", "Identify and segment the man and the sky."],
["imgs/man_and_cat.jpg", "Identify and segment the cat and the glasses of the man."],
],
inputs=[image_input, text_input],
outputs=[text_output, image_output],
fn=run_pipeline,
cache_examples=True
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)