Spaces:
Sleeping
Sleeping
import io | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import requests, validators | |
import torch | |
import pathlib | |
from PIL import Image | |
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection | |
from ultralyticsplus import YOLO, render_result | |
import os | |
# colors for visualization | |
COLORS = [ | |
[0.000, 0.447, 0.741], | |
[0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], | |
[0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933] | |
] | |
YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] | |
def make_prediction(img, feature_extractor, model): | |
inputs = feature_extractor(img, return_tensors="pt") | |
outputs = model(**inputs) | |
img_size = torch.tensor([tuple(reversed(img.size))]) | |
processed_outputs = feature_extractor.post_process(outputs, img_size) | |
return processed_outputs | |
def fig2img(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, bbox_inches="tight") | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None): | |
keep = output_dict["scores"] > threshold | |
boxes = output_dict["boxes"][keep].tolist() | |
scores = output_dict["scores"][keep].tolist() | |
labels = output_dict["labels"][keep].tolist() | |
if id2label is not None: | |
labels = [id2label[x] for x in labels] | |
# print("Labels " + str(labels)) | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | |
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) | |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) | |
plt.axis("off") | |
return fig2img(plt.gcf()) | |
def detect_objects(model_name,url_input,image_input,threshold): | |
if 'yolov8' in model_name: | |
# Working on getting this to work, another approach | |
# https://docs.ultralytics.com/modes/predict/#key-features-of-predict-mode | |
model = YOLO(model_name) | |
# set model parameters | |
model.overrides['conf'] = 0.15 # NMS confidence threshold | |
model.overrides['iou'] = 0.05 # NMS IoU threshold https://www.google.com/search?client=firefox-b-1-d&q=intersection+over+union+meaning | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 1000 # maximum number of detections per image | |
results = model.predict(image_input) | |
render = render_result(model=model, image=image_input, result=results[0]) | |
final_str = "" | |
final_str_abv = "" | |
final_str_else = "" | |
for result in results: | |
boxes = result.boxes.cpu().numpy() | |
for i, box in enumerate(boxes): | |
# r = box.xyxy[0].astype(int) | |
coordinates = box.xyxy[0].astype(int) | |
try: | |
label = YOLOV8_LABELS[int(box.cls)] | |
except: | |
label = "ERROR" | |
try: | |
confi = float(box.conf) | |
except: | |
confi = 0.0 | |
# final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n" | |
if confi >= threshold: | |
final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n" | |
else: | |
final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n" | |
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else | |
return render, final_str | |
else: | |
#Extract model and feature extractor | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
if 'detr' in model_name: | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
elif 'yolos' in model_name: | |
model = YolosForObjectDetection.from_pretrained(model_name) | |
tb_label = "" | |
if validators.url(url_input): | |
image = Image.open(requests.get(url_input, stream=True).raw) | |
tb_label = "Confidence Values URL" | |
elif image_input: | |
image = image_input | |
tb_label = "Confidence Values Upload" | |
#Make prediction | |
processed_output_list = make_prediction(image, feature_extractor, model) | |
# print("After make_prediction" + str(processed_output_list)) | |
processed_outputs = processed_output_list[0] | |
#Visualize prediction | |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | |
# return [viz_img, processed_outputs] | |
# print(type(viz_img)) | |
final_str_abv = "" | |
final_str_else = "" | |
for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True): | |
box = [round(i, 2) for i in box.tolist()] | |
if score.item() >= threshold: | |
final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" | |
else: | |
final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" | |
# https://docs.python.org/3/library/string.html#format-examples | |
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else | |
return viz_img, final_str | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_url(example: list) -> dict: | |
return gr.Textbox.update(value=example[0]) | |
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>""" | |
description = """ | |
Links to HuggingFace Models: | |
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) | |
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) | |
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) | |
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) | |
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5) | |
- [hustvl/yolos-small-300](https://huggingface.co/hustvl/yolos-small-300) | |
- [mshamrai/yolov8x-visdrone](https://huggingface.co/mshamrai/yolov8x-visdrone) | |
""" | |
models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5', 'hustvl/yolos-small-300', 'mshamrai/yolov8x-visdrone'] | |
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"] | |
# twitter_link = """ | |
# [](https://twitter.com/nickmuchi) | |
# """ | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
''' | |
demo = gr.Blocks(css=css) | |
def changing(): | |
# https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4 | |
return gr.Button.update(interactive=True), gr.Button.update(interactive=True) | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# gr.Markdown(twitter_link) | |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True) | |
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold') | |
with gr.Tabs(): | |
with gr.TabItem('Image URL'): | |
with gr.Row(): | |
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') | |
img_output_from_url = gr.Image(shape=(650,650)) | |
with gr.Row(): | |
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls]) | |
url_but = gr.Button('Detect', interactive=False) | |
with gr.TabItem('Image Upload'): | |
with gr.Row(): | |
img_input = gr.Image(type='pil') | |
img_output_from_upload= gr.Image(shape=(650,650)) | |
with gr.Row(): | |
example_images = gr.Dataset(components=[img_input], | |
samples=[[path.as_posix()] | |
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work | |
img_but = gr.Button('Detect', interactive=False) | |
# output_text1 = gr.outputs.Textbox(label="Confidence Values") | |
output_text1 = gr.components.Textbox(label="Confidence Values") | |
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this | |
options.change(fn=changing, inputs=[], outputs=[img_but, url_but]) | |
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True) | |
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True) | |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True) | |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True) | |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True) | |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True) | |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input]) | |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input]) | |
# gr.Markdown("") | |
# demo.launch(enable_queue=True) | |
demo.launch() #removed (share=True) |