|
'''import os |
|
import uuid |
|
import time |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
Qwen2VLForConditionalGeneration, |
|
AutoProcessor, |
|
TextIteratorStreamer, |
|
) |
|
|
|
# Constants |
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
# Load olmOCR-7B-0225-preview |
|
MODEL_ID = "allenai/olmOCR-7B-0225-preview" |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to(device).eval() |
|
|
|
def generate_image(text: str, image: Image.Image, |
|
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2): |
|
""" |
|
Generates responses using olmOCR-7B-0225-preview for image input. |
|
""" |
|
if image is None: |
|
yield "Please upload an image.", "Please upload an image." |
|
return |
|
|
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image}, |
|
{"type": "text", "text": text}, |
|
] |
|
}] |
|
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = processor( |
|
text=[prompt_full], |
|
images=[image], |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=False, |
|
max_length=MAX_INPUT_TOKEN_LENGTH |
|
).to(device) |
|
|
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
time.sleep(0.01) |
|
yield buffer, buffer |
|
|
|
def save_to_md(output_text): |
|
file_path = f"result_{uuid.uuid4()}.md" |
|
with open(file_path, "w") as f: |
|
f.write(output_text) |
|
return file_path |
|
|
|
# Gradio UI |
|
image_examples = [ |
|
["Convert this page to doc [text] precisely.", "images/3.png"], |
|
["Convert this page to doc [text] precisely.", "images/4.png"], |
|
["Convert this page to doc [text] precisely.", "images/1.png"], |
|
["Convert chart to OTSL.", "images/2.png"] |
|
] |
|
|
|
css = """ |
|
.submit-btn { |
|
background-color: #2980b9 !important; |
|
color: white !important; |
|
} |
|
.submit-btn:hover { |
|
background-color: #3498db !important; |
|
} |
|
.canvas-output { |
|
border: 2px solid #4682B4; |
|
border-radius: 10px; |
|
padding: 20px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: |
|
gr.Markdown("# **Doc OCR - olmOCR-7B-0225-preview**") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") |
|
image_upload = gr.Image(type="pil", label="Upload Image") |
|
image_submit = gr.Button("Submit", elem_classes="submit-btn") |
|
gr.Examples( |
|
examples=image_examples, |
|
inputs=[image_query, image_upload] |
|
) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) |
|
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) |
|
top_p = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9) |
|
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) |
|
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) |
|
|
|
with gr.Column(): |
|
with gr.Column(elem_classes="canvas-output"): |
|
gr.Markdown("## Output") |
|
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) |
|
with gr.Accordion("Result.md", open=False): |
|
markdown_output = gr.Markdown(label="(Result.md)") |
|
|
|
gr.Markdown("**Model: olmOCR-7B-0225-preview**") |
|
gr.Markdown("> [`olmOCR-7B`](https://huggingface.co/allenai/olmOCR-7B-0225-preview) is optimized for high-fidelity document OCR and LaTeX-aware image-to-text tasks.") |
|
|
|
image_submit.click( |
|
fn=generate_image, |
|
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], |
|
outputs=[output, markdown_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)''' |
|
|