Spaces:
Sleeping
Sleeping
Commit
·
e6dc8c2
1
Parent(s):
ea8ee61
first commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import json
|
| 5 |
+
from ml import VacancyAnalyzer
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GlobalState:
|
| 9 |
+
"""
|
| 10 |
+
Class to store global variables
|
| 11 |
+
"""
|
| 12 |
+
result_file_path = os.path.join(os.path.dirname(__file__), 'result/archive.json')
|
| 13 |
+
result_dir = os.path.join(os.path.dirname(__file__), 'result')
|
| 14 |
+
bert_path = os.path.join(os.path.dirname(__file__), 'tiny.pt')
|
| 15 |
+
catboost_path = os.path.join(os.path.dirname(__file__), 'best_cat.joblib')
|
| 16 |
+
conv_classes = {0: 'low',
|
| 17 |
+
1: 'middle',
|
| 18 |
+
2: 'high'
|
| 19 |
+
}
|
| 20 |
+
default_data = {'id': 'a0000',
|
| 21 |
+
'emp_brand': '',
|
| 22 |
+
'mandatory': '',
|
| 23 |
+
'additional': '',
|
| 24 |
+
'comp_stages': '',
|
| 25 |
+
'work_conditions': '',
|
| 26 |
+
'conversion': 0,
|
| 27 |
+
'conversion_class': 'unknown'
|
| 28 |
+
}
|
| 29 |
+
data = None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def cid(txt):
|
| 33 |
+
GlobalState.data['id'] = txt
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def cbrand(txt):
|
| 37 |
+
GlobalState.data['emp_brand'] = txt
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def cmand(txt):
|
| 41 |
+
GlobalState.data['mandatory'] = txt
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def cadd(txt):
|
| 45 |
+
GlobalState.data['additional'] = txt
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def ccomp(txt):
|
| 49 |
+
GlobalState.data['comp_stages'] = txt
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def ccond(txt):
|
| 53 |
+
GlobalState.data['work_conditions'] = txt
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def submit(chk):
|
| 57 |
+
# print(GlobalState.data)
|
| 58 |
+
return gr.update("Run!", visible=True)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def append_to_json(_dict, path):
|
| 62 |
+
with open(path, 'ab+') as f:
|
| 63 |
+
f.seek(0, 2)
|
| 64 |
+
if f.tell() == 0:
|
| 65 |
+
f.write(json.dumps([_dict]).encode())
|
| 66 |
+
else:
|
| 67 |
+
f.seek(-1, 2)
|
| 68 |
+
f.truncate()
|
| 69 |
+
f.write(' , '.encode())
|
| 70 |
+
f.write(json.dumps(_dict).encode())
|
| 71 |
+
f.write(']'.encode())
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def predict(btn):
|
| 75 |
+
analyzer = VacancyAnalyzer(GlobalState.bert_path, GlobalState.catboost_path, GlobalState.data)
|
| 76 |
+
status, result = analyzer.classify()
|
| 77 |
+
gr.Info(status)
|
| 78 |
+
if result != 'unknown':
|
| 79 |
+
result = GlobalState.conv_classes[int(result[0])]
|
| 80 |
+
out_2 = f'Predicted by vacancy description conversion - {result}'
|
| 81 |
+
GlobalState.data['conversion_class'] = result
|
| 82 |
+
fid = GlobalState.result_file_path
|
| 83 |
+
append_to_json(GlobalState.data, fid)
|
| 84 |
+
GlobalState.data = GlobalState.default_data
|
| 85 |
+
link = GlobalState.result_file_path
|
| 86 |
+
return gr.update(value=out_2), gr.update(link="/file=" + link, visible=True)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def save(btn):
|
| 90 |
+
link = GlobalState.result_file_path
|
| 91 |
+
return gr.update(link="/file=" + link)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def main():
|
| 95 |
+
shutil.rmtree(os.path.join(os.path.dirname(__file__), 'result/'), ignore_errors=True)
|
| 96 |
+
os.mkdir(os.path.join(os.path.dirname(__file__), 'result/'))
|
| 97 |
+
GlobalState.data = GlobalState.default_data
|
| 98 |
+
with gr.Blocks() as demo:
|
| 99 |
+
with gr.Tab("Load"):
|
| 100 |
+
with gr.Row():
|
| 101 |
+
gr.Markdown(
|
| 102 |
+
"""
|
| 103 |
+
# Input the text description of the position
|
| 104 |
+
# 👾👾👾 Then press **Run!** 👾👾👾
|
| 105 |
+
""")
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column():
|
| 108 |
+
with gr.Row():
|
| 109 |
+
brand = gr.Textbox(label='Company name', value=None)
|
| 110 |
+
with gr.Row():
|
| 111 |
+
vid = gr.Textbox(label='Position id', value=None)
|
| 112 |
+
with gr.Row():
|
| 113 |
+
req = gr.Textbox(label='Mandatory')
|
| 114 |
+
with gr.Column():
|
| 115 |
+
with gr.Row():
|
| 116 |
+
add = gr.Textbox(label='Additional')
|
| 117 |
+
with gr.Row():
|
| 118 |
+
comp = gr.Textbox(label='Competition stage')
|
| 119 |
+
with gr.Row():
|
| 120 |
+
cond = gr.Textbox(label='Work conditions')
|
| 121 |
+
|
| 122 |
+
with gr.Column():
|
| 123 |
+
with gr.Row():
|
| 124 |
+
with gr.Column():
|
| 125 |
+
ready = gr.Checkbox(label='Data Filled')
|
| 126 |
+
with gr.Column():
|
| 127 |
+
process_button = gr.Button("Run!", visible=False, interactive=True)
|
| 128 |
+
with gr.Row():
|
| 129 |
+
output_2 = gr.Textbox(label='LLM Result')
|
| 130 |
+
with gr.Row():
|
| 131 |
+
download_button = gr.Button("JSON Archive", visible=False)
|
| 132 |
+
|
| 133 |
+
brand.change(cbrand, inputs=[brand])
|
| 134 |
+
vid.change(cid, inputs=[vid])
|
| 135 |
+
req.change(cmand, inputs=[req])
|
| 136 |
+
add.change(cadd, inputs=[add])
|
| 137 |
+
comp.change(ccomp, inputs=[comp])
|
| 138 |
+
cond.change(ccond, inputs=[cond])
|
| 139 |
+
ready.change(submit, inputs=[ready], outputs=[process_button])
|
| 140 |
+
process_button.click(predict, inputs=[process_button], outputs=[output_2, download_button],
|
| 141 |
+
show_progress='full')
|
| 142 |
+
download_button.click(save, inputs=[download_button], outputs=[download_button])
|
| 143 |
+
|
| 144 |
+
demo.launch(share=True, allowed_paths=[GlobalState.result_dir])
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
main()
|
llm.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel, BertConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TransformerRegrModel(nn.Module):
|
| 7 |
+
def __init__(self, base_transformer_model: str, num_classes: int):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.tr_model = base_transformer_model
|
| 10 |
+
self.num = num_classes
|
| 11 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 12 |
+
|
| 13 |
+
if self.tr_model not in ['rubert', 'base']:
|
| 14 |
+
raise Exception('unknown model')
|
| 15 |
+
elif self.tr_model == 'rubert':
|
| 16 |
+
self.tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
| 17 |
+
self.config = BertConfig.from_pretrained("cointegrated/rubert-tiny2", output_hidden_states=True,
|
| 18 |
+
output_attentions=True)
|
| 19 |
+
elif self.tr_model == 'base':
|
| 20 |
+
self.tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruBert-base", model_max_length=512)
|
| 21 |
+
self.config = BertConfig.from_pretrained("ai-forever/ruBert-base", output_hidden_states=True,
|
| 22 |
+
output_attentions=True)
|
| 23 |
+
self.model = AutoModel.from_config(self.config)
|
| 24 |
+
self.a1 = nn.ReLU()
|
| 25 |
+
self.classifier_1 = nn.Linear(self.model.pooler.dense.out_features, self.num)
|
| 26 |
+
# self.classifier_dropout = nn.Dropout(p=0.2)
|
| 27 |
+
# self.classifier_2 = nn.Linear(128, self.num)
|
| 28 |
+
|
| 29 |
+
def forward(self, inputs):
|
| 30 |
+
t = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
| 31 |
+
tokens = self.tokenizer.convert_ids_to_tokens(t['input_ids'][0])
|
| 32 |
+
model_output = self.model(**{k: v.to(self.device) for k, v in t.items()})
|
| 33 |
+
attentions = torch.cat(model_output['attentions']).to('cpu')
|
| 34 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 35 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
| 36 |
+
outputs = self.a1(embeddings)
|
| 37 |
+
outputs = self.classifier_1(outputs)
|
| 38 |
+
# outputs = self.classifier_dropout(outputs)
|
| 39 |
+
# outputs = self.a1(outputs)
|
| 40 |
+
# outputs = self.classifier_dropout(outputs)
|
| 41 |
+
# outputs = self.classifier_2(outputs)
|
| 42 |
+
|
| 43 |
+
return outputs, tokens, attentions
|
ml.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from catboost import Pool
|
| 3 |
+
import joblib
|
| 4 |
+
import torch
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
from llm import TransformerRegrModel
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class VacancyAnalyzer:
|
| 11 |
+
def __init__(self, transformer_path: str, catboost_path: str, inputs: dict):
|
| 12 |
+
self.transformer_path = transformer_path
|
| 13 |
+
self.catboost_path = catboost_path
|
| 14 |
+
self.inputs = pd.DataFrame(inputs, index=[0]).drop(columns=['conversion', 'conversion_class', 'id'], axis=1)
|
| 15 |
+
self.cat_features = ['profession', 'grade', 'location']
|
| 16 |
+
self.text_features = ['emp_brand', 'mandatory', 'additional', 'comp_stages', 'work_conditions']
|
| 17 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 18 |
+
|
| 19 |
+
def __cleaner__(self, txt: str) -> str:
|
| 20 |
+
txt = re.sub(r'\_(.*?)\_', r'', txt)
|
| 21 |
+
txt = re.sub(r'([\n\t]*)', r'', txt)
|
| 22 |
+
return txt
|
| 23 |
+
|
| 24 |
+
def predict(self) -> float:
|
| 25 |
+
df = self.inputs.drop(columns=self.text_features, axis=1)
|
| 26 |
+
pool = Pool(df, cat_features=self.cat_features)
|
| 27 |
+
regressor = joblib.load(self.catboost_path)
|
| 28 |
+
prediction = regressor.predict(pool).tolist()
|
| 29 |
+
return prediction[0]
|
| 30 |
+
|
| 31 |
+
def classify(self) -> tuple:
|
| 32 |
+
df = self.inputs[self.text_features]
|
| 33 |
+
description = df[self.text_features[0]].values[0] + ' '
|
| 34 |
+
for t in self.text_features[1:]:
|
| 35 |
+
description += df[t].values[0]
|
| 36 |
+
description += ' '
|
| 37 |
+
description = self.__cleaner__(description)
|
| 38 |
+
if len(description) < 100:
|
| 39 |
+
return 'Too short text', 'unknown'
|
| 40 |
+
tbert = TransformerRegrModel('rubert', 3)
|
| 41 |
+
tbert.load_state_dict(torch.load(self.transformer_path, map_location=torch.device(self.device)))
|
| 42 |
+
tbert.to(self.device)
|
| 43 |
+
tbert.eval()
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs, _, _ = tbert(description)
|
| 46 |
+
prediction = torch.argmax(outputs, 1).cpu().numpy()
|
| 47 |
+
return 'Text analyzing finished', prediction
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==2.0.3
|
| 2 |
+
joblib==1.3.2
|
| 3 |
+
torch==2.0.1+cpu
|
| 4 |
+
catboost==1.2
|
| 5 |
+
transformers==4.40.0
|
| 6 |
+
gradio==4.27.0
|