Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,43 @@
|
|
1 |
-
import numpy as np
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
from fastrtc import (
|
|
|
5 |
ReplyOnPause,
|
6 |
Stream,
|
7 |
-
|
|
|
8 |
get_current_context,
|
9 |
get_hf_turn_credentials,
|
10 |
get_hf_turn_credentials_async,
|
11 |
get_stt_model,
|
12 |
get_tts_model,
|
13 |
-
WebRTCError,
|
14 |
)
|
15 |
-
import gradio as gr
|
16 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
load_dotenv()
|
19 |
|
@@ -30,7 +54,12 @@ def response(
|
|
30 |
if hf_token is None or hf_token == "":
|
31 |
raise WebRTCError("HF Token is required")
|
32 |
|
33 |
-
llm_client = InferenceClient(provider="
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
context = get_current_context()
|
36 |
if context.webrtc_id not in conversations:
|
@@ -46,7 +75,6 @@ def response(
|
|
46 |
|
47 |
messages = conversations[context.webrtc_id]
|
48 |
|
49 |
-
transcription = stt_model.stt(audio)
|
50 |
messages.append({"role": "user", "content": transcription})
|
51 |
|
52 |
output = llm_client.chat.completions.create( # type: ignore
|
@@ -82,6 +110,8 @@ stream = Stream(
|
|
82 |
additional_outputs=[chatbot],
|
83 |
additional_outputs_handler=lambda old, new: new,
|
84 |
ui_args={"title": "Talk To OpenAI GPT-OSS 20B (Powered by FastRTC ⚡️)"},
|
|
|
|
|
85 |
)
|
86 |
|
87 |
stream.ui.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
from dotenv import load_dotenv
|
5 |
from fastrtc import (
|
6 |
+
AdditionalOutputs,
|
7 |
ReplyOnPause,
|
8 |
Stream,
|
9 |
+
WebRTCError,
|
10 |
+
audio_to_float32,
|
11 |
get_current_context,
|
12 |
get_hf_turn_credentials,
|
13 |
get_hf_turn_credentials_async,
|
14 |
get_stt_model,
|
15 |
get_tts_model,
|
|
|
16 |
)
|
|
|
17 |
from huggingface_hub import InferenceClient
|
18 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
19 |
+
|
20 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
21 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
22 |
+
|
23 |
+
model_id = "openai/whisper-large-v3-turbo"
|
24 |
+
|
25 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
26 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
27 |
+
)
|
28 |
+
model.to(device)
|
29 |
+
|
30 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
31 |
+
|
32 |
+
pipe = pipeline(
|
33 |
+
"automatic-speech-recognition",
|
34 |
+
model=model,
|
35 |
+
tokenizer=processor.tokenizer,
|
36 |
+
feature_extractor=processor.feature_extractor,
|
37 |
+
torch_dtype=torch_dtype,
|
38 |
+
device=device,
|
39 |
+
)
|
40 |
+
|
41 |
|
42 |
load_dotenv()
|
43 |
|
|
|
54 |
if hf_token is None or hf_token == "":
|
55 |
raise WebRTCError("HF Token is required")
|
56 |
|
57 |
+
llm_client = InferenceClient(provider="auto", token=hf_token)
|
58 |
+
|
59 |
+
result = pipe(
|
60 |
+
{"array": audio_to_float32(audio[1]).squeeze(), "sampling_rate": audio[0]}
|
61 |
+
)
|
62 |
+
transcription = result["text"]
|
63 |
|
64 |
context = get_current_context()
|
65 |
if context.webrtc_id not in conversations:
|
|
|
75 |
|
76 |
messages = conversations[context.webrtc_id]
|
77 |
|
|
|
78 |
messages.append({"role": "user", "content": transcription})
|
79 |
|
80 |
output = llm_client.chat.completions.create( # type: ignore
|
|
|
110 |
additional_outputs=[chatbot],
|
111 |
additional_outputs_handler=lambda old, new: new,
|
112 |
ui_args={"title": "Talk To OpenAI GPT-OSS 20B (Powered by FastRTC ⚡️)"},
|
113 |
+
time_limit=90,
|
114 |
+
concurrency_limit=5,
|
115 |
)
|
116 |
|
117 |
stream.ui.launch()
|