Spaces:
Running
Running
jocoandonob
commited on
Commit
·
2a6c924
1
Parent(s):
8db5115
Initial commitcq
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ from PIL import Image
|
|
15 |
import io
|
16 |
import requests
|
17 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
|
|
18 |
|
19 |
# Available models
|
20 |
AVAILABLE_MODELS = {
|
@@ -28,6 +29,21 @@ AVAILABLE_LORAS = {
|
|
28 |
"Papercut": "TheLastBen/Papercut_SDXL",
|
29 |
}
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_depth_map(image):
|
32 |
# Initialize depth estimator
|
33 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
|
@@ -61,15 +77,20 @@ def load_image_from_url(url):
|
|
61 |
|
62 |
def generate_image(prompt, seed, num_steps, guidance_scale, eta):
|
63 |
try:
|
|
|
|
|
|
|
64 |
# Initialize the pipeline
|
65 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
66 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
67 |
|
68 |
-
# Use CPU for inference
|
69 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
70 |
base_model_id,
|
71 |
-
torch_dtype=
|
72 |
-
|
|
|
|
|
|
|
73 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
74 |
|
75 |
# Load and fuse LoRA weights with prefix=None
|
@@ -77,7 +98,7 @@ def generate_image(prompt, seed, num_steps, guidance_scale, eta):
|
|
77 |
pipe.fuse_lora()
|
78 |
|
79 |
# Generate the image
|
80 |
-
generator = torch.Generator().manual_seed(seed)
|
81 |
image = pipe(
|
82 |
prompt=prompt,
|
83 |
num_inference_steps=num_steps,
|
@@ -86,21 +107,31 @@ def generate_image(prompt, seed, num_steps, guidance_scale, eta):
|
|
86 |
generator=generator,
|
87 |
).images[0]
|
88 |
|
|
|
|
|
|
|
|
|
89 |
return image, "Image generated successfully!"
|
90 |
except Exception as e:
|
|
|
91 |
return None, f"Error generating image: {str(e)}"
|
92 |
|
93 |
def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale, eta):
|
94 |
try:
|
|
|
|
|
|
|
95 |
# Initialize the pipeline
|
96 |
base_model_id = AVAILABLE_MODELS[model_name]
|
97 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
98 |
|
99 |
-
# Use CPU for inference
|
100 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
101 |
base_model_id,
|
102 |
-
torch_dtype=
|
103 |
-
|
|
|
|
|
|
|
104 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
105 |
|
106 |
# Load and fuse LoRA weights with prefix=None
|
@@ -108,7 +139,7 @@ def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale
|
|
108 |
pipe.fuse_lora()
|
109 |
|
110 |
# Generate the image
|
111 |
-
generator = torch.Generator().manual_seed(seed)
|
112 |
image = pipe(
|
113 |
prompt=prompt,
|
114 |
num_inference_steps=num_steps,
|
@@ -117,22 +148,32 @@ def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale
|
|
117 |
generator=generator,
|
118 |
).images[0]
|
119 |
|
|
|
|
|
|
|
|
|
120 |
return image, "Image generated successfully!"
|
121 |
except Exception as e:
|
|
|
122 |
return None, f"Error generating image: {str(e)}"
|
123 |
|
124 |
def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weight):
|
125 |
try:
|
|
|
|
|
|
|
126 |
# Initialize the pipeline
|
127 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
128 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
129 |
styled_lora_id = "TheLastBen/Papercut_SDXL"
|
130 |
|
131 |
-
# Use CPU for inference
|
132 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
133 |
base_model_id,
|
134 |
-
torch_dtype=
|
135 |
-
|
|
|
|
|
|
|
136 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
137 |
|
138 |
# Load multiple LoRA weights with prefix=None
|
@@ -143,7 +184,7 @@ def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weigh
|
|
143 |
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, style_weight])
|
144 |
|
145 |
# Generate the image
|
146 |
-
generator = torch.Generator().manual_seed(seed)
|
147 |
image = pipe(
|
148 |
prompt=prompt,
|
149 |
num_inference_steps=num_steps,
|
@@ -152,12 +193,20 @@ def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weigh
|
|
152 |
generator=generator,
|
153 |
).images[0]
|
154 |
|
|
|
|
|
|
|
|
|
155 |
return image, "Image generated successfully!"
|
156 |
except Exception as e:
|
|
|
157 |
return None, f"Error generating image: {str(e)}"
|
158 |
|
159 |
def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta, controlnet_scale):
|
160 |
try:
|
|
|
|
|
|
|
161 |
# Initialize the pipeline
|
162 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
163 |
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
|
@@ -166,15 +215,20 @@ def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta
|
|
166 |
# Initialize ControlNet
|
167 |
controlnet = ControlNetModel.from_pretrained(
|
168 |
controlnet_id,
|
169 |
-
torch_dtype=
|
170 |
-
|
|
|
|
|
171 |
|
172 |
# Initialize pipeline
|
173 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
174 |
base_model_id,
|
175 |
controlnet=controlnet,
|
176 |
-
torch_dtype=
|
177 |
-
|
|
|
|
|
|
|
178 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
179 |
|
180 |
# Load and fuse LoRA weights with prefix=None
|
@@ -185,7 +239,7 @@ def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta
|
|
185 |
depth_image = get_depth_map(init_image)
|
186 |
|
187 |
# Generate the image
|
188 |
-
generator = torch.Generator().manual_seed(seed)
|
189 |
image = pipe(
|
190 |
prompt=prompt,
|
191 |
image=depth_image,
|
@@ -198,21 +252,32 @@ def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta
|
|
198 |
|
199 |
# Create a grid of the depth map and result
|
200 |
grid = make_image_grid([depth_image, image], rows=1, cols=2)
|
|
|
|
|
|
|
|
|
|
|
201 |
return grid, "Image generated successfully!"
|
202 |
except Exception as e:
|
|
|
203 |
return None, f"Error generating image: {str(e)}"
|
204 |
|
205 |
def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scale, eta, strength):
|
206 |
try:
|
|
|
|
|
|
|
207 |
# Initialize the pipeline
|
208 |
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
|
209 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
210 |
|
211 |
-
# Use CPU for inference
|
212 |
pipe = AutoPipelineForInpainting.from_pretrained(
|
213 |
base_model_id,
|
214 |
-
torch_dtype=
|
215 |
-
|
|
|
|
|
|
|
216 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
217 |
|
218 |
# Load and fuse LoRA weights with prefix=None
|
@@ -220,7 +285,7 @@ def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scal
|
|
220 |
pipe.fuse_lora()
|
221 |
|
222 |
# Generate the image
|
223 |
-
generator = torch.Generator().manual_seed(seed)
|
224 |
image = pipe(
|
225 |
prompt=prompt,
|
226 |
image=init_image,
|
@@ -234,12 +299,21 @@ def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scal
|
|
234 |
|
235 |
# Create a grid of the original image, mask, and result
|
236 |
grid = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
|
|
|
|
|
|
|
|
|
|
|
237 |
return grid, "Image generated successfully!"
|
238 |
except Exception as e:
|
|
|
239 |
return None, f"Error generating image: {str(e)}"
|
240 |
|
241 |
def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames, motion_scale):
|
242 |
try:
|
|
|
|
|
|
|
243 |
# Initialize the pipeline
|
244 |
base_model_id = "frankjoshua/toonyou_beta6"
|
245 |
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5"
|
@@ -247,16 +321,17 @@ def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames,
|
|
247 |
motion_lora_id = "guoyww/animatediff-motion-lora-zoom-in"
|
248 |
|
249 |
# Load motion adapter
|
250 |
-
adapter = MotionAdapter.from_pretrained(motion_adapter_id)
|
251 |
|
252 |
-
# Initialize pipeline with
|
253 |
pipe = AnimateDiffPipeline.from_pretrained(
|
254 |
base_model_id,
|
255 |
motion_adapter=adapter,
|
256 |
-
torch_dtype=
|
257 |
-
low_cpu_mem_usage=True,
|
258 |
-
use_safetensors=
|
259 |
-
|
|
|
260 |
|
261 |
# Set TCD scheduler
|
262 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
@@ -273,7 +348,7 @@ def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames,
|
|
273 |
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, motion_scale])
|
274 |
|
275 |
# Generate animation
|
276 |
-
generator = torch.Generator().manual_seed(seed)
|
277 |
frames = pipe(
|
278 |
prompt=prompt,
|
279 |
num_inference_steps=num_steps,
|
@@ -287,8 +362,14 @@ def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames,
|
|
287 |
# Export to GIF
|
288 |
gif_path = "animation.gif"
|
289 |
export_to_gif(frames, gif_path)
|
|
|
|
|
|
|
|
|
|
|
290 |
return gif_path, "Animation generated successfully!"
|
291 |
except Exception as e:
|
|
|
292 |
return None, f"Error generating animation: {str(e)}"
|
293 |
|
294 |
# Create the Gradio interface
|
|
|
15 |
import io
|
16 |
import requests
|
17 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
18 |
+
import gc
|
19 |
|
20 |
# Available models
|
21 |
AVAILABLE_MODELS = {
|
|
|
29 |
"Papercut": "TheLastBen/Papercut_SDXL",
|
30 |
}
|
31 |
|
32 |
+
def get_device():
|
33 |
+
if torch.cuda.is_available():
|
34 |
+
return "cuda"
|
35 |
+
return "cpu"
|
36 |
+
|
37 |
+
def get_dtype():
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
return torch.float16
|
40 |
+
return torch.float32
|
41 |
+
|
42 |
+
def cleanup_memory():
|
43 |
+
gc.collect()
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
torch.cuda.empty_cache()
|
46 |
+
|
47 |
def get_depth_map(image):
|
48 |
# Initialize depth estimator
|
49 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
|
|
|
77 |
|
78 |
def generate_image(prompt, seed, num_steps, guidance_scale, eta):
|
79 |
try:
|
80 |
+
device = get_device()
|
81 |
+
dtype = get_dtype()
|
82 |
+
|
83 |
# Initialize the pipeline
|
84 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
85 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
86 |
|
|
|
87 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
88 |
base_model_id,
|
89 |
+
torch_dtype=dtype,
|
90 |
+
use_safetensors=True,
|
91 |
+
variant="fp16" if device == "cuda" else None
|
92 |
+
).to(device)
|
93 |
+
|
94 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
95 |
|
96 |
# Load and fuse LoRA weights with prefix=None
|
|
|
98 |
pipe.fuse_lora()
|
99 |
|
100 |
# Generate the image
|
101 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
102 |
image = pipe(
|
103 |
prompt=prompt,
|
104 |
num_inference_steps=num_steps,
|
|
|
107 |
generator=generator,
|
108 |
).images[0]
|
109 |
|
110 |
+
# Cleanup
|
111 |
+
del pipe
|
112 |
+
cleanup_memory()
|
113 |
+
|
114 |
return image, "Image generated successfully!"
|
115 |
except Exception as e:
|
116 |
+
cleanup_memory()
|
117 |
return None, f"Error generating image: {str(e)}"
|
118 |
|
119 |
def generate_community_image(prompt, model_name, seed, num_steps, guidance_scale, eta):
|
120 |
try:
|
121 |
+
device = get_device()
|
122 |
+
dtype = get_dtype()
|
123 |
+
|
124 |
# Initialize the pipeline
|
125 |
base_model_id = AVAILABLE_MODELS[model_name]
|
126 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
127 |
|
|
|
128 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
129 |
base_model_id,
|
130 |
+
torch_dtype=dtype,
|
131 |
+
use_safetensors=True,
|
132 |
+
variant="fp16" if device == "cuda" else None
|
133 |
+
).to(device)
|
134 |
+
|
135 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
136 |
|
137 |
# Load and fuse LoRA weights with prefix=None
|
|
|
139 |
pipe.fuse_lora()
|
140 |
|
141 |
# Generate the image
|
142 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
143 |
image = pipe(
|
144 |
prompt=prompt,
|
145 |
num_inference_steps=num_steps,
|
|
|
148 |
generator=generator,
|
149 |
).images[0]
|
150 |
|
151 |
+
# Cleanup
|
152 |
+
del pipe
|
153 |
+
cleanup_memory()
|
154 |
+
|
155 |
return image, "Image generated successfully!"
|
156 |
except Exception as e:
|
157 |
+
cleanup_memory()
|
158 |
return None, f"Error generating image: {str(e)}"
|
159 |
|
160 |
def generate_style_mix(prompt, seed, num_steps, guidance_scale, eta, style_weight):
|
161 |
try:
|
162 |
+
device = get_device()
|
163 |
+
dtype = get_dtype()
|
164 |
+
|
165 |
# Initialize the pipeline
|
166 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
167 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
168 |
styled_lora_id = "TheLastBen/Papercut_SDXL"
|
169 |
|
|
|
170 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
171 |
base_model_id,
|
172 |
+
torch_dtype=dtype,
|
173 |
+
use_safetensors=True,
|
174 |
+
variant="fp16" if device == "cuda" else None
|
175 |
+
).to(device)
|
176 |
+
|
177 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
178 |
|
179 |
# Load multiple LoRA weights with prefix=None
|
|
|
184 |
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, style_weight])
|
185 |
|
186 |
# Generate the image
|
187 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
188 |
image = pipe(
|
189 |
prompt=prompt,
|
190 |
num_inference_steps=num_steps,
|
|
|
193 |
generator=generator,
|
194 |
).images[0]
|
195 |
|
196 |
+
# Cleanup
|
197 |
+
del pipe
|
198 |
+
cleanup_memory()
|
199 |
+
|
200 |
return image, "Image generated successfully!"
|
201 |
except Exception as e:
|
202 |
+
cleanup_memory()
|
203 |
return None, f"Error generating image: {str(e)}"
|
204 |
|
205 |
def generate_controlnet(prompt, init_image, seed, num_steps, guidance_scale, eta, controlnet_scale):
|
206 |
try:
|
207 |
+
device = get_device()
|
208 |
+
dtype = get_dtype()
|
209 |
+
|
210 |
# Initialize the pipeline
|
211 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
212 |
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
|
|
|
215 |
# Initialize ControlNet
|
216 |
controlnet = ControlNetModel.from_pretrained(
|
217 |
controlnet_id,
|
218 |
+
torch_dtype=dtype,
|
219 |
+
use_safetensors=True,
|
220 |
+
variant="fp16" if device == "cuda" else None
|
221 |
+
).to(device)
|
222 |
|
223 |
# Initialize pipeline
|
224 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
225 |
base_model_id,
|
226 |
controlnet=controlnet,
|
227 |
+
torch_dtype=dtype,
|
228 |
+
use_safetensors=True,
|
229 |
+
variant="fp16" if device == "cuda" else None
|
230 |
+
).to(device)
|
231 |
+
|
232 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
233 |
|
234 |
# Load and fuse LoRA weights with prefix=None
|
|
|
239 |
depth_image = get_depth_map(init_image)
|
240 |
|
241 |
# Generate the image
|
242 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
243 |
image = pipe(
|
244 |
prompt=prompt,
|
245 |
image=depth_image,
|
|
|
252 |
|
253 |
# Create a grid of the depth map and result
|
254 |
grid = make_image_grid([depth_image, image], rows=1, cols=2)
|
255 |
+
|
256 |
+
# Cleanup
|
257 |
+
del pipe, controlnet
|
258 |
+
cleanup_memory()
|
259 |
+
|
260 |
return grid, "Image generated successfully!"
|
261 |
except Exception as e:
|
262 |
+
cleanup_memory()
|
263 |
return None, f"Error generating image: {str(e)}"
|
264 |
|
265 |
def inpaint_image(prompt, init_image, mask_image, seed, num_steps, guidance_scale, eta, strength):
|
266 |
try:
|
267 |
+
device = get_device()
|
268 |
+
dtype = get_dtype()
|
269 |
+
|
270 |
# Initialize the pipeline
|
271 |
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
|
272 |
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
273 |
|
|
|
274 |
pipe = AutoPipelineForInpainting.from_pretrained(
|
275 |
base_model_id,
|
276 |
+
torch_dtype=dtype,
|
277 |
+
use_safetensors=True,
|
278 |
+
variant="fp16" if device == "cuda" else None
|
279 |
+
).to(device)
|
280 |
+
|
281 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
282 |
|
283 |
# Load and fuse LoRA weights with prefix=None
|
|
|
285 |
pipe.fuse_lora()
|
286 |
|
287 |
# Generate the image
|
288 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
289 |
image = pipe(
|
290 |
prompt=prompt,
|
291 |
image=init_image,
|
|
|
299 |
|
300 |
# Create a grid of the original image, mask, and result
|
301 |
grid = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
|
302 |
+
|
303 |
+
# Cleanup
|
304 |
+
del pipe
|
305 |
+
cleanup_memory()
|
306 |
+
|
307 |
return grid, "Image generated successfully!"
|
308 |
except Exception as e:
|
309 |
+
cleanup_memory()
|
310 |
return None, f"Error generating image: {str(e)}"
|
311 |
|
312 |
def generate_animation(prompt, seed, num_steps, guidance_scale, eta, num_frames, motion_scale):
|
313 |
try:
|
314 |
+
device = get_device()
|
315 |
+
dtype = get_dtype()
|
316 |
+
|
317 |
# Initialize the pipeline
|
318 |
base_model_id = "frankjoshua/toonyou_beta6"
|
319 |
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5"
|
|
|
321 |
motion_lora_id = "guoyww/animatediff-motion-lora-zoom-in"
|
322 |
|
323 |
# Load motion adapter
|
324 |
+
adapter = MotionAdapter.from_pretrained(motion_adapter_id).to(device)
|
325 |
|
326 |
+
# Initialize pipeline with optimization
|
327 |
pipe = AnimateDiffPipeline.from_pretrained(
|
328 |
base_model_id,
|
329 |
motion_adapter=adapter,
|
330 |
+
torch_dtype=dtype,
|
331 |
+
low_cpu_mem_usage=True,
|
332 |
+
use_safetensors=True,
|
333 |
+
variant="fp16" if device == "cuda" else None
|
334 |
+
).to(device)
|
335 |
|
336 |
# Set TCD scheduler
|
337 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
|
|
348 |
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, motion_scale])
|
349 |
|
350 |
# Generate animation
|
351 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
352 |
frames = pipe(
|
353 |
prompt=prompt,
|
354 |
num_inference_steps=num_steps,
|
|
|
362 |
# Export to GIF
|
363 |
gif_path = "animation.gif"
|
364 |
export_to_gif(frames, gif_path)
|
365 |
+
|
366 |
+
# Cleanup
|
367 |
+
del pipe, adapter
|
368 |
+
cleanup_memory()
|
369 |
+
|
370 |
return gif_path, "Animation generated successfully!"
|
371 |
except Exception as e:
|
372 |
+
cleanup_memory()
|
373 |
return None, f"Error generating animation: {str(e)}"
|
374 |
|
375 |
# Create the Gradio interface
|