Complete research-tracker-mcp with comprehensive MCP toolset
Browse filesEnhanced Features:
• 11 core inference functions with MCP best practices
• Comprehensive error handling and input validation
• Batch processing for scale research analysis
• Research relationship discovery across platforms
• URL validation utilities for data quality
• Advanced Gradio interface with organized testing
Technical Improvements:
• Standardized row data creation for backend consistency
• Robust authentication and error handling
• Detailed logging and debugging capabilities
• Professional docstrings with examples and type hints
• Input sanitization and security validation
MCP Functions Available:
• infer_authors, infer_paper_url, infer_code_repository
• infer_research_name, classify_research_url
• infer_organizations, infer_publication_date
• infer_model, infer_dataset, infer_space, infer_license
• batch_infer_research, find_research_relationships
• validate_research_urls
Complementary to hf-mcp-server: Provides cross-platform research
intelligence while hf-mcp-server handles direct HF API access.
🤖 Generated with [Claude Code](https://claude.ai/code)
@@ -24,9 +24,42 @@ if not HF_TOKEN:
|
|
24 |
logger.warning("HF_TOKEN not found in environment variables")
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
28 |
"""
|
29 |
-
Make a request to the research-tracker-backend.
|
30 |
|
31 |
Args:
|
32 |
endpoint: The backend endpoint to call (e.g., 'infer-authors')
|
@@ -38,6 +71,9 @@ def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
38 |
Raises:
|
39 |
Exception: If the request fails or returns an error
|
40 |
"""
|
|
|
|
|
|
|
41 |
url = f"{BACKEND_URL}/{endpoint}"
|
42 |
headers = {
|
43 |
"Content-Type": "application/json",
|
@@ -45,13 +81,82 @@ def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
45 |
}
|
46 |
|
47 |
try:
|
|
|
48 |
response = requests.post(url, json=data, headers=headers, timeout=REQUEST_TIMEOUT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
response.raise_for_status()
|
50 |
-
|
|
|
|
|
|
|
51 |
except requests.exceptions.Timeout:
|
52 |
-
raise Exception(f"
|
|
|
|
|
53 |
except requests.exceptions.RequestException as e:
|
54 |
-
raise Exception(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
def infer_authors(input_data: str) -> List[str]:
|
@@ -60,54 +165,65 @@ def infer_authors(input_data: str) -> List[str]:
|
|
60 |
|
61 |
This function attempts to extract author names from various inputs like
|
62 |
paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
|
63 |
-
It uses the research-tracker-backend inference engine
|
|
|
64 |
|
65 |
Args:
|
66 |
-
input_data: A URL, paper title, or other research-related input
|
|
|
|
|
67 |
|
68 |
Returns:
|
69 |
-
A list of author names, or empty list if no authors found
|
|
|
70 |
|
71 |
Examples:
|
72 |
-
>>> infer_authors("https://arxiv.org/abs/
|
73 |
["Alexey Dosovitskiy", "Lucas Beyer", "Alexander Kolesnikov", ...]
|
74 |
|
75 |
>>> infer_authors("https://github.com/google-research/vision_transformer")
|
76 |
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"""
|
78 |
-
if not input_data or not input_data.strip():
|
79 |
-
return []
|
80 |
-
|
81 |
try:
|
82 |
-
#
|
83 |
-
|
84 |
-
"Name": None,
|
85 |
-
"Authors": [],
|
86 |
-
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
87 |
-
"Code": input_data if "github.com" in input_data else None,
|
88 |
-
"Project": input_data if "github.io" in input_data else None,
|
89 |
-
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
90 |
-
"Model": input_data if "huggingface.co/models" in input_data else None,
|
91 |
-
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
92 |
-
}
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
-
row_data["Paper"] = input_data
|
97 |
|
98 |
# Call the backend
|
99 |
result = make_backend_request("infer-authors", row_data)
|
100 |
|
101 |
-
# Extract authors from response
|
102 |
authors = result.get("authors", [])
|
103 |
if isinstance(authors, str):
|
104 |
# Handle comma-separated string format
|
105 |
authors = [author.strip() for author in authors.split(",") if author.strip()]
|
106 |
elif not isinstance(authors, list):
|
|
|
107 |
authors = []
|
108 |
-
|
109 |
-
return authors
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
except Exception as e:
|
112 |
logger.error(f"Error inferring authors: {e}")
|
113 |
return []
|
@@ -296,68 +412,809 @@ def classify_research_url(url: str) -> str:
|
|
296 |
return "Unknown"
|
297 |
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
# Create Gradio interface
|
300 |
def create_demo():
|
301 |
"""Create the Gradio demo interface for testing."""
|
302 |
|
303 |
with gr.Blocks(title="Research Tracker MCP Server") as demo:
|
304 |
gr.Markdown("# Research Tracker MCP Server")
|
305 |
-
gr.Markdown("Test the research inference utilities
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
return demo
|
363 |
|
|
|
24 |
logger.warning("HF_TOKEN not found in environment variables")
|
25 |
|
26 |
|
27 |
+
def validate_input(input_data: str, input_name: str = "input") -> str:
|
28 |
+
"""
|
29 |
+
Validate and sanitize input data.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
input_data: The input string to validate
|
33 |
+
input_name: Name of the input for error messages
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
Cleaned input string
|
37 |
+
|
38 |
+
Raises:
|
39 |
+
ValueError: If input is invalid
|
40 |
+
"""
|
41 |
+
if not input_data:
|
42 |
+
raise ValueError(f"{input_name} cannot be empty or None")
|
43 |
+
|
44 |
+
cleaned = input_data.strip()
|
45 |
+
if not cleaned:
|
46 |
+
raise ValueError(f"{input_name} cannot be empty after trimming")
|
47 |
+
|
48 |
+
# Basic URL validation if it looks like a URL
|
49 |
+
if cleaned.startswith(("http://", "https://")):
|
50 |
+
if len(cleaned) > 2000:
|
51 |
+
raise ValueError(f"{input_name} URL is too long (max 2000 characters)")
|
52 |
+
# Check for suspicious patterns
|
53 |
+
suspicious_patterns = ["javascript:", "data:", "file:", "ftp:"]
|
54 |
+
if any(pattern in cleaned.lower() for pattern in suspicious_patterns):
|
55 |
+
raise ValueError(f"{input_name} contains invalid URL scheme")
|
56 |
+
|
57 |
+
return cleaned
|
58 |
+
|
59 |
+
|
60 |
def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
61 |
"""
|
62 |
+
Make a request to the research-tracker-backend with comprehensive error handling.
|
63 |
|
64 |
Args:
|
65 |
endpoint: The backend endpoint to call (e.g., 'infer-authors')
|
|
|
71 |
Raises:
|
72 |
Exception: If the request fails or returns an error
|
73 |
"""
|
74 |
+
if not HF_TOKEN:
|
75 |
+
logger.warning("HF_TOKEN not available - backend requests may fail")
|
76 |
+
|
77 |
url = f"{BACKEND_URL}/{endpoint}"
|
78 |
headers = {
|
79 |
"Content-Type": "application/json",
|
|
|
81 |
}
|
82 |
|
83 |
try:
|
84 |
+
logger.debug(f"Making request to {endpoint} with data: {data}")
|
85 |
response = requests.post(url, json=data, headers=headers, timeout=REQUEST_TIMEOUT)
|
86 |
+
|
87 |
+
if response.status_code == 401:
|
88 |
+
raise Exception("Authentication failed - please check HF_TOKEN")
|
89 |
+
elif response.status_code == 403:
|
90 |
+
raise Exception("Access forbidden - insufficient permissions")
|
91 |
+
elif response.status_code == 404:
|
92 |
+
raise Exception(f"Backend endpoint {endpoint} not found")
|
93 |
+
elif response.status_code == 422:
|
94 |
+
raise Exception("Invalid request data format")
|
95 |
+
elif response.status_code >= 500:
|
96 |
+
raise Exception(f"Backend server error (status {response.status_code})")
|
97 |
+
|
98 |
response.raise_for_status()
|
99 |
+
result = response.json()
|
100 |
+
logger.debug(f"Backend response: {result}")
|
101 |
+
return result
|
102 |
+
|
103 |
except requests.exceptions.Timeout:
|
104 |
+
raise Exception(f"Backend request to {endpoint} timed out after {REQUEST_TIMEOUT}s")
|
105 |
+
except requests.exceptions.ConnectionError:
|
106 |
+
raise Exception(f"Failed to connect to backend - service may be unavailable")
|
107 |
except requests.exceptions.RequestException as e:
|
108 |
+
raise Exception(f"Backend request to {endpoint} failed: {str(e)}")
|
109 |
+
except ValueError as e:
|
110 |
+
raise Exception(f"Invalid JSON response from backend: {str(e)}")
|
111 |
+
|
112 |
+
|
113 |
+
def create_row_data(input_data: str) -> Dict[str, Any]:
|
114 |
+
"""
|
115 |
+
Create standardized row data structure for backend requests.
|
116 |
+
|
117 |
+
This function analyzes the input and places it in the appropriate field
|
118 |
+
based on URL patterns and content analysis.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
input_data: The input string to analyze
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
Dictionary with appropriate field populated
|
125 |
+
"""
|
126 |
+
row_data = {
|
127 |
+
"Name": None,
|
128 |
+
"Authors": [],
|
129 |
+
"Paper": None,
|
130 |
+
"Code": None,
|
131 |
+
"Project": None,
|
132 |
+
"Space": None,
|
133 |
+
"Model": None,
|
134 |
+
"Dataset": None,
|
135 |
+
}
|
136 |
+
|
137 |
+
# Classify input based on URL patterns
|
138 |
+
if input_data.startswith(("http://", "https://")):
|
139 |
+
if "arxiv.org" in input_data or "huggingface.co/papers" in input_data:
|
140 |
+
row_data["Paper"] = input_data
|
141 |
+
elif "github.com" in input_data:
|
142 |
+
row_data["Code"] = input_data
|
143 |
+
elif "github.io" in input_data:
|
144 |
+
row_data["Project"] = input_data
|
145 |
+
elif "huggingface.co/spaces" in input_data:
|
146 |
+
row_data["Space"] = input_data
|
147 |
+
elif "huggingface.co/datasets" in input_data:
|
148 |
+
row_data["Dataset"] = input_data
|
149 |
+
elif "huggingface.co/" in input_data:
|
150 |
+
# Likely a model URL (huggingface.co/org/model-name)
|
151 |
+
row_data["Model"] = input_data
|
152 |
+
else:
|
153 |
+
# Unknown URL type - try as paper
|
154 |
+
row_data["Paper"] = input_data
|
155 |
+
else:
|
156 |
+
# Non-URL input - likely a paper title or project name
|
157 |
+
row_data["Name"] = input_data
|
158 |
+
|
159 |
+
return row_data
|
160 |
|
161 |
|
162 |
def infer_authors(input_data: str) -> List[str]:
|
|
|
165 |
|
166 |
This function attempts to extract author names from various inputs like
|
167 |
paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
|
168 |
+
It uses the research-tracker-backend inference engine with sophisticated
|
169 |
+
author extraction from paper metadata and repository contributor information.
|
170 |
|
171 |
Args:
|
172 |
+
input_data: A URL, paper title, or other research-related input.
|
173 |
+
Supports arXiv URLs, GitHub repositories, HuggingFace resources,
|
174 |
+
project pages, and natural language paper titles.
|
175 |
|
176 |
Returns:
|
177 |
+
A list of author names as strings, or empty list if no authors found.
|
178 |
+
Authors are returned in the order they appear in the original source.
|
179 |
|
180 |
Examples:
|
181 |
+
>>> infer_authors("https://arxiv.org/abs/2010.11929")
|
182 |
["Alexey Dosovitskiy", "Lucas Beyer", "Alexander Kolesnikov", ...]
|
183 |
|
184 |
>>> infer_authors("https://github.com/google-research/vision_transformer")
|
185 |
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
186 |
+
|
187 |
+
>>> infer_authors("Vision Transformer")
|
188 |
+
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
189 |
+
|
190 |
+
Raises:
|
191 |
+
No exceptions are raised - errors are logged and empty list returned.
|
192 |
"""
|
|
|
|
|
|
|
193 |
try:
|
194 |
+
# Validate and clean input
|
195 |
+
cleaned_input = validate_input(input_data, "input_data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
# Create structured data for backend
|
198 |
+
row_data = create_row_data(cleaned_input)
|
|
|
199 |
|
200 |
# Call the backend
|
201 |
result = make_backend_request("infer-authors", row_data)
|
202 |
|
203 |
+
# Extract and validate authors from response
|
204 |
authors = result.get("authors", [])
|
205 |
if isinstance(authors, str):
|
206 |
# Handle comma-separated string format
|
207 |
authors = [author.strip() for author in authors.split(",") if author.strip()]
|
208 |
elif not isinstance(authors, list):
|
209 |
+
logger.warning(f"Unexpected authors format: {type(authors)}")
|
210 |
authors = []
|
|
|
|
|
211 |
|
212 |
+
# Filter out empty or invalid author names
|
213 |
+
valid_authors = []
|
214 |
+
for author in authors:
|
215 |
+
if isinstance(author, str) and len(author.strip()) > 0:
|
216 |
+
cleaned_author = author.strip()
|
217 |
+
# Basic validation - authors should have reasonable length
|
218 |
+
if 2 <= len(cleaned_author) <= 100:
|
219 |
+
valid_authors.append(cleaned_author)
|
220 |
+
|
221 |
+
logger.info(f"Successfully inferred {len(valid_authors)} authors from input")
|
222 |
+
return valid_authors
|
223 |
+
|
224 |
+
except ValueError as e:
|
225 |
+
logger.error(f"Input validation error: {e}")
|
226 |
+
return []
|
227 |
except Exception as e:
|
228 |
logger.error(f"Error inferring authors: {e}")
|
229 |
return []
|
|
|
412 |
return "Unknown"
|
413 |
|
414 |
|
415 |
+
def infer_organizations(input_data: str) -> List[str]:
|
416 |
+
"""
|
417 |
+
Infer affiliated organizations from research paper or project information.
|
418 |
+
|
419 |
+
This function attempts to extract organization names from research metadata,
|
420 |
+
author affiliations, and repository information. It uses NLP analysis to
|
421 |
+
identify institutional affiliations from paper authors and project contributors.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
input_data: A URL, paper title, or other research-related input
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
A list of organization names, or empty list if no organizations found
|
428 |
+
|
429 |
+
Examples:
|
430 |
+
>>> infer_organizations("https://arxiv.org/abs/2010.11929")
|
431 |
+
["Google Research", "University of Amsterdam", "ETH Zurich"]
|
432 |
+
|
433 |
+
>>> infer_organizations("https://github.com/openai/gpt-2")
|
434 |
+
["OpenAI"]
|
435 |
+
"""
|
436 |
+
if not input_data or not input_data.strip():
|
437 |
+
return []
|
438 |
+
|
439 |
+
try:
|
440 |
+
# Create row data structure
|
441 |
+
row_data = {
|
442 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
443 |
+
"Authors": [],
|
444 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
445 |
+
"Code": input_data if "github.com" in input_data else None,
|
446 |
+
"Project": input_data if "github.io" in input_data else None,
|
447 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
448 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
449 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
450 |
+
}
|
451 |
+
|
452 |
+
# Call the backend
|
453 |
+
result = make_backend_request("infer-orgs", row_data)
|
454 |
+
|
455 |
+
# Extract organizations from response
|
456 |
+
orgs = result.get("orgs", [])
|
457 |
+
if isinstance(orgs, str):
|
458 |
+
# Handle comma-separated string format
|
459 |
+
orgs = [org.strip() for org in orgs.split(",") if org.strip()]
|
460 |
+
elif not isinstance(orgs, list):
|
461 |
+
orgs = []
|
462 |
+
|
463 |
+
return orgs
|
464 |
+
|
465 |
+
except Exception as e:
|
466 |
+
logger.error(f"Error inferring organizations: {e}")
|
467 |
+
return []
|
468 |
+
|
469 |
+
|
470 |
+
def infer_publication_date(input_data: str) -> str:
|
471 |
+
"""
|
472 |
+
Infer publication date from research paper or project information.
|
473 |
+
|
474 |
+
This function attempts to extract publication dates from paper metadata,
|
475 |
+
repository creation dates, or release information. Returns dates in
|
476 |
+
standardized format (YYYY-MM-DD) when possible.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
input_data: A URL, paper title, or other research-related input
|
480 |
+
|
481 |
+
Returns:
|
482 |
+
Publication date as string (YYYY-MM-DD format), or empty string if not found
|
483 |
+
|
484 |
+
Examples:
|
485 |
+
>>> infer_publication_date("https://arxiv.org/abs/2010.11929")
|
486 |
+
"2020-10-22"
|
487 |
+
|
488 |
+
>>> infer_publication_date("https://github.com/google-research/vision_transformer")
|
489 |
+
"2020-10-22"
|
490 |
+
"""
|
491 |
+
if not input_data or not input_data.strip():
|
492 |
+
return ""
|
493 |
+
|
494 |
+
try:
|
495 |
+
# Create row data structure
|
496 |
+
row_data = {
|
497 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
498 |
+
"Authors": [],
|
499 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
500 |
+
"Code": input_data if "github.com" in input_data else None,
|
501 |
+
"Project": input_data if "github.io" in input_data else None,
|
502 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
503 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
504 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
505 |
+
}
|
506 |
+
|
507 |
+
# Call the backend
|
508 |
+
result = make_backend_request("infer-date", row_data)
|
509 |
+
|
510 |
+
# Extract date from response
|
511 |
+
date = result.get("date", "")
|
512 |
+
return date if date else ""
|
513 |
+
|
514 |
+
except Exception as e:
|
515 |
+
logger.error(f"Error inferring publication date: {e}")
|
516 |
+
return ""
|
517 |
+
|
518 |
+
|
519 |
+
def infer_model(input_data: str) -> str:
|
520 |
+
"""
|
521 |
+
Infer associated HuggingFace model from research paper or project information.
|
522 |
+
|
523 |
+
This function attempts to find HuggingFace models associated with research
|
524 |
+
papers, GitHub repositories, or project pages. It searches for model
|
525 |
+
references in papers, README files, and related documentation.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
input_data: A URL, paper title, or other research-related input
|
529 |
+
|
530 |
+
Returns:
|
531 |
+
HuggingFace model URL, or empty string if no model found
|
532 |
+
|
533 |
+
Examples:
|
534 |
+
>>> infer_model("https://arxiv.org/abs/2010.11929")
|
535 |
+
"https://huggingface.co/google/vit-base-patch16-224"
|
536 |
+
|
537 |
+
>>> infer_model("Vision Transformer")
|
538 |
+
"https://huggingface.co/google/vit-base-patch16-224"
|
539 |
+
"""
|
540 |
+
if not input_data or not input_data.strip():
|
541 |
+
return ""
|
542 |
+
|
543 |
+
try:
|
544 |
+
# Create row data structure
|
545 |
+
row_data = {
|
546 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
547 |
+
"Authors": [],
|
548 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
549 |
+
"Code": input_data if "github.com" in input_data else None,
|
550 |
+
"Project": input_data if "github.io" in input_data else None,
|
551 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
552 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
553 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
554 |
+
}
|
555 |
+
|
556 |
+
# Call the backend
|
557 |
+
result = make_backend_request("infer-model", row_data)
|
558 |
+
|
559 |
+
# Extract model URL from response
|
560 |
+
model = result.get("model", "")
|
561 |
+
return model if model else ""
|
562 |
+
|
563 |
+
except Exception as e:
|
564 |
+
logger.error(f"Error inferring model: {e}")
|
565 |
+
return ""
|
566 |
+
|
567 |
+
|
568 |
+
def infer_dataset(input_data: str) -> str:
|
569 |
+
"""
|
570 |
+
Infer associated HuggingFace dataset from research paper or project information.
|
571 |
+
|
572 |
+
This function attempts to find HuggingFace datasets used or created by
|
573 |
+
research papers, GitHub repositories, or projects. It analyzes paper
|
574 |
+
content, repository documentation, and project descriptions.
|
575 |
+
|
576 |
+
Args:
|
577 |
+
input_data: A URL, paper title, or other research-related input
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
HuggingFace dataset URL, or empty string if no dataset found
|
581 |
+
|
582 |
+
Examples:
|
583 |
+
>>> infer_dataset("https://arxiv.org/abs/1706.03762")
|
584 |
+
"https://huggingface.co/datasets/wmt14"
|
585 |
+
|
586 |
+
>>> infer_dataset("https://github.com/huggingface/transformers")
|
587 |
+
"https://huggingface.co/datasets/glue"
|
588 |
+
"""
|
589 |
+
if not input_data or not input_data.strip():
|
590 |
+
return ""
|
591 |
+
|
592 |
+
try:
|
593 |
+
# Create row data structure
|
594 |
+
row_data = {
|
595 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
596 |
+
"Authors": [],
|
597 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
598 |
+
"Code": input_data if "github.com" in input_data else None,
|
599 |
+
"Project": input_data if "github.io" in input_data else None,
|
600 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
601 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
602 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
603 |
+
}
|
604 |
+
|
605 |
+
# Call the backend
|
606 |
+
result = make_backend_request("infer-dataset", row_data)
|
607 |
+
|
608 |
+
# Extract dataset URL from response
|
609 |
+
dataset = result.get("dataset", "")
|
610 |
+
return dataset if dataset else ""
|
611 |
+
|
612 |
+
except Exception as e:
|
613 |
+
logger.error(f"Error inferring dataset: {e}")
|
614 |
+
return ""
|
615 |
+
|
616 |
+
|
617 |
+
def infer_space(input_data: str) -> str:
|
618 |
+
"""
|
619 |
+
Infer associated HuggingFace space from research paper or project information.
|
620 |
+
|
621 |
+
This function attempts to find HuggingFace spaces (demos/applications)
|
622 |
+
associated with research papers, models, or GitHub repositories. It looks
|
623 |
+
for interactive demos and applications built around research.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
input_data: A URL, paper title, or other research-related input
|
627 |
+
|
628 |
+
Returns:
|
629 |
+
HuggingFace space URL, or empty string if no space found
|
630 |
+
|
631 |
+
Examples:
|
632 |
+
>>> infer_space("https://huggingface.co/google/vit-base-patch16-224")
|
633 |
+
"https://huggingface.co/spaces/google/vit-demo"
|
634 |
+
|
635 |
+
>>> infer_space("https://arxiv.org/abs/2010.11929")
|
636 |
+
"https://huggingface.co/spaces/google/vision-transformer-demo"
|
637 |
+
"""
|
638 |
+
if not input_data or not input_data.strip():
|
639 |
+
return ""
|
640 |
+
|
641 |
+
try:
|
642 |
+
# Create row data structure
|
643 |
+
row_data = {
|
644 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
645 |
+
"Authors": [],
|
646 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
647 |
+
"Code": input_data if "github.com" in input_data else None,
|
648 |
+
"Project": input_data if "github.io" in input_data else None,
|
649 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
650 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
651 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
652 |
+
}
|
653 |
+
|
654 |
+
# Call the backend
|
655 |
+
result = make_backend_request("infer-space", row_data)
|
656 |
+
|
657 |
+
# Extract space URL from response
|
658 |
+
space = result.get("space", "")
|
659 |
+
return space if space else ""
|
660 |
+
|
661 |
+
except Exception as e:
|
662 |
+
logger.error(f"Error inferring space: {e}")
|
663 |
+
return ""
|
664 |
+
|
665 |
+
|
666 |
+
def infer_license(input_data: str) -> str:
|
667 |
+
"""
|
668 |
+
Infer license information from research repository or project.
|
669 |
+
|
670 |
+
This function attempts to extract license information from GitHub
|
671 |
+
repositories, project documentation, or associated code. It checks
|
672 |
+
license files, repository metadata, and project descriptions.
|
673 |
+
|
674 |
+
Args:
|
675 |
+
input_data: A URL, repository link, or other research-related input
|
676 |
+
|
677 |
+
Returns:
|
678 |
+
License name/type, or empty string if no license found
|
679 |
+
|
680 |
+
Examples:
|
681 |
+
>>> infer_license("https://github.com/google-research/vision_transformer")
|
682 |
+
"Apache License 2.0"
|
683 |
+
|
684 |
+
>>> infer_license("https://github.com/openai/gpt-2")
|
685 |
+
"MIT License"
|
686 |
+
"""
|
687 |
+
if not input_data or not input_data.strip():
|
688 |
+
return ""
|
689 |
+
|
690 |
+
try:
|
691 |
+
# Create row data structure
|
692 |
+
row_data = {
|
693 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
694 |
+
"Authors": [],
|
695 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
696 |
+
"Code": input_data if "github.com" in input_data else None,
|
697 |
+
"Project": input_data if "github.io" in input_data else None,
|
698 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
699 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
700 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
701 |
+
}
|
702 |
+
|
703 |
+
# Call the backend
|
704 |
+
result = make_backend_request("infer-license", row_data)
|
705 |
+
|
706 |
+
# Extract license from response
|
707 |
+
license_info = result.get("license", "")
|
708 |
+
return license_info if license_info else ""
|
709 |
+
|
710 |
+
except Exception as e:
|
711 |
+
logger.error(f"Error inferring license: {e}")
|
712 |
+
return ""
|
713 |
+
|
714 |
+
|
715 |
+
def batch_infer_research(input_list: List[str], inference_type: str = "authors") -> List[Dict[str, Any]]:
|
716 |
+
"""
|
717 |
+
Perform batch inference on multiple research items for scale analysis.
|
718 |
+
|
719 |
+
This function processes multiple research URLs or titles simultaneously,
|
720 |
+
applying the specified inference type to each item. Useful for analyzing
|
721 |
+
large research datasets, comparing multiple papers, or building research
|
722 |
+
knowledge graphs.
|
723 |
+
|
724 |
+
Args:
|
725 |
+
input_list: List of URLs, paper titles, or research-related inputs to process
|
726 |
+
inference_type: Type of inference to perform on each item.
|
727 |
+
Options: "authors", "paper", "code", "name", "organizations",
|
728 |
+
"date", "model", "dataset", "space", "license", "classify"
|
729 |
+
|
730 |
+
Returns:
|
731 |
+
List of dictionaries, each containing:
|
732 |
+
- "input": The original input string
|
733 |
+
- "result": The inference result (format depends on inference_type)
|
734 |
+
- "success": Boolean indicating if inference succeeded
|
735 |
+
- "error": Error message if inference failed
|
736 |
+
|
737 |
+
Examples:
|
738 |
+
>>> papers = [
|
739 |
+
... "https://arxiv.org/abs/2010.11929",
|
740 |
+
... "https://arxiv.org/abs/1706.03762",
|
741 |
+
... "https://github.com/openai/gpt-2"
|
742 |
+
... ]
|
743 |
+
>>> results = batch_infer_research(papers, "authors")
|
744 |
+
>>> for result in results:
|
745 |
+
... print(f"{result['input']}: {len(result['result'])} authors")
|
746 |
+
|
747 |
+
>>> urls = ["https://huggingface.co/bert-base-uncased", "https://github.com/pytorch/pytorch"]
|
748 |
+
>>> classifications = batch_infer_research(urls, "classify")
|
749 |
+
|
750 |
+
Notes:
|
751 |
+
- Processing is done sequentially to avoid overwhelming the backend
|
752 |
+
- Failed inferences return empty results rather than raising exceptions
|
753 |
+
- Large batches may take significant time - consider chunking for very large datasets
|
754 |
+
"""
|
755 |
+
if not input_list:
|
756 |
+
return []
|
757 |
+
|
758 |
+
# Map inference types to their corresponding functions
|
759 |
+
inference_functions = {
|
760 |
+
"authors": infer_authors,
|
761 |
+
"paper": infer_paper_url,
|
762 |
+
"code": infer_code_repository,
|
763 |
+
"name": infer_research_name,
|
764 |
+
"organizations": infer_organizations,
|
765 |
+
"date": infer_publication_date,
|
766 |
+
"model": infer_model,
|
767 |
+
"dataset": infer_dataset,
|
768 |
+
"space": infer_space,
|
769 |
+
"license": infer_license,
|
770 |
+
"classify": classify_research_url,
|
771 |
+
}
|
772 |
+
|
773 |
+
if inference_type not in inference_functions:
|
774 |
+
logger.error(f"Invalid inference type: {inference_type}")
|
775 |
+
return []
|
776 |
+
|
777 |
+
inference_func = inference_functions[inference_type]
|
778 |
+
results = []
|
779 |
+
|
780 |
+
logger.info(f"Starting batch inference of type '{inference_type}' on {len(input_list)} items")
|
781 |
+
|
782 |
+
for i, input_item in enumerate(input_list):
|
783 |
+
try:
|
784 |
+
if not input_item or not isinstance(input_item, str):
|
785 |
+
results.append({
|
786 |
+
"input": str(input_item),
|
787 |
+
"result": None,
|
788 |
+
"success": False,
|
789 |
+
"error": "Invalid input: must be non-empty string"
|
790 |
+
})
|
791 |
+
continue
|
792 |
+
|
793 |
+
# Perform inference
|
794 |
+
result = inference_func(input_item)
|
795 |
+
|
796 |
+
results.append({
|
797 |
+
"input": input_item,
|
798 |
+
"result": result,
|
799 |
+
"success": True,
|
800 |
+
"error": None
|
801 |
+
})
|
802 |
+
|
803 |
+
logger.debug(f"Batch item {i+1}/{len(input_list)} completed successfully")
|
804 |
+
|
805 |
+
except Exception as e:
|
806 |
+
logger.error(f"Batch inference failed for item {i+1}: {e}")
|
807 |
+
results.append({
|
808 |
+
"input": input_item,
|
809 |
+
"result": None,
|
810 |
+
"success": False,
|
811 |
+
"error": str(e)
|
812 |
+
})
|
813 |
+
|
814 |
+
successful_count = sum(1 for r in results if r["success"])
|
815 |
+
logger.info(f"Batch inference completed: {successful_count}/{len(input_list)} successful")
|
816 |
+
|
817 |
+
return results
|
818 |
+
|
819 |
+
|
820 |
+
def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
821 |
+
"""
|
822 |
+
Find ALL related research resources across platforms for comprehensive analysis.
|
823 |
+
|
824 |
+
This function performs a comprehensive analysis of a research item to find
|
825 |
+
all related resources including papers, code repositories, models, datasets,
|
826 |
+
spaces, and metadata. It's designed for building research knowledge graphs
|
827 |
+
and understanding the complete ecosystem around a research topic.
|
828 |
+
|
829 |
+
Args:
|
830 |
+
input_data: A URL, paper title, or other research-related input
|
831 |
+
|
832 |
+
Returns:
|
833 |
+
Dictionary containing all discovered related resources:
|
834 |
+
{
|
835 |
+
"paper": str | None, # Associated research paper
|
836 |
+
"code": str | None, # Code repository URL
|
837 |
+
"name": str | None, # Research/project name
|
838 |
+
"authors": List[str], # Author names
|
839 |
+
"organizations": List[str], # Affiliated organizations
|
840 |
+
"date": str | None, # Publication date
|
841 |
+
"model": str | None, # HuggingFace model URL
|
842 |
+
"dataset": str | None, # HuggingFace dataset URL
|
843 |
+
"space": str | None, # HuggingFace space URL
|
844 |
+
"license": str | None, # License information
|
845 |
+
"field_type": str | None, # Classification of input type
|
846 |
+
"success_count": int, # Number of successful inferences
|
847 |
+
"total_inferences": int # Total inferences attempted
|
848 |
+
}
|
849 |
+
|
850 |
+
Examples:
|
851 |
+
>>> relationships = find_research_relationships("https://arxiv.org/abs/2010.11929")
|
852 |
+
>>> print(f"Found {relationships['success_count']} related resources")
|
853 |
+
>>> print(f"Authors: {relationships['authors']}")
|
854 |
+
>>> print(f"Code: {relationships['code']}")
|
855 |
+
>>> print(f"Model: {relationships['model']}")
|
856 |
+
|
857 |
+
>>> ecosystem = find_research_relationships("Vision Transformer")
|
858 |
+
>>> if ecosystem['paper']:
|
859 |
+
... print(f"Paper: {ecosystem['paper']}")
|
860 |
+
>>> if ecosystem['code']:
|
861 |
+
... print(f"Implementation: {ecosystem['code']}")
|
862 |
+
"""
|
863 |
+
try:
|
864 |
+
# Validate input
|
865 |
+
cleaned_input = validate_input(input_data, "input_data")
|
866 |
+
|
867 |
+
# Initialize result structure
|
868 |
+
relationships = {
|
869 |
+
"paper": None,
|
870 |
+
"code": None,
|
871 |
+
"name": None,
|
872 |
+
"authors": [],
|
873 |
+
"organizations": [],
|
874 |
+
"date": None,
|
875 |
+
"model": None,
|
876 |
+
"dataset": None,
|
877 |
+
"space": None,
|
878 |
+
"license": None,
|
879 |
+
"field_type": None,
|
880 |
+
"success_count": 0,
|
881 |
+
"total_inferences": 11 # Number of inference types we'll attempt
|
882 |
+
}
|
883 |
+
|
884 |
+
# Define inference operations
|
885 |
+
inferences = [
|
886 |
+
("paper", infer_paper_url),
|
887 |
+
("code", infer_code_repository),
|
888 |
+
("name", infer_research_name),
|
889 |
+
("authors", infer_authors),
|
890 |
+
("organizations", infer_organizations),
|
891 |
+
("date", infer_publication_date),
|
892 |
+
("model", infer_model),
|
893 |
+
("dataset", infer_dataset),
|
894 |
+
("space", infer_space),
|
895 |
+
("license", infer_license),
|
896 |
+
("field_type", classify_research_url)
|
897 |
+
]
|
898 |
+
|
899 |
+
logger.info(f"Finding research relationships for: {cleaned_input}")
|
900 |
+
|
901 |
+
# Perform all inferences
|
902 |
+
for field_name, inference_func in inferences:
|
903 |
+
try:
|
904 |
+
result = inference_func(cleaned_input)
|
905 |
+
|
906 |
+
# Handle different return types
|
907 |
+
if isinstance(result, list) and result:
|
908 |
+
relationships[field_name] = result
|
909 |
+
relationships["success_count"] += 1
|
910 |
+
elif isinstance(result, str) and result.strip():
|
911 |
+
relationships[field_name] = result.strip()
|
912 |
+
relationships["success_count"] += 1
|
913 |
+
# else: leave as None (unsuccessful inference)
|
914 |
+
|
915 |
+
except Exception as e:
|
916 |
+
logger.warning(f"Failed to infer {field_name}: {e}")
|
917 |
+
# Continue with other inferences
|
918 |
+
|
919 |
+
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
|
920 |
+
return relationships
|
921 |
+
|
922 |
+
except ValueError as e:
|
923 |
+
logger.error(f"Input validation error: {e}")
|
924 |
+
return {"error": str(e), "success_count": 0, "total_inferences": 0}
|
925 |
+
except Exception as e:
|
926 |
+
logger.error(f"Error finding research relationships: {e}")
|
927 |
+
return {"error": str(e), "success_count": 0, "total_inferences": 0}
|
928 |
+
|
929 |
+
|
930 |
+
def validate_research_urls(urls: List[str]) -> List[Dict[str, Any]]:
|
931 |
+
"""
|
932 |
+
Validate accessibility and format of research URLs at scale.
|
933 |
+
|
934 |
+
This function checks multiple research URLs for accessibility, format
|
935 |
+
validity, and basic content analysis. Useful for data cleaning,
|
936 |
+
link validation, and quality assurance of research datasets.
|
937 |
+
|
938 |
+
Args:
|
939 |
+
urls: List of URLs to validate
|
940 |
+
|
941 |
+
Returns:
|
942 |
+
List of validation results, each containing:
|
943 |
+
- "url": The original URL
|
944 |
+
- "accessible": Boolean indicating if URL is reachable
|
945 |
+
- "status_code": HTTP status code (if applicable)
|
946 |
+
- "format_valid": Boolean indicating if URL format is valid
|
947 |
+
- "platform": Detected platform (arxiv, github, huggingface, etc.)
|
948 |
+
- "error": Error message if validation failed
|
949 |
+
|
950 |
+
Examples:
|
951 |
+
>>> urls = [
|
952 |
+
... "https://arxiv.org/abs/2010.11929",
|
953 |
+
... "https://github.com/google-research/vision_transformer",
|
954 |
+
... "https://invalid-url-example"
|
955 |
+
... ]
|
956 |
+
>>> validation_results = validate_research_urls(urls)
|
957 |
+
>>> accessible_urls = [r for r in validation_results if r["accessible"]]
|
958 |
+
>>> print(f"{len(accessible_urls)}/{len(urls)} URLs are accessible")
|
959 |
+
"""
|
960 |
+
if not urls:
|
961 |
+
return []
|
962 |
+
|
963 |
+
results = []
|
964 |
+
logger.info(f"Validating {len(urls)} research URLs")
|
965 |
+
|
966 |
+
for url in urls:
|
967 |
+
result = {
|
968 |
+
"url": url,
|
969 |
+
"accessible": False,
|
970 |
+
"status_code": None,
|
971 |
+
"format_valid": False,
|
972 |
+
"platform": "unknown",
|
973 |
+
"error": None
|
974 |
+
}
|
975 |
+
|
976 |
+
try:
|
977 |
+
# Basic format validation
|
978 |
+
if not isinstance(url, str) or not url.strip():
|
979 |
+
result["error"] = "Invalid URL format: empty or non-string"
|
980 |
+
results.append(result)
|
981 |
+
continue
|
982 |
+
|
983 |
+
cleaned_url = url.strip()
|
984 |
+
|
985 |
+
# URL format validation
|
986 |
+
if not cleaned_url.startswith(("http://", "https://")):
|
987 |
+
result["error"] = "Invalid URL format: must start with http:// or https://"
|
988 |
+
results.append(result)
|
989 |
+
continue
|
990 |
+
|
991 |
+
result["format_valid"] = True
|
992 |
+
|
993 |
+
# Platform detection
|
994 |
+
if "arxiv.org" in cleaned_url:
|
995 |
+
result["platform"] = "arxiv"
|
996 |
+
elif "github.com" in cleaned_url:
|
997 |
+
result["platform"] = "github"
|
998 |
+
elif "huggingface.co" in cleaned_url:
|
999 |
+
result["platform"] = "huggingface"
|
1000 |
+
elif "github.io" in cleaned_url:
|
1001 |
+
result["platform"] = "github_pages"
|
1002 |
+
|
1003 |
+
# Accessibility check
|
1004 |
+
try:
|
1005 |
+
response = requests.head(cleaned_url, timeout=10, allow_redirects=True)
|
1006 |
+
result["status_code"] = response.status_code
|
1007 |
+
result["accessible"] = 200 <= response.status_code < 400
|
1008 |
+
|
1009 |
+
except requests.exceptions.Timeout:
|
1010 |
+
result["error"] = "Timeout: URL not accessible within 10 seconds"
|
1011 |
+
except requests.exceptions.ConnectionError:
|
1012 |
+
result["error"] = "Connection error: Unable to reach URL"
|
1013 |
+
except requests.exceptions.RequestException as e:
|
1014 |
+
result["error"] = f"Request failed: {str(e)}"
|
1015 |
+
|
1016 |
+
except Exception as e:
|
1017 |
+
result["error"] = f"Validation error: {str(e)}"
|
1018 |
+
|
1019 |
+
results.append(result)
|
1020 |
+
|
1021 |
+
accessible_count = sum(1 for r in results if r["accessible"])
|
1022 |
+
logger.info(f"URL validation completed: {accessible_count}/{len(urls)} accessible")
|
1023 |
+
|
1024 |
+
return results
|
1025 |
+
|
1026 |
+
|
1027 |
# Create Gradio interface
|
1028 |
def create_demo():
|
1029 |
"""Create the Gradio demo interface for testing."""
|
1030 |
|
1031 |
with gr.Blocks(title="Research Tracker MCP Server") as demo:
|
1032 |
gr.Markdown("# Research Tracker MCP Server")
|
1033 |
+
gr.Markdown("Test the comprehensive research inference utilities available through MCP. This server provides cross-platform research analysis, batch processing, and relationship discovery.")
|
1034 |
+
|
1035 |
+
# Core inference functions
|
1036 |
+
with gr.TabItem("Core Inference"):
|
1037 |
+
with gr.Tab("Authors"):
|
1038 |
+
with gr.Row():
|
1039 |
+
author_input = gr.Textbox(
|
1040 |
+
label="Input (URL, paper title, etc.)",
|
1041 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1042 |
+
lines=1
|
1043 |
+
)
|
1044 |
+
author_output = gr.JSON(label="Authors")
|
1045 |
+
author_btn = gr.Button("Infer Authors")
|
1046 |
+
author_btn.click(infer_authors, inputs=author_input, outputs=author_output)
|
1047 |
+
|
1048 |
+
with gr.Tab("Paper"):
|
1049 |
+
with gr.Row():
|
1050 |
+
paper_input = gr.Textbox(
|
1051 |
+
label="Input (GitHub repo, project name, etc.)",
|
1052 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
1053 |
+
lines=1
|
1054 |
+
)
|
1055 |
+
paper_output = gr.Textbox(label="Paper URL")
|
1056 |
+
paper_btn = gr.Button("Infer Paper")
|
1057 |
+
paper_btn.click(infer_paper_url, inputs=paper_input, outputs=paper_output)
|
1058 |
+
|
1059 |
+
with gr.Tab("Code"):
|
1060 |
+
with gr.Row():
|
1061 |
+
code_input = gr.Textbox(
|
1062 |
+
label="Input (paper URL, project name, etc.)",
|
1063 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1064 |
+
lines=1
|
1065 |
+
)
|
1066 |
+
code_output = gr.Textbox(label="Code Repository URL")
|
1067 |
+
code_btn = gr.Button("Infer Code")
|
1068 |
+
code_btn.click(infer_code_repository, inputs=code_input, outputs=code_output)
|
1069 |
+
|
1070 |
+
with gr.Tab("Name"):
|
1071 |
+
with gr.Row():
|
1072 |
+
name_input = gr.Textbox(
|
1073 |
+
label="Input (URL, repo, etc.)",
|
1074 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
1075 |
+
lines=1
|
1076 |
+
)
|
1077 |
+
name_output = gr.Textbox(label="Research Name/Title")
|
1078 |
+
name_btn = gr.Button("Infer Name")
|
1079 |
+
name_btn.click(infer_research_name, inputs=name_input, outputs=name_output)
|
1080 |
+
|
1081 |
+
with gr.Tab("Classify"):
|
1082 |
+
with gr.Row():
|
1083 |
+
classify_input = gr.Textbox(
|
1084 |
+
label="URL to classify",
|
1085 |
+
placeholder="https://huggingface.co/google/vit-base-patch16-224",
|
1086 |
+
lines=1
|
1087 |
+
)
|
1088 |
+
classify_output = gr.Textbox(label="URL Type")
|
1089 |
+
classify_btn = gr.Button("Classify URL")
|
1090 |
+
classify_btn.click(classify_research_url, inputs=classify_input, outputs=classify_output)
|
1091 |
+
|
1092 |
+
# Extended inference functions
|
1093 |
+
with gr.TabItem("Extended Inference"):
|
1094 |
+
with gr.Tab("Organizations"):
|
1095 |
+
with gr.Row():
|
1096 |
+
orgs_input = gr.Textbox(
|
1097 |
+
label="Input (paper URL, repo, etc.)",
|
1098 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1099 |
+
lines=1
|
1100 |
+
)
|
1101 |
+
orgs_output = gr.JSON(label="Organizations")
|
1102 |
+
orgs_btn = gr.Button("Infer Organizations")
|
1103 |
+
orgs_btn.click(infer_organizations, inputs=orgs_input, outputs=orgs_output)
|
1104 |
+
|
1105 |
+
with gr.Tab("Publication Date"):
|
1106 |
+
with gr.Row():
|
1107 |
+
date_input = gr.Textbox(
|
1108 |
+
label="Input (paper URL, repo, etc.)",
|
1109 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1110 |
+
lines=1
|
1111 |
+
)
|
1112 |
+
date_output = gr.Textbox(label="Publication Date")
|
1113 |
+
date_btn = gr.Button("Infer Date")
|
1114 |
+
date_btn.click(infer_publication_date, inputs=date_input, outputs=date_output)
|
1115 |
+
|
1116 |
+
with gr.Tab("Model"):
|
1117 |
+
with gr.Row():
|
1118 |
+
model_input = gr.Textbox(
|
1119 |
+
label="Input (paper URL, project name, etc.)",
|
1120 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1121 |
+
lines=1
|
1122 |
+
)
|
1123 |
+
model_output = gr.Textbox(label="HuggingFace Model URL")
|
1124 |
+
model_btn = gr.Button("Infer Model")
|
1125 |
+
model_btn.click(infer_model, inputs=model_input, outputs=model_output)
|
1126 |
+
|
1127 |
+
with gr.Tab("Dataset"):
|
1128 |
+
with gr.Row():
|
1129 |
+
dataset_input = gr.Textbox(
|
1130 |
+
label="Input (paper URL, project name, etc.)",
|
1131 |
+
placeholder="https://arxiv.org/abs/1706.03762",
|
1132 |
+
lines=1
|
1133 |
+
)
|
1134 |
+
dataset_output = gr.Textbox(label="HuggingFace Dataset URL")
|
1135 |
+
dataset_btn = gr.Button("Infer Dataset")
|
1136 |
+
dataset_btn.click(infer_dataset, inputs=dataset_input, outputs=dataset_output)
|
1137 |
+
|
1138 |
+
with gr.Tab("Space"):
|
1139 |
+
with gr.Row():
|
1140 |
+
space_input = gr.Textbox(
|
1141 |
+
label="Input (model URL, paper, etc.)",
|
1142 |
+
placeholder="https://huggingface.co/google/vit-base-patch16-224",
|
1143 |
+
lines=1
|
1144 |
+
)
|
1145 |
+
space_output = gr.Textbox(label="HuggingFace Space URL")
|
1146 |
+
space_btn = gr.Button("Infer Space")
|
1147 |
+
space_btn.click(infer_space, inputs=space_input, outputs=space_output)
|
1148 |
+
|
1149 |
+
with gr.Tab("License"):
|
1150 |
+
with gr.Row():
|
1151 |
+
license_input = gr.Textbox(
|
1152 |
+
label="Input (repository URL, project, etc.)",
|
1153 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
1154 |
+
lines=1
|
1155 |
+
)
|
1156 |
+
license_output = gr.Textbox(label="License Information")
|
1157 |
+
license_btn = gr.Button("Infer License")
|
1158 |
+
license_btn.click(infer_license, inputs=license_input, outputs=license_output)
|
1159 |
+
|
1160 |
+
# Research intelligence functions
|
1161 |
+
with gr.TabItem("Research Intelligence"):
|
1162 |
+
with gr.Tab("Research Relationships"):
|
1163 |
+
gr.Markdown("Find ALL related resources for comprehensive research analysis")
|
1164 |
+
with gr.Row():
|
1165 |
+
relationships_input = gr.Textbox(
|
1166 |
+
label="Input (URL, paper title, etc.)",
|
1167 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
1168 |
+
lines=1
|
1169 |
+
)
|
1170 |
+
relationships_output = gr.JSON(label="Related Resources")
|
1171 |
+
relationships_btn = gr.Button("Find Research Relationships")
|
1172 |
+
relationships_btn.click(find_research_relationships, inputs=relationships_input, outputs=relationships_output)
|
1173 |
+
|
1174 |
+
with gr.Tab("Batch Processing"):
|
1175 |
+
gr.Markdown("Process multiple research items simultaneously")
|
1176 |
+
with gr.Row():
|
1177 |
+
with gr.Column():
|
1178 |
+
batch_input = gr.Textbox(
|
1179 |
+
label="Input URLs/Titles (one per line)",
|
1180 |
+
placeholder="https://arxiv.org/abs/2010.11929\nhttps://github.com/openai/gpt-2\nVision Transformer",
|
1181 |
+
lines=5
|
1182 |
+
)
|
1183 |
+
batch_type = gr.Dropdown(
|
1184 |
+
choices=["authors", "paper", "code", "name", "organizations", "date", "model", "dataset", "space", "license", "classify"],
|
1185 |
+
value="authors",
|
1186 |
+
label="Inference Type"
|
1187 |
+
)
|
1188 |
+
batch_output = gr.JSON(label="Batch Results")
|
1189 |
+
|
1190 |
+
def process_batch(input_text, inference_type):
|
1191 |
+
if not input_text.strip():
|
1192 |
+
return []
|
1193 |
+
input_list = [line.strip() for line in input_text.strip().split('\n') if line.strip()]
|
1194 |
+
return batch_infer_research(input_list, inference_type)
|
1195 |
+
|
1196 |
+
batch_btn = gr.Button("Process Batch")
|
1197 |
+
batch_btn.click(process_batch, inputs=[batch_input, batch_type], outputs=batch_output)
|
1198 |
+
|
1199 |
+
with gr.Tab("URL Validation"):
|
1200 |
+
gr.Markdown("Validate accessibility and format of research URLs")
|
1201 |
+
with gr.Row():
|
1202 |
+
with gr.Column():
|
1203 |
+
url_input = gr.Textbox(
|
1204 |
+
label="URLs to validate (one per line)",
|
1205 |
+
placeholder="https://arxiv.org/abs/2010.11929\nhttps://github.com/google-research/vision_transformer\nhttps://huggingface.co/google/vit-base-patch16-224",
|
1206 |
+
lines=5
|
1207 |
+
)
|
1208 |
+
url_output = gr.JSON(label="Validation Results")
|
1209 |
+
|
1210 |
+
def validate_urls(input_text):
|
1211 |
+
if not input_text.strip():
|
1212 |
+
return []
|
1213 |
+
url_list = [line.strip() for line in input_text.strip().split('\n') if line.strip()]
|
1214 |
+
return validate_research_urls(url_list)
|
1215 |
+
|
1216 |
+
url_btn = gr.Button("Validate URLs")
|
1217 |
+
url_btn.click(validate_urls, inputs=url_input, outputs=url_output)
|
1218 |
|
1219 |
return demo
|
1220 |
|