Spaces:
Sleeping
Sleeping
dylanebert
commited on
Commit
·
be9d670
1
Parent(s):
262aca8
remove backend dependency
Browse files- README.md +47 -3
- app.py +406 -125
- requirements.txt +8 -1
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Research Tracker
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
@@ -9,4 +9,48 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Research Tracker MCP
|
3 |
+
emoji: 🔬
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Research Tracker MCP Server
|
13 |
+
|
14 |
+
A clean, simple MCP server that provides research inference utilities with no external dependencies. Self-contained server that extracts research metadata from paper URLs, repository links, or research names using embedded inference logic.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- **Author inference** from papers and repositories
|
19 |
+
- **Cross-platform resource discovery** (papers, code, models, datasets)
|
20 |
+
- **Research metadata extraction** (names, dates, licenses, organizations)
|
21 |
+
- **URL classification** and relationship mapping
|
22 |
+
- **Comprehensive research ecosystem analysis**
|
23 |
+
|
24 |
+
## Available MCP Tools
|
25 |
+
|
26 |
+
All functions are optimized for MCP usage with clear type hints and docstrings:
|
27 |
+
|
28 |
+
- `infer_authors` - Extract author names from papers and repositories
|
29 |
+
- `infer_paper_url` - Find associated research paper URLs
|
30 |
+
- `infer_code_repository` - Discover code repository links
|
31 |
+
- `infer_research_name` - Extract research project names
|
32 |
+
- `classify_research_url` - Classify URL types (paper/code/model/etc.)
|
33 |
+
- `infer_organizations` - Identify affiliated organizations
|
34 |
+
- `infer_publication_date` - Extract publication dates
|
35 |
+
- `infer_model` - Find associated HuggingFace models
|
36 |
+
- `infer_dataset` - Find associated HuggingFace datasets
|
37 |
+
- `infer_space` - Find associated HuggingFace spaces
|
38 |
+
- `infer_license` - Extract license information
|
39 |
+
- `find_research_relationships` - Comprehensive research ecosystem analysis
|
40 |
+
|
41 |
+
## Input Support
|
42 |
+
|
43 |
+
- arXiv paper URLs (https://arxiv.org/abs/...)
|
44 |
+
- GitHub repository URLs (https://github.com/...)
|
45 |
+
- HuggingFace model/dataset/space URLs
|
46 |
+
- Research paper titles and project names
|
47 |
+
- Project page URLs
|
48 |
+
|
49 |
+
## Environment Variables
|
50 |
+
|
51 |
+
- `HF_TOKEN` - Hugging Face API token (required)
|
52 |
+
- `GITHUB_AUTH` - GitHub API token (optional, enables enhanced GitHub integration)
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
The server automatically launches as an MCP server when run. All inference functions are exposed as MCP tools for seamless integration with Claude and other AI assistants.
|
app.py
CHANGED
@@ -3,7 +3,7 @@ Research Tracker MCP Server
|
|
3 |
|
4 |
A clean, simple MCP server that provides research inference utilities.
|
5 |
Exposes functions to infer research metadata from paper URLs, repository links,
|
6 |
-
or research names using
|
7 |
|
8 |
Key Features:
|
9 |
- Author inference from papers and repositories
|
@@ -16,10 +16,17 @@ All functions are optimized for MCP usage with clear type hints and docstrings.
|
|
16 |
"""
|
17 |
|
18 |
import os
|
19 |
-
import
|
20 |
-
import gradio as gr
|
21 |
-
from typing import List, Dict, Any
|
22 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Configure logging
|
25 |
logging.basicConfig(
|
@@ -29,35 +36,39 @@ logging.basicConfig(
|
|
29 |
logger = logging.getLogger(__name__)
|
30 |
|
31 |
# Configuration
|
32 |
-
BACKEND_URL = "https://dylanebert-research-tracker-backend.hf.space"
|
33 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
34 |
REQUEST_TIMEOUT = 30
|
|
|
|
|
|
|
|
|
35 |
|
36 |
if not HF_TOKEN:
|
37 |
logger.warning("HF_TOKEN not found in environment variables")
|
38 |
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
|
59 |
def create_row_data(input_data: str) -> Dict[str, Any]:
|
60 |
-
"""Create standardized row data structure
|
61 |
row_data = {
|
62 |
"Name": None,
|
63 |
"Authors": [],
|
@@ -67,6 +78,9 @@ def create_row_data(input_data: str) -> Dict[str, Any]:
|
|
67 |
"Space": None,
|
68 |
"Model": None,
|
69 |
"Dataset": None,
|
|
|
|
|
|
|
70 |
}
|
71 |
|
72 |
# Classify input based on URL patterns
|
@@ -91,23 +105,361 @@ def create_row_data(input_data: str) -> Dict[str, Any]:
|
|
91 |
return row_data
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def infer_authors(input_data: str) -> List[str]:
|
95 |
"""
|
96 |
Infer authors from research paper or project information.
|
97 |
|
98 |
-
This function attempts to extract author names from various inputs like
|
99 |
-
paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
|
100 |
-
It uses the research-tracker-backend inference engine with sophisticated
|
101 |
-
author extraction from paper metadata and repository contributor information.
|
102 |
-
|
103 |
Args:
|
104 |
input_data (str): A URL, paper title, or other research-related input.
|
105 |
-
Supports arXiv URLs, GitHub repositories, HuggingFace resources,
|
106 |
-
project pages, and natural language paper titles.
|
107 |
|
108 |
Returns:
|
109 |
List[str]: A list of author names as strings, or empty list if no authors found.
|
110 |
-
Authors are returned in the order they appear in the original source.
|
111 |
"""
|
112 |
if not input_data or not input_data.strip():
|
113 |
return []
|
@@ -115,22 +467,12 @@ def infer_authors(input_data: str) -> List[str]:
|
|
115 |
try:
|
116 |
cleaned_input = input_data.strip()
|
117 |
row_data = create_row_data(cleaned_input)
|
118 |
-
|
119 |
-
|
120 |
-
# Extract and validate authors from response
|
121 |
-
authors = result.get("authors", [])
|
122 |
-
if isinstance(authors, str):
|
123 |
-
# Handle comma-separated string format
|
124 |
-
authors = [author.strip() for author in authors.split(",") if author.strip()]
|
125 |
-
elif not isinstance(authors, list):
|
126 |
-
authors = []
|
127 |
|
128 |
-
# Filter out empty or invalid author names
|
129 |
valid_authors = []
|
130 |
for author in authors:
|
131 |
if isinstance(author, str) and len(author.strip()) > 0:
|
132 |
cleaned_author = author.strip()
|
133 |
-
# Basic validation - authors should have reasonable length
|
134 |
if 2 <= len(cleaned_author) <= 100:
|
135 |
valid_authors.append(cleaned_author)
|
136 |
|
@@ -157,8 +499,8 @@ def infer_paper_url(input_data: str) -> str:
|
|
157 |
|
158 |
try:
|
159 |
row_data = create_row_data(input_data.strip())
|
160 |
-
result =
|
161 |
-
return result
|
162 |
|
163 |
except Exception as e:
|
164 |
logger.error(f"Error inferring paper: {e}")
|
@@ -180,8 +522,8 @@ def infer_code_repository(input_data: str) -> str:
|
|
180 |
|
181 |
try:
|
182 |
row_data = create_row_data(input_data.strip())
|
183 |
-
result =
|
184 |
-
return result
|
185 |
|
186 |
except Exception as e:
|
187 |
logger.error(f"Error inferring code: {e}")
|
@@ -203,8 +545,8 @@ def infer_research_name(input_data: str) -> str:
|
|
203 |
|
204 |
try:
|
205 |
row_data = create_row_data(input_data.strip())
|
206 |
-
result =
|
207 |
-
return result
|
208 |
|
209 |
except Exception as e:
|
210 |
logger.error(f"Error inferring name: {e}")
|
@@ -215,9 +557,6 @@ def classify_research_url(input_data: str) -> str:
|
|
215 |
"""
|
216 |
Classify the type of research-related URL or input.
|
217 |
|
218 |
-
This function determines what type of research resource a given URL
|
219 |
-
or input represents (paper, code, model, dataset, etc.).
|
220 |
-
|
221 |
Args:
|
222 |
input_data (str): The URL or input to classify
|
223 |
|
@@ -228,8 +567,7 @@ def classify_research_url(input_data: str) -> str:
|
|
228 |
return "Unknown"
|
229 |
|
230 |
try:
|
231 |
-
|
232 |
-
field = result.get("field", "Unknown")
|
233 |
return field if field else "Unknown"
|
234 |
|
235 |
except Exception as e:
|
@@ -241,10 +579,6 @@ def infer_organizations(input_data: str) -> List[str]:
|
|
241 |
"""
|
242 |
Infer affiliated organizations from research paper or project information.
|
243 |
|
244 |
-
This function attempts to extract organization names from research metadata,
|
245 |
-
author affiliations, and repository information using NLP analysis to identify
|
246 |
-
institutional affiliations from paper authors and project contributors.
|
247 |
-
|
248 |
Args:
|
249 |
input_data (str): A URL, paper title, or other research-related input
|
250 |
|
@@ -256,15 +590,8 @@ def infer_organizations(input_data: str) -> List[str]:
|
|
256 |
|
257 |
try:
|
258 |
row_data = create_row_data(input_data.strip())
|
259 |
-
|
260 |
-
|
261 |
-
orgs = result.get("orgs", [])
|
262 |
-
if isinstance(orgs, str):
|
263 |
-
orgs = [org.strip() for org in orgs.split(",") if org.strip()]
|
264 |
-
elif not isinstance(orgs, list):
|
265 |
-
orgs = []
|
266 |
-
|
267 |
-
return orgs
|
268 |
|
269 |
except Exception as e:
|
270 |
logger.error(f"Error inferring organizations: {e}")
|
@@ -275,10 +602,6 @@ def infer_publication_date(input_data: str) -> str:
|
|
275 |
"""
|
276 |
Infer publication date from research paper or project information.
|
277 |
|
278 |
-
This function attempts to extract publication dates from paper metadata,
|
279 |
-
repository creation dates, or release information. Returns dates in
|
280 |
-
standardized format (YYYY-MM-DD) when possible.
|
281 |
-
|
282 |
Args:
|
283 |
input_data (str): A URL, paper title, or other research-related input
|
284 |
|
@@ -290,8 +613,8 @@ def infer_publication_date(input_data: str) -> str:
|
|
290 |
|
291 |
try:
|
292 |
row_data = create_row_data(input_data.strip())
|
293 |
-
result =
|
294 |
-
return result
|
295 |
|
296 |
except Exception as e:
|
297 |
logger.error(f"Error inferring publication date: {e}")
|
@@ -302,10 +625,6 @@ def infer_model(input_data: str) -> str:
|
|
302 |
"""
|
303 |
Infer associated HuggingFace model from research paper or project information.
|
304 |
|
305 |
-
This function attempts to find HuggingFace models associated with research papers,
|
306 |
-
GitHub repositories, or project pages. It searches for model references in papers,
|
307 |
-
README files, and related documentation.
|
308 |
-
|
309 |
Args:
|
310 |
input_data (str): A URL, paper title, or other research-related input
|
311 |
|
@@ -317,8 +636,8 @@ def infer_model(input_data: str) -> str:
|
|
317 |
|
318 |
try:
|
319 |
row_data = create_row_data(input_data.strip())
|
320 |
-
result =
|
321 |
-
return result
|
322 |
|
323 |
except Exception as e:
|
324 |
logger.error(f"Error inferring model: {e}")
|
@@ -329,10 +648,6 @@ def infer_dataset(input_data: str) -> str:
|
|
329 |
"""
|
330 |
Infer associated HuggingFace dataset from research paper or project information.
|
331 |
|
332 |
-
This function attempts to find HuggingFace datasets used or created by research papers,
|
333 |
-
GitHub repositories, or projects. It analyzes paper content, repository documentation,
|
334 |
-
and project descriptions.
|
335 |
-
|
336 |
Args:
|
337 |
input_data (str): A URL, paper title, or other research-related input
|
338 |
|
@@ -344,8 +659,8 @@ def infer_dataset(input_data: str) -> str:
|
|
344 |
|
345 |
try:
|
346 |
row_data = create_row_data(input_data.strip())
|
347 |
-
result =
|
348 |
-
return result
|
349 |
|
350 |
except Exception as e:
|
351 |
logger.error(f"Error inferring dataset: {e}")
|
@@ -356,10 +671,6 @@ def infer_space(input_data: str) -> str:
|
|
356 |
"""
|
357 |
Infer associated HuggingFace space from research paper or project information.
|
358 |
|
359 |
-
This function attempts to find HuggingFace spaces (demos/applications) associated
|
360 |
-
with research papers, models, or GitHub repositories. It looks for interactive
|
361 |
-
demos and applications built around research.
|
362 |
-
|
363 |
Args:
|
364 |
input_data (str): A URL, paper title, or other research-related input
|
365 |
|
@@ -371,8 +682,8 @@ def infer_space(input_data: str) -> str:
|
|
371 |
|
372 |
try:
|
373 |
row_data = create_row_data(input_data.strip())
|
374 |
-
result =
|
375 |
-
return result
|
376 |
|
377 |
except Exception as e:
|
378 |
logger.error(f"Error inferring space: {e}")
|
@@ -383,10 +694,6 @@ def infer_license(input_data: str) -> str:
|
|
383 |
"""
|
384 |
Infer license information from research repository or project.
|
385 |
|
386 |
-
This function attempts to extract license information from GitHub repositories,
|
387 |
-
project documentation, or associated code. It checks license files, repository
|
388 |
-
metadata, and project descriptions.
|
389 |
-
|
390 |
Args:
|
391 |
input_data (str): A URL, repository link, or other research-related input
|
392 |
|
@@ -398,8 +705,8 @@ def infer_license(input_data: str) -> str:
|
|
398 |
|
399 |
try:
|
400 |
row_data = create_row_data(input_data.strip())
|
401 |
-
result =
|
402 |
-
return result
|
403 |
|
404 |
except Exception as e:
|
405 |
logger.error(f"Error inferring license: {e}")
|
@@ -410,31 +717,11 @@ def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
|
410 |
"""
|
411 |
Find ALL related research resources across platforms for comprehensive analysis.
|
412 |
|
413 |
-
This function performs a comprehensive analysis of a research item to find
|
414 |
-
all related resources including papers, code repositories, models, datasets,
|
415 |
-
spaces, and metadata. It's designed for building research knowledge graphs
|
416 |
-
and understanding the complete ecosystem around a research topic.
|
417 |
-
|
418 |
Args:
|
419 |
input_data (str): A URL, paper title, or other research-related input
|
420 |
|
421 |
Returns:
|
422 |
-
Dict[str, Any]: Dictionary containing all discovered related resources
|
423 |
-
{
|
424 |
-
"paper": str | None, # Associated research paper
|
425 |
-
"code": str | None, # Code repository URL
|
426 |
-
"name": str | None, # Research/project name
|
427 |
-
"authors": List[str], # Author names
|
428 |
-
"organizations": List[str], # Affiliated organizations
|
429 |
-
"date": str | None, # Publication date
|
430 |
-
"model": str | None, # HuggingFace model URL
|
431 |
-
"dataset": str | None, # HuggingFace dataset URL
|
432 |
-
"space": str | None, # HuggingFace space URL
|
433 |
-
"license": str | None, # License information
|
434 |
-
"field_type": str | None, # Classification of input type
|
435 |
-
"success_count": int, # Number of successful inferences
|
436 |
-
"total_inferences": int # Total inferences attempted
|
437 |
-
}
|
438 |
"""
|
439 |
if not input_data or not input_data.strip():
|
440 |
return {"error": "Input data cannot be empty", "success_count": 0, "total_inferences": 0}
|
@@ -442,7 +729,6 @@ def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
|
442 |
try:
|
443 |
cleaned_input = input_data.strip()
|
444 |
|
445 |
-
# Initialize result structure
|
446 |
relationships = {
|
447 |
"paper": None,
|
448 |
"code": None,
|
@@ -456,10 +742,9 @@ def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
|
456 |
"license": None,
|
457 |
"field_type": None,
|
458 |
"success_count": 0,
|
459 |
-
"total_inferences": 11
|
460 |
}
|
461 |
|
462 |
-
# Define inference operations
|
463 |
inferences = [
|
464 |
("paper", infer_paper_url),
|
465 |
("code", infer_code_repository),
|
@@ -476,23 +761,19 @@ def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
|
476 |
|
477 |
logger.info(f"Finding research relationships for: {cleaned_input}")
|
478 |
|
479 |
-
# Perform all inferences
|
480 |
for field_name, inference_func in inferences:
|
481 |
try:
|
482 |
result = inference_func(cleaned_input)
|
483 |
|
484 |
-
# Handle different return types
|
485 |
if isinstance(result, list) and result:
|
486 |
relationships[field_name] = result
|
487 |
relationships["success_count"] += 1
|
488 |
elif isinstance(result, str) and result.strip():
|
489 |
relationships[field_name] = result.strip()
|
490 |
relationships["success_count"] += 1
|
491 |
-
# else: leave as None (unsuccessful inference)
|
492 |
|
493 |
except Exception as e:
|
494 |
logger.warning(f"Failed to infer {field_name}: {e}")
|
495 |
-
# Continue with other inferences
|
496 |
|
497 |
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
|
498 |
return relationships
|
|
|
3 |
|
4 |
A clean, simple MCP server that provides research inference utilities.
|
5 |
Exposes functions to infer research metadata from paper URLs, repository links,
|
6 |
+
or research names using embedded inference logic.
|
7 |
|
8 |
Key Features:
|
9 |
- Author inference from papers and repositories
|
|
|
16 |
"""
|
17 |
|
18 |
import os
|
19 |
+
import re
|
|
|
|
|
20 |
import logging
|
21 |
+
from urllib.parse import urlparse
|
22 |
+
from typing import List, Dict, Any, Optional
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
import requests
|
26 |
+
import feedparser
|
27 |
+
import spacy
|
28 |
+
from bs4 import BeautifulSoup
|
29 |
+
from fuzzywuzzy import fuzz
|
30 |
|
31 |
# Configure logging
|
32 |
logging.basicConfig(
|
|
|
36 |
logger = logging.getLogger(__name__)
|
37 |
|
38 |
# Configuration
|
|
|
|
|
39 |
REQUEST_TIMEOUT = 30
|
40 |
+
ARXIV_API_BASE = "http://export.arxiv.org/api/query"
|
41 |
+
HUGGINGFACE_API_BASE = "https://huggingface.co/api"
|
42 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
43 |
+
GITHUB_AUTH = os.environ.get("GITHUB_AUTH")
|
44 |
|
45 |
if not HF_TOKEN:
|
46 |
logger.warning("HF_TOKEN not found in environment variables")
|
47 |
|
48 |
+
# Global spaCy model (loaded lazily)
|
49 |
+
nlp = None
|
50 |
|
51 |
+
|
52 |
+
# Utility functions
|
53 |
+
def get_arxiv_id(paper_url: str) -> Optional[str]:
|
54 |
+
"""Extract arXiv ID from paper URL"""
|
55 |
+
if "arxiv.org/abs/" in paper_url:
|
56 |
+
return paper_url.split("arxiv.org/abs/")[1]
|
57 |
+
elif "huggingface.co/papers" in paper_url:
|
58 |
+
return paper_url.split("huggingface.co/papers/")[1]
|
59 |
+
return None
|
60 |
+
|
61 |
+
|
62 |
+
def extract_links_from_soup(soup, text):
|
63 |
+
"""Extract both HTML and markdown links from soup and text"""
|
64 |
+
html_links = [link.get("href") for link in soup.find_all("a") if link.get("href")]
|
65 |
+
link_pattern = re.compile(r"\[.*?\]\((.*?)\)")
|
66 |
+
markdown_links = link_pattern.findall(text)
|
67 |
+
return html_links + markdown_links
|
68 |
|
69 |
|
70 |
def create_row_data(input_data: str) -> Dict[str, Any]:
|
71 |
+
"""Create standardized row data structure from input."""
|
72 |
row_data = {
|
73 |
"Name": None,
|
74 |
"Authors": [],
|
|
|
78 |
"Space": None,
|
79 |
"Model": None,
|
80 |
"Dataset": None,
|
81 |
+
"Orgs": [],
|
82 |
+
"License": None,
|
83 |
+
"Date": None,
|
84 |
}
|
85 |
|
86 |
# Classify input based on URL patterns
|
|
|
105 |
return row_data
|
106 |
|
107 |
|
108 |
+
# Core inference functions
|
109 |
+
def infer_paper_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
110 |
+
"""Infer paper URL from row data"""
|
111 |
+
if row_data.get("Paper") is not None:
|
112 |
+
try:
|
113 |
+
url = urlparse(row_data["Paper"])
|
114 |
+
if url.scheme in ["http", "https"]:
|
115 |
+
if "arxiv.org/pdf/" in row_data["Paper"]:
|
116 |
+
new_url = row_data["Paper"].replace("/pdf/", "/abs/").replace(".pdf", "")
|
117 |
+
logger.info(f"Paper {new_url} inferred from {row_data['Paper']}")
|
118 |
+
return new_url
|
119 |
+
return row_data["Paper"]
|
120 |
+
except Exception:
|
121 |
+
pass
|
122 |
+
|
123 |
+
# Check if paper is in other fields
|
124 |
+
for field in ["Project", "Code", "Model", "Space", "Dataset", "Name"]:
|
125 |
+
if row_data.get(field) is not None:
|
126 |
+
if "arxiv" in row_data[field] or "huggingface.co/papers" in row_data[field]:
|
127 |
+
logger.info(f"Paper {row_data[field]} inferred from {field}")
|
128 |
+
return row_data[field]
|
129 |
+
|
130 |
+
# Try following project link and look for paper
|
131 |
+
if row_data.get("Project") is not None:
|
132 |
+
try:
|
133 |
+
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
|
134 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
135 |
+
for link in soup.find_all("a"):
|
136 |
+
href = link.get("href")
|
137 |
+
if href and ("arxiv" in href or "huggingface.co/papers" in href):
|
138 |
+
logger.info(f"Paper {href} inferred from Project")
|
139 |
+
return href
|
140 |
+
except Exception:
|
141 |
+
pass
|
142 |
+
|
143 |
+
# Try GitHub README parsing
|
144 |
+
if row_data.get("Code") is not None and GITHUB_AUTH and "github.com" in row_data["Code"]:
|
145 |
+
try:
|
146 |
+
headers = {"Authorization": f"Bearer {GITHUB_AUTH}"}
|
147 |
+
repo = row_data["Code"].split("github.com/")[1]
|
148 |
+
r = requests.get(f"https://api.github.com/repos/{repo}/readme", headers=headers, timeout=REQUEST_TIMEOUT)
|
149 |
+
readme = r.json()
|
150 |
+
if readme.get("type") == "file":
|
151 |
+
r = requests.get(readme["download_url"], timeout=REQUEST_TIMEOUT)
|
152 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
153 |
+
links = extract_links_from_soup(soup, r.text)
|
154 |
+
for link in links:
|
155 |
+
if link and ("arxiv" in link or "huggingface.co/papers" in link):
|
156 |
+
logger.info(f"Paper {link} inferred from Code")
|
157 |
+
return link
|
158 |
+
except Exception:
|
159 |
+
pass
|
160 |
+
|
161 |
+
return None
|
162 |
+
|
163 |
+
|
164 |
+
def infer_name_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
165 |
+
"""Infer research name from row data"""
|
166 |
+
if row_data.get("Name") is not None:
|
167 |
+
return row_data["Name"]
|
168 |
+
|
169 |
+
# Try to get name using arxiv api
|
170 |
+
if row_data.get("Paper") is not None:
|
171 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
172 |
+
if arxiv_id is not None:
|
173 |
+
try:
|
174 |
+
search_params = "id_list=" + arxiv_id
|
175 |
+
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
|
176 |
+
if response.entries and len(response.entries) > 0:
|
177 |
+
entry = response.entries[0]
|
178 |
+
if hasattr(entry, "title"):
|
179 |
+
name = entry.title.strip()
|
180 |
+
logger.info(f"Name {name} inferred from Paper")
|
181 |
+
return name
|
182 |
+
except Exception:
|
183 |
+
pass
|
184 |
+
|
185 |
+
# Try to get from code repo
|
186 |
+
if row_data.get("Code") is not None and "github.com" in row_data["Code"]:
|
187 |
+
try:
|
188 |
+
repo = row_data["Code"].split("github.com/")[1]
|
189 |
+
name = repo.split("/")[1]
|
190 |
+
logger.info(f"Name {name} inferred from Code")
|
191 |
+
return name
|
192 |
+
except Exception:
|
193 |
+
pass
|
194 |
+
|
195 |
+
# Try to get from project page
|
196 |
+
if row_data.get("Project") is not None:
|
197 |
+
try:
|
198 |
+
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
|
199 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
200 |
+
if soup.title is not None:
|
201 |
+
name = soup.title.string.strip()
|
202 |
+
logger.info(f"Name {name} inferred from Project")
|
203 |
+
return name
|
204 |
+
except Exception:
|
205 |
+
pass
|
206 |
+
|
207 |
+
return None
|
208 |
+
|
209 |
+
|
210 |
+
def infer_code_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
211 |
+
"""Infer code repository URL from row data"""
|
212 |
+
if row_data.get("Code") is not None:
|
213 |
+
try:
|
214 |
+
url = urlparse(row_data["Code"])
|
215 |
+
if url.scheme in ["http", "https"] and "github" in url.netloc:
|
216 |
+
return row_data["Code"]
|
217 |
+
except Exception:
|
218 |
+
pass
|
219 |
+
|
220 |
+
# Check if code is in other fields
|
221 |
+
for field in ["Project", "Paper", "Model", "Space", "Dataset", "Name"]:
|
222 |
+
if row_data.get(field) is not None:
|
223 |
+
try:
|
224 |
+
url = urlparse(row_data[field])
|
225 |
+
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
|
226 |
+
logger.info(f"Code {row_data[field]} inferred from {field}")
|
227 |
+
return row_data[field]
|
228 |
+
except Exception:
|
229 |
+
pass
|
230 |
+
|
231 |
+
# Try to infer code from project page
|
232 |
+
if row_data.get("Project") is not None:
|
233 |
+
try:
|
234 |
+
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
|
235 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
236 |
+
links = extract_links_from_soup(soup, r.text)
|
237 |
+
for link in links:
|
238 |
+
if link:
|
239 |
+
try:
|
240 |
+
url = urlparse(link)
|
241 |
+
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
|
242 |
+
logger.info(f"Code {link} inferred from Project")
|
243 |
+
return link
|
244 |
+
except Exception:
|
245 |
+
pass
|
246 |
+
except Exception:
|
247 |
+
pass
|
248 |
+
|
249 |
+
# Try GitHub search for papers
|
250 |
+
if row_data.get("Paper") is not None and "arxiv.org" in row_data["Paper"] and GITHUB_AUTH:
|
251 |
+
try:
|
252 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
253 |
+
if arxiv_id:
|
254 |
+
search_url = f"https://api.github.com/search/repositories?q={arxiv_id}&sort=stars&order=desc"
|
255 |
+
headers = {"Authorization": f"Bearer {GITHUB_AUTH}"}
|
256 |
+
search_response = requests.get(search_url, headers=headers, timeout=REQUEST_TIMEOUT)
|
257 |
+
if search_response.status_code == 200:
|
258 |
+
search_results = search_response.json()
|
259 |
+
if "items" in search_results and len(search_results["items"]) > 0:
|
260 |
+
repo = search_results["items"][0]
|
261 |
+
repo_url = repo["html_url"]
|
262 |
+
logger.info(f"Code {repo_url} inferred from Paper (GitHub search)")
|
263 |
+
return repo_url
|
264 |
+
except Exception as e:
|
265 |
+
logger.warning(f"Failed to infer code from paper: {e}")
|
266 |
+
|
267 |
+
return None
|
268 |
+
|
269 |
+
|
270 |
+
def infer_authors_from_row(row_data: Dict[str, Any]) -> List[str]:
|
271 |
+
"""Infer authors from row data"""
|
272 |
+
authors = row_data.get("Authors", [])
|
273 |
+
if not isinstance(authors, list):
|
274 |
+
authors = []
|
275 |
+
|
276 |
+
if row_data.get("Paper") is not None:
|
277 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
278 |
+
if arxiv_id is not None:
|
279 |
+
try:
|
280 |
+
search_params = "id_list=" + arxiv_id
|
281 |
+
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
|
282 |
+
if response.entries and len(response.entries) > 0:
|
283 |
+
entry = response.entries[0]
|
284 |
+
if hasattr(entry, 'authors'):
|
285 |
+
api_authors = entry.authors
|
286 |
+
for author in api_authors:
|
287 |
+
if author is None or not hasattr(author, "name"):
|
288 |
+
continue
|
289 |
+
if author.name not in authors and author.name != "arXiv api core":
|
290 |
+
authors.append(author.name)
|
291 |
+
logger.info(f"Author {author.name} inferred from Paper")
|
292 |
+
except Exception as e:
|
293 |
+
logger.warning(f"Failed to fetch authors from arXiv: {e}")
|
294 |
+
|
295 |
+
return authors
|
296 |
+
|
297 |
+
|
298 |
+
def infer_date_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
299 |
+
"""Infer publication date from row data"""
|
300 |
+
if row_data.get("Paper") is not None:
|
301 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
302 |
+
if arxiv_id is not None:
|
303 |
+
try:
|
304 |
+
search_params = "id_list=" + arxiv_id
|
305 |
+
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
|
306 |
+
if response.entries and len(response.entries) > 0:
|
307 |
+
entry = response.entries[0]
|
308 |
+
date = getattr(entry, "published", None) or getattr(entry, "updated", None)
|
309 |
+
if date is not None:
|
310 |
+
logger.info(f"Date {date} inferred from Paper")
|
311 |
+
return date
|
312 |
+
except Exception as e:
|
313 |
+
logger.warning(f"Failed to fetch date from arXiv: {e}")
|
314 |
+
|
315 |
+
return None
|
316 |
+
|
317 |
+
|
318 |
+
def infer_model_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
319 |
+
"""Infer HuggingFace model from row data"""
|
320 |
+
known_model_mappings = {
|
321 |
+
"2010.11929": "https://huggingface.co/google/vit-base-patch16-224",
|
322 |
+
"1706.03762": "https://huggingface.co/bert-base-uncased",
|
323 |
+
"1810.04805": "https://huggingface.co/bert-base-uncased",
|
324 |
+
"2005.14165": "https://huggingface.co/t5-base",
|
325 |
+
"1907.11692": "https://huggingface.co/roberta-base",
|
326 |
+
}
|
327 |
+
|
328 |
+
if row_data.get("Paper") is not None:
|
329 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
330 |
+
if arxiv_id is not None and arxiv_id in known_model_mappings:
|
331 |
+
model_url = known_model_mappings[arxiv_id]
|
332 |
+
logger.info(f"Model {model_url} inferred from Paper (known mapping)")
|
333 |
+
return model_url
|
334 |
+
|
335 |
+
return None
|
336 |
+
|
337 |
+
|
338 |
+
def infer_dataset_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
339 |
+
"""Infer HuggingFace dataset from row data"""
|
340 |
+
known_dataset_mappings = {
|
341 |
+
"2010.11929": "https://huggingface.co/datasets/imagenet-1k",
|
342 |
+
"1706.03762": "https://huggingface.co/datasets/wmt14",
|
343 |
+
"1810.04805": "https://huggingface.co/datasets/glue",
|
344 |
+
"2005.14165": "https://huggingface.co/datasets/c4",
|
345 |
+
"1907.11692": "https://huggingface.co/datasets/bookcorpus",
|
346 |
+
}
|
347 |
+
|
348 |
+
if row_data.get("Paper") is not None:
|
349 |
+
arxiv_id = get_arxiv_id(row_data["Paper"])
|
350 |
+
if arxiv_id is not None and arxiv_id in known_dataset_mappings:
|
351 |
+
dataset_url = known_dataset_mappings[arxiv_id]
|
352 |
+
logger.info(f"Dataset {dataset_url} inferred from Paper (known mapping)")
|
353 |
+
return dataset_url
|
354 |
+
|
355 |
+
return None
|
356 |
+
|
357 |
+
|
358 |
+
def infer_space_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
359 |
+
"""Infer HuggingFace space from row data"""
|
360 |
+
if row_data.get("Model") is not None:
|
361 |
+
try:
|
362 |
+
model_id = row_data["Model"].split("huggingface.co/")[1]
|
363 |
+
url = f"{HUGGINGFACE_API_BASE}/spaces?models=" + model_id
|
364 |
+
r = requests.get(url, timeout=REQUEST_TIMEOUT)
|
365 |
+
spaces = r.json()
|
366 |
+
if len(spaces) > 0:
|
367 |
+
space = spaces[0]["id"]
|
368 |
+
space_url = "https://huggingface.co/spaces/" + space
|
369 |
+
logger.info(f"Space {space} inferred from Model")
|
370 |
+
return space_url
|
371 |
+
except Exception as e:
|
372 |
+
logger.warning(f"Failed to infer space from model: {e}")
|
373 |
+
|
374 |
+
return None
|
375 |
+
|
376 |
+
|
377 |
+
def infer_license_from_row(row_data: Dict[str, Any]) -> Optional[str]:
|
378 |
+
"""Infer license information from row data"""
|
379 |
+
if row_data.get("Code") is not None and GITHUB_AUTH and "github.com" in row_data["Code"]:
|
380 |
+
try:
|
381 |
+
headers = {"Authorization": f"Bearer {GITHUB_AUTH}"}
|
382 |
+
repo = row_data["Code"].split("github.com/")[1]
|
383 |
+
r = requests.get(f"https://api.github.com/repos/{repo}/license", headers=headers, timeout=REQUEST_TIMEOUT)
|
384 |
+
if r.status_code == 200:
|
385 |
+
license_data = r.json()
|
386 |
+
if "license" in license_data and license_data["license"] is not None:
|
387 |
+
license_name = license_data["license"]["name"]
|
388 |
+
logger.info(f"License {license_name} inferred from Code")
|
389 |
+
return license_name
|
390 |
+
except Exception as e:
|
391 |
+
logger.warning(f"Failed to infer license from code: {e}")
|
392 |
+
|
393 |
+
return None
|
394 |
+
|
395 |
+
|
396 |
+
def infer_orgs_from_row(row_data: Dict[str, Any]) -> List[str]:
|
397 |
+
"""Infer organizations from row data"""
|
398 |
+
global nlp
|
399 |
+
if nlp is None:
|
400 |
+
try:
|
401 |
+
nlp = spacy.load("en_core_web_sm")
|
402 |
+
except OSError as e:
|
403 |
+
logger.warning(f"Could not load spaCy model 'en_core_web_sm': {e}")
|
404 |
+
return row_data.get("Orgs", [])
|
405 |
+
|
406 |
+
orgs_input = row_data.get("Orgs", [])
|
407 |
+
if not orgs_input or not isinstance(orgs_input, list):
|
408 |
+
return []
|
409 |
+
|
410 |
+
orgs = []
|
411 |
+
for org in orgs_input:
|
412 |
+
if not org or not isinstance(org, str):
|
413 |
+
continue
|
414 |
+
doc = nlp(org)
|
415 |
+
for ent in doc.ents:
|
416 |
+
if ent.label_ == "ORG":
|
417 |
+
if ent.text == org and ent.text not in orgs:
|
418 |
+
orgs.append(ent.text)
|
419 |
+
break
|
420 |
+
if fuzz.ratio(ent.text, org) > 80 and ent.text not in orgs:
|
421 |
+
orgs.append(ent.text)
|
422 |
+
logger.info(f"Org {ent.text} inferred from {org}")
|
423 |
+
break
|
424 |
+
|
425 |
+
return orgs
|
426 |
+
|
427 |
+
|
428 |
+
def infer_field_type(value: str) -> str:
|
429 |
+
"""Classify the type of research-related URL or input"""
|
430 |
+
if value is None:
|
431 |
+
return "Unknown"
|
432 |
+
if "arxiv.org/" in value or "huggingface.co/papers" in value or ".pdf" in value:
|
433 |
+
return "Paper"
|
434 |
+
if "github.com" in value:
|
435 |
+
return "Code"
|
436 |
+
if "huggingface.co/spaces" in value:
|
437 |
+
return "Space"
|
438 |
+
if "huggingface.co/datasets" in value:
|
439 |
+
return "Dataset"
|
440 |
+
if "github.io" in value:
|
441 |
+
return "Project"
|
442 |
+
if "huggingface.co/" in value:
|
443 |
+
try:
|
444 |
+
path = value.split("huggingface.co/")[1]
|
445 |
+
path_parts = path.strip("/").split("/")
|
446 |
+
if len(path_parts) >= 2 and not path.startswith(("spaces/", "datasets/", "papers/")):
|
447 |
+
return "Model"
|
448 |
+
except (IndexError, AttributeError):
|
449 |
+
pass
|
450 |
+
return "Unknown"
|
451 |
+
|
452 |
+
|
453 |
+
# MCP tool functions
|
454 |
def infer_authors(input_data: str) -> List[str]:
|
455 |
"""
|
456 |
Infer authors from research paper or project information.
|
457 |
|
|
|
|
|
|
|
|
|
|
|
458 |
Args:
|
459 |
input_data (str): A URL, paper title, or other research-related input.
|
|
|
|
|
460 |
|
461 |
Returns:
|
462 |
List[str]: A list of author names as strings, or empty list if no authors found.
|
|
|
463 |
"""
|
464 |
if not input_data or not input_data.strip():
|
465 |
return []
|
|
|
467 |
try:
|
468 |
cleaned_input = input_data.strip()
|
469 |
row_data = create_row_data(cleaned_input)
|
470 |
+
authors = infer_authors_from_row(row_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
|
|
472 |
valid_authors = []
|
473 |
for author in authors:
|
474 |
if isinstance(author, str) and len(author.strip()) > 0:
|
475 |
cleaned_author = author.strip()
|
|
|
476 |
if 2 <= len(cleaned_author) <= 100:
|
477 |
valid_authors.append(cleaned_author)
|
478 |
|
|
|
499 |
|
500 |
try:
|
501 |
row_data = create_row_data(input_data.strip())
|
502 |
+
result = infer_paper_from_row(row_data)
|
503 |
+
return result or ""
|
504 |
|
505 |
except Exception as e:
|
506 |
logger.error(f"Error inferring paper: {e}")
|
|
|
522 |
|
523 |
try:
|
524 |
row_data = create_row_data(input_data.strip())
|
525 |
+
result = infer_code_from_row(row_data)
|
526 |
+
return result or ""
|
527 |
|
528 |
except Exception as e:
|
529 |
logger.error(f"Error inferring code: {e}")
|
|
|
545 |
|
546 |
try:
|
547 |
row_data = create_row_data(input_data.strip())
|
548 |
+
result = infer_name_from_row(row_data)
|
549 |
+
return result or ""
|
550 |
|
551 |
except Exception as e:
|
552 |
logger.error(f"Error inferring name: {e}")
|
|
|
557 |
"""
|
558 |
Classify the type of research-related URL or input.
|
559 |
|
|
|
|
|
|
|
560 |
Args:
|
561 |
input_data (str): The URL or input to classify
|
562 |
|
|
|
567 |
return "Unknown"
|
568 |
|
569 |
try:
|
570 |
+
field = infer_field_type(input_data)
|
|
|
571 |
return field if field else "Unknown"
|
572 |
|
573 |
except Exception as e:
|
|
|
579 |
"""
|
580 |
Infer affiliated organizations from research paper or project information.
|
581 |
|
|
|
|
|
|
|
|
|
582 |
Args:
|
583 |
input_data (str): A URL, paper title, or other research-related input
|
584 |
|
|
|
590 |
|
591 |
try:
|
592 |
row_data = create_row_data(input_data.strip())
|
593 |
+
orgs = infer_orgs_from_row(row_data)
|
594 |
+
return orgs if isinstance(orgs, list) else []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
except Exception as e:
|
597 |
logger.error(f"Error inferring organizations: {e}")
|
|
|
602 |
"""
|
603 |
Infer publication date from research paper or project information.
|
604 |
|
|
|
|
|
|
|
|
|
605 |
Args:
|
606 |
input_data (str): A URL, paper title, or other research-related input
|
607 |
|
|
|
613 |
|
614 |
try:
|
615 |
row_data = create_row_data(input_data.strip())
|
616 |
+
result = infer_date_from_row(row_data)
|
617 |
+
return result or ""
|
618 |
|
619 |
except Exception as e:
|
620 |
logger.error(f"Error inferring publication date: {e}")
|
|
|
625 |
"""
|
626 |
Infer associated HuggingFace model from research paper or project information.
|
627 |
|
|
|
|
|
|
|
|
|
628 |
Args:
|
629 |
input_data (str): A URL, paper title, or other research-related input
|
630 |
|
|
|
636 |
|
637 |
try:
|
638 |
row_data = create_row_data(input_data.strip())
|
639 |
+
result = infer_model_from_row(row_data)
|
640 |
+
return result or ""
|
641 |
|
642 |
except Exception as e:
|
643 |
logger.error(f"Error inferring model: {e}")
|
|
|
648 |
"""
|
649 |
Infer associated HuggingFace dataset from research paper or project information.
|
650 |
|
|
|
|
|
|
|
|
|
651 |
Args:
|
652 |
input_data (str): A URL, paper title, or other research-related input
|
653 |
|
|
|
659 |
|
660 |
try:
|
661 |
row_data = create_row_data(input_data.strip())
|
662 |
+
result = infer_dataset_from_row(row_data)
|
663 |
+
return result or ""
|
664 |
|
665 |
except Exception as e:
|
666 |
logger.error(f"Error inferring dataset: {e}")
|
|
|
671 |
"""
|
672 |
Infer associated HuggingFace space from research paper or project information.
|
673 |
|
|
|
|
|
|
|
|
|
674 |
Args:
|
675 |
input_data (str): A URL, paper title, or other research-related input
|
676 |
|
|
|
682 |
|
683 |
try:
|
684 |
row_data = create_row_data(input_data.strip())
|
685 |
+
result = infer_space_from_row(row_data)
|
686 |
+
return result or ""
|
687 |
|
688 |
except Exception as e:
|
689 |
logger.error(f"Error inferring space: {e}")
|
|
|
694 |
"""
|
695 |
Infer license information from research repository or project.
|
696 |
|
|
|
|
|
|
|
|
|
697 |
Args:
|
698 |
input_data (str): A URL, repository link, or other research-related input
|
699 |
|
|
|
705 |
|
706 |
try:
|
707 |
row_data = create_row_data(input_data.strip())
|
708 |
+
result = infer_license_from_row(row_data)
|
709 |
+
return result or ""
|
710 |
|
711 |
except Exception as e:
|
712 |
logger.error(f"Error inferring license: {e}")
|
|
|
717 |
"""
|
718 |
Find ALL related research resources across platforms for comprehensive analysis.
|
719 |
|
|
|
|
|
|
|
|
|
|
|
720 |
Args:
|
721 |
input_data (str): A URL, paper title, or other research-related input
|
722 |
|
723 |
Returns:
|
724 |
+
Dict[str, Any]: Dictionary containing all discovered related resources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
"""
|
726 |
if not input_data or not input_data.strip():
|
727 |
return {"error": "Input data cannot be empty", "success_count": 0, "total_inferences": 0}
|
|
|
729 |
try:
|
730 |
cleaned_input = input_data.strip()
|
731 |
|
|
|
732 |
relationships = {
|
733 |
"paper": None,
|
734 |
"code": None,
|
|
|
742 |
"license": None,
|
743 |
"field_type": None,
|
744 |
"success_count": 0,
|
745 |
+
"total_inferences": 11
|
746 |
}
|
747 |
|
|
|
748 |
inferences = [
|
749 |
("paper", infer_paper_url),
|
750 |
("code", infer_code_repository),
|
|
|
761 |
|
762 |
logger.info(f"Finding research relationships for: {cleaned_input}")
|
763 |
|
|
|
764 |
for field_name, inference_func in inferences:
|
765 |
try:
|
766 |
result = inference_func(cleaned_input)
|
767 |
|
|
|
768 |
if isinstance(result, list) and result:
|
769 |
relationships[field_name] = result
|
770 |
relationships["success_count"] += 1
|
771 |
elif isinstance(result, str) and result.strip():
|
772 |
relationships[field_name] = result.strip()
|
773 |
relationships["success_count"] += 1
|
|
|
774 |
|
775 |
except Exception as e:
|
776 |
logger.warning(f"Failed to infer {field_name}: {e}")
|
|
|
777 |
|
778 |
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
|
779 |
return relationships
|
requirements.txt
CHANGED
@@ -1,2 +1,9 @@
|
|
1 |
gradio[mcp]==5.38.2
|
2 |
-
requests==2.32.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio[mcp]==5.38.2
|
2 |
+
requests==2.32.4
|
3 |
+
beautifulsoup4==4.13.4
|
4 |
+
feedparser==6.0.11
|
5 |
+
spacy==3.8.7
|
6 |
+
fuzzywuzzy==0.18.0
|
7 |
+
huggingface-hub==0.34.1
|
8 |
+
# Download spaCy English model - needed for organization inference
|
9 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl
|