dylanebert
multi-round discovery
00ab4f8
"""
Research Tracker MCP Server
A clean, simple MCP server that provides research inference utilities.
Exposes functions to infer research metadata from paper URLs, repository links,
or research names using embedded inference logic.
Key Features:
- Author inference from papers and repositories
- Cross-platform resource discovery (papers, code, models, datasets)
- Research metadata extraction (names, dates, licenses, organizations)
- URL classification and relationship mapping
- Comprehensive research ecosystem analysis
All functions are optimized for MCP usage with clear type hints and docstrings.
"""
import os
import re
import logging
import time
from urllib.parse import urlparse, quote
from typing import List, Dict, Any, Optional, Union
from functools import wraps
from datetime import datetime, timedelta
import gradio as gr
import requests
import feedparser
from bs4 import BeautifulSoup
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Configuration
REQUEST_TIMEOUT = 30
MAX_RETRIES = 3
RETRY_DELAY = 1 # seconds
CACHE_TTL = 3600 # 1 hour cache TTL
MAX_URL_LENGTH = 2048
RATE_LIMIT_WINDOW = 60 # seconds
RATE_LIMIT_CALLS = 30 # max calls per window
ARXIV_API_BASE = "http://export.arxiv.org/api/query"
HUGGINGFACE_API_BASE = "https://huggingface.co/api"
HF_TOKEN = os.environ.get("HF_TOKEN")
GITHUB_AUTH = os.environ.get("GITHUB_AUTH")
# Allowed domains for security
ALLOWED_DOMAINS = {
"arxiv.org",
"huggingface.co",
"github.com",
"github.io",
"raw.githubusercontent.com"
}
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables")
# Enhanced cache with TTL for scraping results
_scrape_cache = {} # {url: {"data": ..., "timestamp": ...}}
_rate_limit_tracker = {} # {key: [timestamps]}
class MCPError(Exception):
"""Base exception for MCP-related errors"""
pass
class ValidationError(MCPError):
"""Input validation error"""
pass
class ExternalAPIError(MCPError):
"""External API call error"""
pass
def validate_url(url: str) -> bool:
"""Validate URL for security and correctness"""
if not url or len(url) > MAX_URL_LENGTH:
return False
try:
parsed = urlparse(url)
if not parsed.scheme or not parsed.netloc:
return False
# Extract domain
domain = parsed.netloc.lower()
if ":" in domain:
domain = domain.split(":")[0]
# Check against allowed domains
return any(domain.endswith(allowed) for allowed in ALLOWED_DOMAINS)
except Exception:
return False
def rate_limit(key: str):
"""Simple rate limiting decorator"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
now = time.time()
# Clean old timestamps
if key in _rate_limit_tracker:
_rate_limit_tracker[key] = [
ts for ts in _rate_limit_tracker[key]
if now - ts < RATE_LIMIT_WINDOW
]
else:
_rate_limit_tracker[key] = []
# Check rate limit
if len(_rate_limit_tracker[key]) >= RATE_LIMIT_CALLS:
raise MCPError(f"Rate limit exceeded. Max {RATE_LIMIT_CALLS} calls per {RATE_LIMIT_WINDOW} seconds.")
_rate_limit_tracker[key].append(now)
return func(*args, **kwargs)
return wrapper
return decorator
def make_github_request(endpoint: str, headers: Optional[Dict] = None) -> Optional[requests.Response]:
"""Make GitHub API request with proper authentication and error handling"""
if not GITHUB_AUTH:
return None
url = f"https://api.github.com{endpoint}" if endpoint.startswith("/") else endpoint
if not headers:
headers = {}
headers["Authorization"] = f"Bearer {GITHUB_AUTH}"
try:
response = requests.get(url, headers=headers, timeout=REQUEST_TIMEOUT)
if response.status_code == 200:
return response
elif response.status_code == 404:
return None
else:
logger.warning(f"GitHub API returned {response.status_code} for {url}")
return None
except requests.exceptions.RequestException as e:
logger.warning(f"GitHub API request failed: {e}")
return None
def cached_request(url: str, timeout: int = REQUEST_TIMEOUT) -> Optional[requests.Response]:
"""Make HTTP request with caching, retries, and validation"""
if not validate_url(url):
raise ValidationError(f"Invalid or disallowed URL: {url}")
# Check cache
if url in _scrape_cache:
cache_entry = _scrape_cache[url]
# Handle both old and new cache formats
if isinstance(cache_entry, dict) and "timestamp" in cache_entry:
if time.time() - cache_entry["timestamp"] < CACHE_TTL:
logger.debug(f"Cache hit for {url}")
return cache_entry["data"]
else:
# Old cache format, clear it
del _scrape_cache[url]
# Make request with retries
for attempt in range(MAX_RETRIES):
try:
response = requests.get(url, timeout=timeout)
if response.status_code == 200:
# Cache successful response
_scrape_cache[url] = {
"data": response,
"timestamp": time.time()
}
return response
elif response.status_code == 404:
return None
else:
logger.warning(f"HTTP {response.status_code} for {url}")
except requests.exceptions.Timeout:
logger.warning(f"Timeout on attempt {attempt + 1} for {url}")
except requests.exceptions.RequestException as e:
logger.warning(f"Request error on attempt {attempt + 1}: {e}")
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY * (attempt + 1)) # Exponential backoff
raise ExternalAPIError(f"Failed to fetch {url} after {MAX_RETRIES} attempts")
# Utility functions
def get_arxiv_id(paper_url: str) -> Optional[str]:
"""Extract arXiv ID from paper URL"""
if "arxiv.org/abs/" in paper_url:
return paper_url.split("arxiv.org/abs/")[1].split('.pdf')[0]
elif "arxiv.org/pdf/" in paper_url:
return paper_url.split("arxiv.org/pdf/")[1].split('.pdf')[0]
elif "huggingface.co/papers" in paper_url:
return paper_url.split("huggingface.co/papers/")[1]
return None
def clean_url(url):
"""Clean malformed URLs by removing trailing HTML fragments and invalid characters"""
if not url:
return url
# Remove HTML closing tags and attributes that often get attached
import re
# Remove anything after quote marks followed by HTML-like content
url = re.sub(r'["\']\s*>.*$', '', url)
# Remove trailing HTML fragments
url = re.sub(r'["\']?\s*</.*$', '', url)
# Remove trailing punctuation and whitespace
url = url.rstrip('",;\'"()<>[] \t\n\r')
# Basic URL validation - should start with http/https and contain valid characters
if not re.match(r'^https?://[^\s<>"\'\[\]{}|\\^`]+$', url):
return None
return url
def is_valid_paper_url(url):
"""Check if a URL is a valid paper URL, excluding badges and non-paper content"""
if not url:
return False
url_lower = url.lower()
# Exclude badges, shields, and other non-paper URLs
if any(pattern in url_lower for pattern in [
'img.shields.io', 'badge', 'logo', 'icon', 'button',
'github.com/microsoft/trellis/issues', '/releases/', '/actions/',
'/wiki/', '/tree/', '/blob/', '.svg', '.png', '.jpg', '.gif'
]):
return False
# Valid paper URL patterns
if any(pattern in url_lower for pattern in [
'arxiv.org/abs/', 'arxiv.org/pdf/', 'huggingface.co/papers/'
]):
return True
return False
def select_best_github_repo(github_links, context_keywords=None):
"""Select the best GitHub repository from a list of GitHub URLs"""
if not github_links:
return None
if context_keywords is None:
context_keywords = []
# Score repositories based on various factors
scored_repos = []
for link in github_links:
if not link:
continue
score = 0
link_lower = link.lower()
# Skip user profiles (github.com/username without repo)
path_parts = link.split('github.com/')[-1].split('/')
if len(path_parts) < 2 or not path_parts[1]:
continue # Skip user profiles
# Skip issue/PR/wiki pages - prefer main repo
if any(x in link_lower for x in ['/issues', '/pull', '/wiki', '/releases', '/actions']):
score -= 10
# Prefer repositories that match context keywords
for keyword in context_keywords:
if keyword.lower() in link_lower:
score += 20
# Prefer Microsoft/official org repos if in a Microsoft context
if 'microsoft' in link_lower and any(k.lower() in link_lower for k in context_keywords):
score += 15
# Prefer main branch/root repo URLs
if link_lower.endswith('.git') or '/tree/' not in link_lower:
score += 5
scored_repos.append((score, link))
if scored_repos:
# Return the highest scored repository
scored_repos.sort(key=lambda x: x[0], reverse=True)
return scored_repos[0][1]
return None
def extract_links_from_soup(soup, text):
"""Extract both HTML and markdown links from soup and text"""
html_links = [link.get("href") for link in soup.find_all("a") if link.get("href")]
link_pattern = re.compile(r"\[.*?\]\((.*?)\)")
markdown_links = link_pattern.findall(text)
# Also extract direct URLs that aren't in markdown format
url_pattern = re.compile(r'https?://[^\s\)]+')
direct_urls = url_pattern.findall(text)
# Combine all links, clean them, and remove duplicates
all_links = html_links + markdown_links + direct_urls
cleaned_links = [clean_url(link) for link in all_links if link]
return list(set([link for link in cleaned_links if link]))
def scrape_huggingface_paper_page(paper_url: str) -> Dict[str, Any]:
"""
Scrape HuggingFace paper page to find associated resources with caching
Returns:
Dict containing found resources: {
"models": [], "datasets": [], "spaces": [], "code": []
}
"""
# Default empty resources
empty_resources = {"models": [], "datasets": [], "spaces": [], "code": []}
if not paper_url or "huggingface.co/papers" not in paper_url:
return empty_resources
try:
response = cached_request(paper_url)
if not response:
return empty_resources
soup = BeautifulSoup(response.text, "html.parser")
# Find all links on the page
links = set() # Use set to avoid duplicates
for link in soup.find_all("a", href=True):
href = link["href"]
# Convert relative URLs to absolute
if href.startswith("/"):
href = "https://huggingface.co" + href
elif href.startswith("huggingface.co"):
href = "https://" + href
links.add(href)
# Categorize links efficiently
resources = {"models": [], "datasets": [], "spaces": [], "code": []}
for link in links:
if "huggingface.co/" in link:
if "/models/" in link:
resources["models"].append(link)
elif "/datasets/" in link:
resources["datasets"].append(link)
elif "/spaces/" in link:
resources["spaces"].append(link)
elif "github.com" in link:
resources["code"].append(link)
# Cache the result
_scrape_cache[paper_url] = resources
logger.info(f"Scraped {len(resources['models'])} models, {len(resources['datasets'])} datasets, "
f"{len(resources['spaces'])} spaces, {len(resources['code'])} code repos from {paper_url}")
except ValidationError as e:
logger.error(f"Validation error scraping HF paper page: {e}")
return empty_resources
except ExternalAPIError as e:
logger.error(f"External API error scraping HF paper page: {e}")
return empty_resources
except Exception as e:
logger.error(f"Unexpected error scraping HF paper page: {e}")
return empty_resources
return resources
def create_row_data(input_data: str) -> Dict[str, Any]:
"""Create standardized row data structure from input."""
row_data = {
"Name": None,
"Authors": [],
"Paper": None,
"Code": None,
"Project": None,
"Space": None,
"Model": None,
"Dataset": None,
"Orgs": [],
"License": None,
"Date": None,
}
# Classify input based on URL patterns
if input_data.startswith(("http://", "https://")):
if "arxiv.org" in input_data or "huggingface.co/papers" in input_data:
row_data["Paper"] = input_data
elif "github.com" in input_data:
row_data["Code"] = input_data
elif "github.io" in input_data:
row_data["Project"] = input_data
elif "huggingface.co/spaces" in input_data:
row_data["Space"] = input_data
elif "huggingface.co/datasets" in input_data:
row_data["Dataset"] = input_data
elif "huggingface.co/" in input_data:
row_data["Model"] = input_data
else:
row_data["Paper"] = input_data
else:
row_data["Name"] = input_data
return row_data
# Core inference functions
def infer_paper_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer paper URL from row data"""
if row_data.get("Paper") is not None:
try:
url = urlparse(row_data["Paper"])
if url.scheme in ["http", "https"]:
# Convert arXiv PDF to abs format
if "arxiv.org/pdf/" in row_data["Paper"]:
new_url = row_data["Paper"].replace("/pdf/", "/abs/").replace(".pdf", "")
logger.info(f"Paper {new_url} inferred from {row_data['Paper']}")
return new_url
# If this is an arXiv URL, try HuggingFace papers first for better resource discovery
if "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = row_data["Paper"].split("arxiv.org/abs/")[1]
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
try:
# Test if HuggingFace paper page exists and has content
response = cached_request(hf_paper_url)
if response and len(response.text) > 1000: # Basic check for content
logger.info(f"Paper {hf_paper_url} inferred from arXiv (HuggingFace preferred)")
return hf_paper_url
except (ValidationError, ExternalAPIError):
pass # Fall back to original arXiv URL
return row_data["Paper"]
except Exception:
pass
# Check if paper is in other fields
for field in ["Project", "Code", "Model", "Space", "Dataset", "Name"]:
if row_data.get(field) is not None:
if "arxiv" in row_data[field] or "huggingface.co/papers" in row_data[field]:
logger.info(f"Paper {row_data[field]} inferred from {field}")
return row_data[field]
# Try following project link and look for paper
if row_data.get("Project") is not None:
try:
response = cached_request(row_data["Project"])
if response:
soup = BeautifulSoup(response.text, "html.parser")
for link in soup.find_all("a"):
href = link.get("href")
if href and is_valid_paper_url(href):
logger.info(f"Paper {href} inferred from Project")
return href
except (ValidationError, ExternalAPIError) as e:
logger.debug(f"Failed to scrape project page: {e}")
# Try GitHub README parsing
if row_data.get("Code") is not None and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
# First try with GitHub API if available
if GITHUB_AUTH:
readme_response = make_github_request(f"/repos/{repo}/readme")
if readme_response:
readme = readme_response.json()
if readme.get("type") == "file" and readme.get("download_url"):
response = cached_request(readme["download_url"])
if response:
soup = BeautifulSoup(response.text, "html.parser")
links = extract_links_from_soup(soup, response.text)
for link in links:
if link and is_valid_paper_url(link):
logger.info(f"Paper {link} inferred from Code (via GitHub API)")
return link
# Fallback: try scraping the GitHub page directly
try:
github_url = row_data["Code"]
response = cached_request(github_url)
if response:
soup = BeautifulSoup(response.text, "html.parser")
links = extract_links_from_soup(soup, response.text)
for link in links:
if link and is_valid_paper_url(link):
logger.info(f"Paper {link} inferred from Code (via GitHub scraping)")
return link
except (ValidationError, ExternalAPIError):
pass
except Exception:
pass
return None
def infer_name_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer research name from row data"""
if row_data.get("Name") is not None:
return row_data["Name"]
# Try to get name using arxiv api
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
if hasattr(entry, "title"):
name = entry.title.strip()
logger.info(f"Name {name} inferred from Paper")
return name
except Exception:
pass
# Try to get from code repo
if row_data.get("Code") is not None and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
name = repo.split("/")[1]
logger.info(f"Name {name} inferred from Code")
return name
except Exception:
pass
# Try to get from project page
if row_data.get("Project") is not None:
try:
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
soup = BeautifulSoup(r.text, "html.parser")
if soup.title is not None:
name = soup.title.string.strip()
logger.info(f"Name {name} inferred from Project")
return name
except Exception:
pass
return None
def infer_code_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer code repository URL from row data"""
if row_data.get("Code") is not None:
try:
url = urlparse(row_data["Code"])
if url.scheme in ["http", "https"] and "github" in url.netloc:
return row_data["Code"]
except Exception:
pass
# Check if code is in other fields
for field in ["Project", "Paper", "Model", "Space", "Dataset", "Name"]:
if row_data.get(field) is not None:
try:
url = urlparse(row_data[field])
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
logger.info(f"Code {row_data[field]} inferred from {field}")
return row_data[field]
except Exception:
pass
# Try to infer code from project page
if row_data.get("Project") is not None:
try:
r = requests.get(row_data["Project"], timeout=REQUEST_TIMEOUT)
soup = BeautifulSoup(r.text, "html.parser")
links = extract_links_from_soup(soup, r.text)
# Filter GitHub links
github_links = []
for link in links:
if link:
try:
url = urlparse(link)
if url.scheme in ["http", "https"] and "github.com" in url.netloc:
github_links.append(link)
except Exception:
pass
if github_links:
# Extract context keywords from the project page
context_keywords = []
if soup.title:
context_keywords.extend(soup.title.get_text().split())
# Use URL parts as context
project_url_parts = row_data["Project"].split('/')
context_keywords.extend([part for part in project_url_parts if part and len(part) > 2])
best_repo = select_best_github_repo(github_links, context_keywords)
if best_repo:
logger.info(f"Code {best_repo} inferred from Project")
return best_repo
except Exception:
pass
# Try scraping HuggingFace paper page for code links
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["code"]:
code_url = resources["code"][0] # Take first code repo found
logger.info(f"Code {code_url} inferred from HuggingFace paper page")
return code_url
# If we have arXiv URL, try the HuggingFace version first
elif "arxiv.org/abs/" in row_data["Paper"] and arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["code"]:
code_url = resources["code"][0]
logger.info(f"Code {code_url} inferred from HuggingFace paper page (via arXiv)")
return code_url
# Fallback: Try GitHub search for papers
if row_data.get("Paper") is not None and GITHUB_AUTH:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
try:
search_endpoint = f"/search/repositories?q={arxiv_id}&sort=stars&order=desc"
search_response = make_github_request(search_endpoint)
if search_response:
search_results = search_response.json()
if "items" in search_results and len(search_results["items"]) > 0:
repo = search_results["items"][0]
repo_url = repo["html_url"]
logger.info(f"Code {repo_url} inferred from Paper (GitHub search)")
return repo_url
except Exception as e:
logger.warning(f"Failed to infer code from paper: {e}")
return None
def infer_authors_from_row(row_data: Dict[str, Any]) -> List[str]:
"""Infer authors from row data"""
authors = row_data.get("Authors", [])
if not isinstance(authors, list):
authors = []
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
if hasattr(entry, 'authors'):
api_authors = entry.authors
for author in api_authors:
if author is None or not hasattr(author, "name"):
continue
if author.name not in authors and author.name != "arXiv api core":
authors.append(author.name)
logger.info(f"Author {author.name} inferred from Paper")
except Exception as e:
logger.warning(f"Failed to fetch authors from arXiv: {e}")
return authors
def infer_date_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer publication date from row data"""
if row_data.get("Paper") is not None:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id is not None:
try:
search_params = "id_list=" + arxiv_id
response = feedparser.parse(f"{ARXIV_API_BASE}?" + search_params)
if response.entries and len(response.entries) > 0:
entry = response.entries[0]
date = getattr(entry, "published", None) or getattr(entry, "updated", None)
if date is not None:
logger.info(f"Date {date} inferred from Paper")
return date
except Exception as e:
logger.warning(f"Failed to fetch date from arXiv: {e}")
return None
def infer_model_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace model from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["models"]:
model_url = resources["models"][0] # Take first model found
logger.info(f"Model {model_url} inferred from HuggingFace paper page")
return model_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["models"]:
model_url = resources["models"][0]
logger.info(f"Model {model_url} inferred from HuggingFace paper page (via arXiv)")
return model_url
return None
def infer_dataset_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace dataset from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["datasets"]:
dataset_url = resources["datasets"][0] # Take first dataset found
logger.info(f"Dataset {dataset_url} inferred from HuggingFace paper page")
return dataset_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["datasets"]:
dataset_url = resources["datasets"][0]
logger.info(f"Dataset {dataset_url} inferred from HuggingFace paper page (via arXiv)")
return dataset_url
return None
def infer_space_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer HuggingFace space from row data by scraping paper page"""
if row_data.get("Paper") is not None:
# Try scraping HuggingFace paper page
if "huggingface.co/papers" in row_data["Paper"]:
resources = scrape_huggingface_paper_page(row_data["Paper"])
if resources["spaces"]:
space_url = resources["spaces"][0] # Take first space found
logger.info(f"Space {space_url} inferred from HuggingFace paper page")
return space_url
# If we have arXiv URL, try the HuggingFace version
elif "arxiv.org/abs/" in row_data["Paper"]:
arxiv_id = get_arxiv_id(row_data["Paper"])
if arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
resources = scrape_huggingface_paper_page(hf_paper_url)
if resources["spaces"]:
space_url = resources["spaces"][0]
logger.info(f"Space {space_url} inferred from HuggingFace paper page (via arXiv)")
return space_url
# Fallback: try to infer from model using HF API
if row_data.get("Model") is not None:
try:
model_id = row_data["Model"].split("huggingface.co/")[1]
url = f"{HUGGINGFACE_API_BASE}/spaces?models=" + model_id
r = requests.get(url, timeout=REQUEST_TIMEOUT)
if r.status_code == 200:
spaces = r.json()
if len(spaces) > 0:
space = spaces[0]["id"]
space_url = "https://huggingface.co/spaces/" + space
logger.info(f"Space {space} inferred from Model")
return space_url
except Exception as e:
logger.warning(f"Failed to infer space from model: {e}")
return None
def infer_license_from_row(row_data: Dict[str, Any]) -> Optional[str]:
"""Infer license information from row data"""
if row_data.get("Code") is not None and GITHUB_AUTH and "github.com" in row_data["Code"]:
try:
repo = row_data["Code"].split("github.com/")[1]
r = make_github_request(f"/repos/{repo}/license")
if r:
license_data = r.json()
if "license" in license_data and license_data["license"] is not None:
license_name = license_data["license"]["name"]
logger.info(f"License {license_name} inferred from Code")
return license_name
except Exception as e:
logger.warning(f"Failed to infer license from code: {e}")
return None
def infer_field_type(value: str) -> str:
"""Classify the type of research-related URL or input"""
if value is None:
return "Unknown"
if "arxiv.org/" in value or "huggingface.co/papers" in value or ".pdf" in value:
return "Paper"
if "github.com" in value:
return "Code"
if "huggingface.co/spaces" in value:
return "Space"
if "huggingface.co/datasets" in value:
return "Dataset"
if "github.io" in value:
return "Project"
if "huggingface.co/" in value:
try:
path = value.split("huggingface.co/")[1]
path_parts = path.strip("/").split("/")
if len(path_parts) >= 2 and not path.startswith(("spaces/", "datasets/", "papers/")):
return "Model"
except (IndexError, AttributeError):
pass
return "Unknown"
# MCP tool functions
@rate_limit("mcp_tools")
def infer_authors(input_data: str) -> List[str]:
"""
Infer authors from research paper or project information.
This tool extracts author names from:
- arXiv papers (via API)
- HuggingFace paper pages (via scraping)
- GitHub repositories (via API when GITHUB_AUTH is set)
Args:
input_data (str): A URL, paper title, or other research-related input.
Examples:
- "https://arxiv.org/abs/2103.00020"
- "https://huggingface.co/papers/2103.00020"
- "https://github.com/openai/CLIP"
Returns:
List[str]: A list of author names as strings, or empty list if no authors found.
Example: ["Alec Radford", "Jong Wook Kim", "Chris Hallacy"]
Raises:
ValidationError: If input_data is invalid or malformed
ExternalAPIError: If external API calls fail after retries
"""
if not input_data or not input_data.strip():
return []
try:
cleaned_input = input_data.strip()
row_data = create_row_data(cleaned_input)
authors = infer_authors_from_row(row_data)
valid_authors = []
for author in authors:
if isinstance(author, str) and len(author.strip()) > 0:
cleaned_author = author.strip()
if 2 <= len(cleaned_author) <= 100:
valid_authors.append(cleaned_author)
logger.info(f"Successfully inferred {len(valid_authors)} authors from input")
return valid_authors
except Exception as e:
logger.error(f"Error inferring authors: {e}")
return []
@rate_limit("mcp_tools")
def infer_paper_url(input_data: str) -> str:
"""
Infer the paper URL from various research-related inputs.
This tool finds paper URLs by:
- Validating existing paper URLs
- Searching GitHub repositories for paper links
- Converting between arXiv and HuggingFace paper formats
- Searching by paper title when provided
Args:
input_data (str): A URL, repository link, or other research-related input
Examples:
- "https://github.com/openai/CLIP"
- "Vision Transformer"
- "https://huggingface.co/spaces/example"
Returns:
str: The paper URL (typically arXiv or Hugging Face papers), or empty string if not found
Example: "https://huggingface.co/papers/2103.00020"
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_paper_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring paper: {e}")
return ""
@rate_limit("mcp_tools")
def infer_code_repository(input_data: str) -> str:
"""
Infer the code repository URL from research-related inputs.
This tool discovers code repositories by:
- Scraping HuggingFace paper pages for GitHub links
- Searching GitHub for repositories by paper title
- Extracting repository links from project pages
Args:
input_data (str): A URL, paper link, or other research-related input
Examples:
- "https://arxiv.org/abs/2010.11929"
- "https://huggingface.co/papers/2010.11929"
- "Vision Transformer"
Returns:
str: The code repository URL (typically GitHub), or empty string if not found
Example: "https://github.com/google-research/vision_transformer"
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_code_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring code: {e}")
return ""
def infer_research_name(input_data: str) -> str:
"""
Infer the research paper or project name from various inputs.
Args:
input_data (str): A URL, repository link, or other research-related input
Returns:
str: The research name/title, or empty string if not found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_name_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring name: {e}")
return ""
@rate_limit("mcp_tools")
def classify_research_url(input_data: str) -> str:
"""
Classify the type of research-related URL or input.
This tool identifies resource types based on URL patterns:
- Paper: arXiv, HuggingFace papers, PDF files
- Code: GitHub repositories
- Model: HuggingFace model pages
- Dataset: HuggingFace dataset pages
- Space: HuggingFace space/demo pages
- Project: GitHub.io pages
- Unknown: Unrecognized patterns
Args:
input_data (str): The URL or input to classify
Examples:
- "https://arxiv.org/abs/2103.00020" -> "Paper"
- "https://github.com/openai/CLIP" -> "Code"
- "https://huggingface.co/openai/clip-vit-base-patch32" -> "Model"
Returns:
str: The field type: "Paper", "Code", "Space", "Model", "Dataset", "Project", or "Unknown"
"""
if not input_data or not input_data.strip():
return "Unknown"
try:
field = infer_field_type(input_data)
return field if field else "Unknown"
except Exception as e:
logger.error(f"Error classifying URL: {e}")
return "Unknown"
def infer_publication_date(input_data: str) -> str:
"""
Infer publication date from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: Publication date as string (YYYY-MM-DD format), or empty string if not found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_date_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring publication date: {e}")
return ""
def infer_model(input_data: str) -> str:
"""
Infer associated HuggingFace model from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace model URL, or empty string if no model found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_model_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring model: {e}")
return ""
def infer_dataset(input_data: str) -> str:
"""
Infer associated HuggingFace dataset from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace dataset URL, or empty string if no dataset found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_dataset_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring dataset: {e}")
return ""
def infer_space(input_data: str) -> str:
"""
Infer associated HuggingFace space from research paper or project information.
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
str: HuggingFace space URL, or empty string if no space found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_space_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring space: {e}")
return ""
def infer_license(input_data: str) -> str:
"""
Infer license information from research repository or project.
Args:
input_data (str): A URL, repository link, or other research-related input
Returns:
str: License name/type, or empty string if no license found
"""
if not input_data or not input_data.strip():
return ""
try:
row_data = create_row_data(input_data.strip())
result = infer_license_from_row(row_data)
return result or ""
except Exception as e:
logger.error(f"Error inferring license: {e}")
return ""
def discover_all_urls(input_data: str) -> Dict[str, Any]:
"""
Discover ALL related URLs from the input by building a complete resource graph.
This performs multiple rounds of discovery to find all interconnected resources.
"""
discovered = {
"paper": None,
"code": None,
"project": None,
"model": None,
"dataset": None,
"space": None,
"hf_resources": None
}
# Initialize with input
row_data = create_row_data(input_data.strip())
# Round 1: Direct inferences from input
if row_data.get("Paper"):
discovered["paper"] = row_data["Paper"]
if row_data.get("Code"):
discovered["code"] = row_data["Code"]
if row_data.get("Project"):
discovered["project"] = row_data["Project"]
if row_data.get("Model"):
discovered["model"] = row_data["Model"]
if row_data.get("Dataset"):
discovered["dataset"] = row_data["Dataset"]
if row_data.get("Space"):
discovered["space"] = row_data["Space"]
# Round 2: Cross-inferences - keep discovering until no new URLs found
max_rounds = 3
for round_num in range(max_rounds):
found_new = False
# Try to find paper from code if we have code but no paper
if discovered["code"] and not discovered["paper"]:
temp_row = {"Code": discovered["code"], "Paper": None, "Project": discovered["project"]}
paper = infer_paper_from_row(temp_row)
if paper and paper != discovered["paper"]:
discovered["paper"] = paper
found_new = True
# Try to find code from paper if we have paper but no code
if discovered["paper"] and not discovered["code"]:
temp_row = {"Paper": discovered["paper"], "Code": None, "Project": discovered["project"]}
code = infer_code_from_row(temp_row)
if code and code != discovered["code"]:
discovered["code"] = code
found_new = True
# Try to find code from project if we have project but no code
if discovered["project"] and not discovered["code"]:
temp_row = {"Project": discovered["project"], "Code": None, "Paper": discovered["paper"]}
code = infer_code_from_row(temp_row)
if code and code != discovered["code"]:
discovered["code"] = code
found_new = True
# Scrape HuggingFace paper page for additional resources
if discovered["paper"] and not discovered["hf_resources"]:
arxiv_id = get_arxiv_id(discovered["paper"])
if "huggingface.co/papers" in discovered["paper"]:
discovered["hf_resources"] = scrape_huggingface_paper_page(discovered["paper"])
found_new = True
elif arxiv_id:
hf_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
discovered["hf_resources"] = scrape_huggingface_paper_page(hf_paper_url)
if discovered["hf_resources"] and any(discovered["hf_resources"].values()):
found_new = True
# Extract additional resources from HF scraping
if discovered["hf_resources"]:
if not discovered["model"] and discovered["hf_resources"]["models"]:
discovered["model"] = discovered["hf_resources"]["models"][0]
found_new = True
if not discovered["dataset"] and discovered["hf_resources"]["datasets"]:
discovered["dataset"] = discovered["hf_resources"]["datasets"][0]
found_new = True
if not discovered["space"] and discovered["hf_resources"]["spaces"]:
discovered["space"] = discovered["hf_resources"]["spaces"][0]
found_new = True
if not discovered["code"] and discovered["hf_resources"]["code"]:
discovered["code"] = discovered["hf_resources"]["code"][0]
found_new = True
if not found_new:
break
return discovered
@rate_limit("mcp_tools")
def find_research_relationships(input_data: str) -> Dict[str, Any]:
"""
Find ALL related research resources across platforms for comprehensive analysis.
Uses a multi-round discovery approach to build a complete resource graph.
This is a comprehensive tool that combines all individual inference tools to provide
a complete picture of a research project's ecosystem. It discovers:
- Paper URLs (arXiv, HuggingFace)
- Code repositories (GitHub)
- Models, datasets, and demo spaces (HuggingFace)
- Author information and publication dates
- License information
Args:
input_data (str): A URL, paper title, or other research-related input
Returns:
Dict[str, Any]: Dictionary containing all discovered related resources
"""
if not input_data or not input_data.strip():
return {"error": "Input data cannot be empty", "success_count": 0, "total_inferences": 10}
try:
cleaned_input = input_data.strip()
logger.info(f"Finding research relationships for: {cleaned_input}")
# Initialize results
relationships = {
"paper": None,
"code": None,
"name": None,
"authors": [],
"date": None,
"model": None,
"dataset": None,
"space": None,
"license": None,
"field_type": None,
"success_count": 0,
"total_inferences": 10
}
# Phase 1: Discover all URLs by building complete resource graph
discovered_urls = discover_all_urls(cleaned_input)
# Phase 2: Create comprehensive row data with all discovered URLs
complete_row_data = {
"Name": None,
"Authors": [],
"Paper": discovered_urls["paper"],
"Code": discovered_urls["code"],
"Project": discovered_urls["project"],
"Space": discovered_urls["space"],
"Model": discovered_urls["model"],
"Dataset": discovered_urls["dataset"],
"Orgs": [],
"License": None,
"Date": None,
}
# Phase 3: Perform all inferences using complete information
# Paper
if complete_row_data["Paper"]:
relationships["paper"] = complete_row_data["Paper"]
relationships["success_count"] += 1
# Code
if complete_row_data["Code"]:
relationships["code"] = complete_row_data["Code"]
relationships["success_count"] += 1
# Name inference (try all available sources)
name = infer_name_from_row(complete_row_data)
if name:
relationships["name"] = name
relationships["success_count"] += 1
# Authors inference
authors = infer_authors_from_row(complete_row_data)
if authors:
relationships["authors"] = authors
relationships["success_count"] += 1
# Date inference
date = infer_date_from_row(complete_row_data)
if date:
relationships["date"] = date
relationships["success_count"] += 1
# Model
if complete_row_data["Model"]:
relationships["model"] = complete_row_data["Model"]
relationships["success_count"] += 1
# Dataset
if complete_row_data["Dataset"]:
relationships["dataset"] = complete_row_data["Dataset"]
relationships["success_count"] += 1
# Space
if complete_row_data["Space"]:
relationships["space"] = complete_row_data["Space"]
relationships["success_count"] += 1
# License inference
license_info = infer_license_from_row(complete_row_data)
if license_info:
relationships["license"] = license_info
relationships["success_count"] += 1
# Field type inference
field_type = infer_field_type(cleaned_input)
if field_type and field_type != "Unknown":
relationships["field_type"] = field_type
relationships["success_count"] += 1
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
return relationships
except Exception as e:
logger.error(f"Error finding research relationships: {e}")
return {"error": str(e), "success_count": 0, "total_inferences": 10}
def format_list_output(items):
"""Format list items for display"""
if not items or not isinstance(items, list):
return "None"
return "\n".join([f"β€’ {item}" for item in items])
def process_research_relationships(input_data):
"""Process research input and return formatted results"""
if not input_data or not input_data.strip():
return "Please enter a valid URL or research name", "", "", "", "", "", "", "", "", ""
try:
result = find_research_relationships(input_data.strip())
# Extract individual fields with fallback to empty string
paper = result.get("paper", "") or ""
code = result.get("code", "") or ""
name = result.get("name", "") or ""
authors = format_list_output(result.get("authors", []))
date = result.get("date", "") or ""
model = result.get("model", "") or ""
dataset = result.get("dataset", "") or ""
space = result.get("space", "") or ""
license_info = result.get("license", "") or ""
field_type = result.get("field_type", "") or ""
return paper, code, name, authors, date, model, dataset, space, license_info, field_type
except Exception as e:
error_msg = f"Error processing input: {str(e)}"
return error_msg, "", "", "", "", "", "", "", "", ""
# Create Gradio interface with both UI and MCP tool exposure
with gr.Blocks(title="Research Tracker MCP Server") as demo:
gr.Markdown("# πŸ”¬ Research Tracker MCP Server")
gr.Markdown("""
**MCP Server for AI Research Intelligence** - This interface demonstrates the `find_research_relationships` tool, which combines all available MCP inference tools into a comprehensive analysis.
## Individual MCP Tools Available:
Each output field below represents a separate MCP tool that can be used independently:
- `infer_paper_url` β†’ Paper URL
- `infer_code_repository` β†’ Code Repository
- `infer_research_name` β†’ Research Name
- `infer_authors` β†’ Authors
- `infer_publication_date` β†’ Publication Date
- `infer_model` β†’ HuggingFace Model
- `infer_dataset` β†’ HuggingFace Dataset
- `infer_space` β†’ HuggingFace Space
- `infer_license` β†’ License
- `classify_research_url` β†’ Field Type
πŸ’‘ **For programmatic access**: Use the "Use via API or MCP" button below to integrate these tools with Claude or other AI assistants.
""")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Demo Input",
placeholder="https://arxiv.org/abs/2506.18787",
lines=2,
info="Paper URL, repository URL, or project page"
)
submit_btn = gr.Button("πŸ” Demonstrate find_research_relationships", variant="primary")
gr.Markdown("## Research Relationships")
with gr.Row():
with gr.Column():
paper_output = gr.Textbox(label="Paper URL", interactive=False)
code_output = gr.Textbox(label="Code Repository", interactive=False)
name_output = gr.Textbox(label="Research Name", interactive=False)
authors_output = gr.Textbox(label="Authors", lines=3, interactive=False)
with gr.Column():
date_output = gr.Textbox(label="Publication Date", interactive=False)
model_output = gr.Textbox(label="Hugging Face Model", interactive=False)
dataset_output = gr.Textbox(label="Hugging Face Dataset", interactive=False)
with gr.Column():
space_output = gr.Textbox(label="Hugging Face Space", interactive=False)
license_output = gr.Textbox(label="License", interactive=False)
field_type_output = gr.Textbox(label="Field Type", interactive=False)
# Connect the interface with examples
submit_btn.click(
fn=process_research_relationships,
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
]
)
# Add examples using Gradio's built-in system
gr.Examples(
examples=[
["https://arxiv.org/abs/2506.18787"],
["https://huggingface.co/papers/2010.11929"],
["https://github.com/facebookresearch/segment-anything"],
["https://microsoft.github.io/TRELLIS/"]
],
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
],
fn=process_research_relationships,
cache_examples=False,
label="Example Inputs"
)
# Also trigger on Enter key
input_text.submit(
fn=process_research_relationships,
inputs=[input_text],
outputs=[
paper_output, code_output, name_output, authors_output,
date_output, model_output, dataset_output,
space_output, license_output, field_type_output
]
)
# Expose all core functions as MCP tools
gr.api(infer_authors)
gr.api(infer_paper_url)
gr.api(infer_code_repository)
gr.api(infer_research_name)
gr.api(classify_research_url)
gr.api(infer_publication_date)
gr.api(infer_model)
gr.api(infer_dataset)
gr.api(infer_space)
gr.api(infer_license)
gr.api(find_research_relationships)
if __name__ == "__main__":
logger.info("Starting Research Tracker MCP Server")
demo.launch(mcp_server=True, share=False)